

Mathematics

Student Number

2016 TRIAL HIGHER SCHOOL CERTIFICATE

AM Friday $\mathbf{5}^{\text {th }}$ August

Section I - Multiple Choice

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

| Sample $2+4=$ | (A) 2 | (B) 6 | (C) 8 | (D) 9 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | (A) \bigcirc | (B) \bigcirc | (C) \bigcirc | (D) \bigcirc |

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
(A)

\square
\square (D) 0

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows.
correct(B)
(C) \bigcirc
(D) O

Student Number

2016
 TRIAL HIGHER SCHOOL CERTIFICATE

Mathematics

Staff Involved:

AM Friday $5^{\text {th }}$ August

- RMH* • JGD*
- DZP • MRB
- AXD • LAK
- AJD • KJL
- GPF • ARM

120 copies

General Instructions

- Reading time - 5 minutes
- Working time - $\mathbf{3}$ hours
- Write using black pen.
- A Reference Sheet is provided
- Approved calculators and Mathaids may be used.
- Diagrams are not to scale unless indicated.
- Marks may not be awarded for careless or badly arranged working.
- In Questions 11-16, show all relevant mathematical reasoning and or calculations

Section I - Multiple Choice (10 marks)
Attempt questions 1 - 10
All about 15 minutes for this section
Use the multiple choice answer sheet for Questions 1-10.

1. What is 75680241 written in scientific notation, correct to 3 significant figures?
(A) 7.568×10^{7}
(B) 7.57×10^{7}
(C) 7.568×10^{4} (D)
7.57×10^{5}
2. All students in a particular TAFE course sit a theory test and a practical test. 65% of students pass the theory test and only 40% pass the practical test. A student is chosen at random. The probability that the student passes both tests is:
(A) 0.26
(B) 1.05
(C) 0.026
(D) $2 \cdot 6$
3. The solution to $2^{3 x+5}=4^{x-1}$ is:
(A) $x=-2$
(B) $x=-1$
(C) $x=-6$
(D) $x=-7$
4. The parabola $y^{2}=12 x-24$ has:
(A) focus $(5,0)$ and directrix $x=-1$
(B) focus $(2,3)$ and directrix $y=-3$
(C) focus $(-1,0)$ and directrix $x=5$
(D) focus $(27,0)$ and directrix $x=21$
5. The diagram shows the parabola $y=x^{2}+4 x$ meeting the line $y=2 x$ at $(-2,-4)$ and $(0,0)$.
6.

The graph above could have as its equation:
(A) $y=2 \cos \frac{x}{2}$
(B) $y=2 \cos x$
(C) $y=2 \sin x$
(D) $y=2 \sin 2 x$
6. What is the value of the derivative of $y=\tan x-3 \sin 2 x$ at $x=0$?
(A) 0
(B) 7
(C) -5
(D) -2
7. The domain and range of $y^{2}=4-x^{2}$ are :
(A) $-2 \leq x \leq 2, \quad 0 \leq y \leq 2$
(B) $-2 \leq x \leq 2,-2 \leq y \leq 2$
(C) all real $x, y \leq 2$
(D) $x \leq 4$, all real y

Which expression gives the area of the shaded region bounded by the parabola and the line?
(A) $\int_{-2}^{0}\left(-2 x-x^{2}\right) d x$
(B) $\int_{0}^{-2}\left(-2 x-x^{2}\right) d x$
(C) $\int_{-2}^{0}\left(x^{2}+2 x\right) d x$
(D) $\int_{0}^{-2}\left(x^{2}+2 x\right) d x$
9. The sum of the first three terms of a geometric series is 19 and the sum to infinity is 27 . The values of the first term a, and the common ratio r are:
(A) $\quad a=-9, \quad r=\frac{-2}{3}$
(B) $\quad a=9, \quad r=\frac{2}{3}$
(C) $a=\frac{19}{3}, \quad r=\frac{19}{27}$
(D) $\quad a=-9, \quad r=\frac{2}{3}$
10. The diagram shows the graph of $y=e^{x}(1-x)$.

How many solutions are there to the equation $e^{x}(1-x)=x^{2}-1$?
(A) 0
(B) 1
(C) 2
(D) 3

End of Section I

Section II

90 marks

Attempt Questions 11-16
Allow about 2 hours and 45 minutes for this section.

Answer each question in the appropriate writing booklet. Extra writing booklets are available

In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)
 [START A NEW BOOKLET]

(a) Simplify $16 a-(3-4 a)$
(b) Factorise fully $8 x^{3}-27$ 2
(c) Express $\frac{3}{2-\sqrt{5}}$ with a rational denominator.
(d) Find $\lim _{x \rightarrow 3} \frac{x^{2}+2 x-15}{x-3}$.
(e) Differentiate $y=\frac{2 x}{\left(e^{x}+1\right)^{3}}$
f) The roots of the equation $x^{2}-7 x+9=0$ are α and β. Find the value of $\alpha^{2}+\beta^{2}$
g) Differentiate $y=x^{2} \cos x$
(h) The diagram shows $X Y Z$ with sides $X Y=6 \mathrm{~cm}, Y Z=4 \mathrm{~cm}$ and $X Z=8 \mathrm{~cm}$. Calculate $\angle X Y Z$ to the nearest degree.

End of Question 11
(a) In the diagram, $A B$ is an arc of a circle with centre O. The radius is 10 metres and the arc length is 8π metres.

(i) Show that $\angle B O A$ is $\frac{4 \pi}{5}$ radians.
(ii) Show that the area of sector $A O B$ is 40π.
(iii) Hence, or otherwise, calculate the area of the shaded segment to the nearest whole number
(c) Solve $2 \sin ^{2} \theta+\sin \theta=0$ for $0 \leq \theta \leq 2 \pi$.

Question 12 (continued)

(d) The diagram below shows the points $A(4,4)$ and $B(0,7)$.

(i) Find the length of $A B$.
(ii) Find the gradient of $A B$.
(iii) Show that the equation of $A B$ is $3 x+4 y-28=0$.
(iv) Given the point $D(-1,1)$, find the perpendicular distance from D to the line $A B$.
(v) Find the coordinates of the point C such that $A B C D$ is a parallelogram.
(vi) Find the area of $A B C D$
(a) (i) Find the derivative of $y=3 e^{x^{2}+1}$.
(ii) Hence, or otherwise, find $\int x e^{x^{2}+1} d x$.
(b) Find the equation of the curve $y=f(x)$ given that the curve has a turning point at $x=1, f^{\prime}(x)=3 x^{2}-6 x+c$ and $f(2)=7$.
(c) A bag contains 10 blue counters, 8 red counters and 5 green counters. If two counters are drawn from the bag and the first is not replaced, find the probability that:
(i) the second counter drawn is green, given that the first counter drawn is blue.
(ii) both of the counters are blue.
(iii) both counters are the same colour
(d) Jack borrows $\$ 300000$ to buy a unit. Interest is calculated monthly at the rate of 4.8% p.a compounded monthly. He agrees to repay the loan with equal monthly instalments of $\$ M$ at the end of each month for 15 years. Let A_{n} be the amount owing after n months
(i) Find an expression for A_{1}.
(ii) Show that $A_{180}=300000(1.004)^{180}-M\left(1+1.004+\ldots .+1.004^{179}\right)$.
(iii) Calculate the amount of the monthly repayment, to the nearest cent
(a) Evaluate $\int_{\frac{\pi}{8}}^{\frac{\pi}{6}} \sec ^{2} 2 x d x$.
(b) Calculate the area bounded by the curve $y=x^{2}-7 x+10$ and the x-axis.
(c) The diagram shows the parabola $x^{2}=8 y$ with focus $S(0,2)$. A tangent to the parabola is drawn at $P\left(2, \frac{1}{2}\right)$.

(i) Find the gradient of the tangent at point P.

1

The tangent at P cuts the y-axis at T. Find the coordinates of T.

1
(iii) Calculate the acute angle (to the nearest minute) that the tangent at P makes with the y-axis.
(d) A rectangular sheet of metal is 8 m by 3 m . Four equal squares, side $x \mathrm{~m}$, are removed from each corner The edges are then turned up to form a box, open at the top

(i) Show that the volume of the box is given by $V=4 x^{3}-22 x^{2}+24 x$
(ii) Find the value of x which makes this volume a maximum.
(a) (i) Find $\frac{d y}{d x}$ of $y=\log _{e}(2 x-1)$.
(ii) Hence, find the value of x when the gradient of the curve is $\frac{2}{5}$.

2
(b) The graph of $y=f^{\prime}(x)$ is drawn below.

Draw a possible sketch of $y=f(x)$ clearly showing the x-coordinates of any stationary points or points of inflexion.
(c) Find $\int \frac{x^{2}}{x^{3}+4} d x$
(ii) Determine the length of $X Y$ given that $A X=8 \mathrm{~cm}, D C=12 \mathrm{~cm}$ and $D X=10 \mathrm{~cm}$.

1
(e) $A B C D$ is a parallelogram. X lies on $A B$.
X lies on $A B$.
$D X$ and $C B$ are both produced to Y.

(i) Prove $\triangle A D X$ is similar to $\triangle C Y D$
(d) Use Simpson's Rule, with 5 function values, to estimate the area between the curve $y=\frac{2}{x^{2}-1}$ and the x-axis from $x=2$ to $x=6$ (answer to 3 decimal places).

Question 16 (15 marks) [START A NEW BOOKLET]

(a) Consider the equation $y=(x-2)^{3}(x+1)$.
(i) Show that $\frac{d y}{d x}=(x-2)^{2}(4 x+1)$
(ii) Given that $\frac{d^{2} y}{d x^{2}}=6(x-2)(2 x-1)$ (DO NOT PROVE THIS),
find the coordinates of any stationary points and determine their nature.
(iii) Determine the coordinates of any points of inflection.
(iv) Hence, sketch the curve $y=(x-2)^{3}(x+1)$ showing intercepts on the axes and any information from Parts (i) to (iii).

2

Question 16 (continued)

(b) A bowl is formed by rotating the curve $y=5 \ln (x-2)$ about the y axis for $0 \leq y \leq 5$.

Find the volume of the bowl, giving your answer as a simplified exact value
(c) The graphs of $y=m x$ and $y=6 x-x^{2}$ intersect at the origin and at point B.

Find the area, in simplest form in terms of m, bounded by $y=m x$ and $y=6 x-x^{2}$.

I. Sabitan	Thal
	Omanocili 12:
Questomell:	
(b) 160	(i) $8 \pi=10 \times 0$
(b) $(2 x)^{3}-(3)^{3}=(2 x-3)\left(4 x^{2}-2 y x-3\right)$	(6) $-A=\frac{1}{2} r^{2} 0$ ———...
(c) $\frac{3}{2-\sqrt{5}} \times \frac{2 \sqrt{5}}{2 \sqrt{2}}=\frac{6+3 \sqrt{5}}{4-5}$	a 19 rur = $40 \pi \mathrm{~s}^{2}$
$-6-3 \sqrt{6}$	- $\cos A=40 \pi-\frac{1}{2}\left(\operatorname{sos}(\cos)\left(\sin -\frac{\pi}{4}\right)\right.$
(d) $\lim _{x \rightarrow 3} \frac{(x-x)(\mathrm{zat})}{(x-1)}-3+c$	$\begin{aligned} & =40 \pi-50+24 \pi \\ & =96 \mathrm{~m} \end{aligned}$
-8	(b) $\Delta>0 \quad \Delta=b^{2}-\operatorname{san}$ $\therefore x^{2}-4+n \times 1>0$
Q9) $y^{3}=\frac{\left(e^{x}-y^{3} \cdot(2)-2 x, 3\left(e^{x}+1\right)^{2} \cdot e^{4}\right.}{\left(e^{x}+1\right)^{4}}$	$k^{2}-26>0 \quad(x-6 x / 4=0$
$=\frac{2\left(e^{2}+1\right)^{3}-\left(e^{2} e^{2}\left(e^{x}+1\right)^{2}\right.}{\left(e^{2}+0^{2}\right.}$	
$=\left(e^{x}-x^{2}\left[2 x^{2}+2-6 x^{2}\right]\right.$	$\therefore \quad k<-6$ and $k \geq 6$
\cdots	
$2 x 2 x^{2}-604$	$\therefore \sin +(2 \ln -0.0))=0$
	$\therefore \operatorname{Sin} \theta=0 \quad 28.0+100$
(f) $\alpha^{2} \times \beta^{2}=(\alpha+\beta)^{2}-2 \mu \beta$	Sun $=-4$
**is + - $=(7)^{2}-2 \times 9$	$\theta=\theta^{*}, \pi, 2 \pi ; \frac{7 \pi}{6}, \frac{1 \pi}{6}$
- ह5-4. -31	$6, \frac{6}{6}$
(a) $y^{\prime}=2 x \cos x-x^{2} \sin x$	(d) (i) $A \bar{A}=\sqrt{(4-0)^{2}+(4-7)}$
za) $\operatorname{Cos} x^{4} z^{\prime}=\frac{4 x+\left(x^{2}-x^{x}\right.}{2 \times 4 x^{2}}$	$=1699$
\therefore Camz $=-025$	- 5

Suenow. Tr, udd Your Malis Thid Saltive	
Quasmoen 15in- - 3	215-cond
(a) (1) $4=\log (x-1) \quad \frac{1}{1} 7=$	
$=\frac{2}{2-1}$	
(i) $\frac{2}{2 x-1}=\frac{2}{5}$	
$-x:-2 x-1 \equiv 6$	
 (i) In $\Delta \Delta \Delta x$ \& $\triangle C Y D$ 	
	$\hat{A x D}=\hat{Y x B}\left(\cosh ^{3}\right.$ 为)
$=\frac{1}{3} \ln \left(2^{2}+4\right)+c$	
d)	
$\begin{array}{r} A=\frac{1}{3}[(2 / 3+2 / 1 x)+4(14+1 / 6) \pm \\ 2(2 / 6 x)] \end{array}$	
$=\frac{1}{3} \times \frac{24}{106}$	
$32 * 4 \quad \therefore \quad \therefore y=15-10$	
$\frac{315}{3 i^{2}} \quad-\quad=5$	

