Marks

2

(a.)	Evaluate, correct to three significant figures	2
	$\sqrt{\frac{(2.044)^3}{35.5-1.2^2}}$	
	$\sqrt{35.5-1.2^2}$	
(b.)	Solve for $x: x^3 = 6x^2$	2

(c.) Differentiate with respect to x 2
$$y = e^{x^2 - 4x}$$

(d.) Solve the pair of simultaneous equations 2x+3y = -13x-y = 15

(e.) Find a primitive of
$$\sin \frac{x}{2}$$
 1

(f.) Solve $|7-3x| \ge 2$ and graph your solution on the number line 3

QUESTION 2 [12 marks]

(a.) If
$$\cos\theta = \frac{2}{5}$$
 and $\tan\theta < 0$, find the exact value of $\sin\theta$ 2

i.) $x^2 \ln x$ **2**

ii.)
$$\frac{\sqrt{x}}{3x-2}$$
 2

(c.) Find
$$\int \frac{x^2}{x^3 + 5} dx$$
 2

(d.) Evaluate
$$\int_{0}^{\ln 3} e^{2x} dx$$
 2

(e.) Solve
$$e^{\log_e x^3} = 27$$
 2

QUESTION 3 [12 marks]

The diagram shows $\triangle ABC$ with vertices A(-1, -2), B(0, 3) and C(7, 4). Copy the diagram onto your answer sheet.

(a.)	E is the midpoint of AC. Find the coordinates of E	1
(b.)	Find the gradient of AC	1
(c.)	A line <i>l</i> is drawn through B, perpendicular to AC. Show that the equation of line <i>l</i> is $4x+3y-9=0$	2
(d.)	What is the angle that l makes with the positive x axis?	1
(e.)	Find the perpendicular distance of B from AC	2
(f.)	Find the area of $\triangle ABC$	2
(g.)	AC is the diameter of a circle	
	i.) Calculate the radius of the circle	1
	ii.) Hence find the equation of the circle	2

QUESTION 4 [12 marks]

(a.) Given the parabola $y = 2x^2 - 8x + 1$, find:

i.) focal length	1
ii.) vertex	1
iii.) focus	1
iv.) directrix	1

Marks

QUESTION 4 (continued)

(b.) The third term and the tenth term of an arithmetic series are 10 and 31 respectively. Find the:

	i.) first term and the common difference	2
	ii.) sum of the first ten terms of the series	1
(c.)	Using Simpson's Rule with three function values, find an approximate value for the area represented by the definite integral $\int_{2}^{3} \cos^{2} x dx$	3
(1)	Our hand dislate and call in a seffle. The different dislate and to have	

(d.) One hundred tickets are sold in a raffle. Two different tickets are to be drawn for first and second prizes. Bianca buys 15 tickets. What is the probability that she:

i.) wins first prize	1

ii.) wins at least one prize 1

QUESTION 5 [12 marks]

- (a.) Find the equation of the tangent to the curve $y = \ln(x^2 + 2)$ 4 at the point where x = 1. Answer in general form
- (b.) The gradient of the curve y = f(x) is given by $f'(x) = \frac{2x^2 + 1}{x}$. 3 Find the equation of the curve if it passes through the point (1, 5)
- (c.) X A B

i.) Show that the distance apart, *P* km, after *t* hours is given by $P = \sqrt{61t^2 - 40t + 164}$

ii.) Hence find their minimum distance apart .

Marks

QUESTION 6 [12 marks]

(a.)	Consider the curve $y = x(x-3)^3$	
	i.) Find the coordinates of any stationary points and determine their nature	4
	ii.) Find the point(s) of inflexion	2
	iii.) Sketch the curve, showing clearly all features	1
(b.)	If α , β are roots of the quadratic equation $6x^2 - x + 5 = 0$, find:	
	i.) $\alpha + \beta$	1
	ii.) $\alpha \times \beta$	1
	iii.) $\alpha^2 + \beta^2$	1
(c.)	Solve $\log_{27} 32 = x \log_3 2$ without the aid of a calculator. Show all working	2

QUESTION 7 [12 marks]

(a.)	i.) Draw a neat sketch of the function $y = 1 - 2\sin x$ for $0 \le x \le 2\pi$	
	ii.) Determine the exact values where the graph cuts t in the given domain	he x-axis 2
	iii.) Calculate the area bounded by the curve $y = 1 - 2$	$2\sin x$, 2
	the x-axis and the lines $x = 0$ and $x = \frac{\pi}{2}$	Р
(b.)	In the diagram PQ is an arc of a circle with centre O and radius 5cm. The chord PQ has length 6cm.	5 cm 0 5 cm Q
	i.) Find the size of $\angle POQ$ in radians	2
	ii.) Calculate the shaded area	2

QUESTION 7 (continued)

(c.) Find the values of K for which the equation $(2-K)x^2 - 4(K-2)x - 5 = 0$, has two real distinct roots

QUESTION 8 [12 marks]

(a.) A particle, initially at rest at the origin, moves in a straight line with velocity V m/s so that V = 5t(4-t) where t is the time in seconds. Find:

i.) the acceleration of the particle after 4 seconds	2
ii.) an expression for the displacement x metres of the particle in terms of t	2
iii.) the total distance travelled in the first 6 seconds	2

ABC is right angled at B and DE is perpendicular to AC.

i.) Prove that $\triangle ABC$ and $\triangle CDE$ are similar	2
ii.) Prove that $BC \times CE = AC \times CD$	2
iii.) Prove that $DE^2 = AD \times DC - BE \times EC$	2

2

QUESTION 9 [12 marks]

(a.)	A bottle of solvent is open and the solvent evaporates in such a way that amount remaining, V ml, in the bottle is given by $V = 2000e^{-0.005t}$, where t is time in hours.	the
	i.) How much solvent is in the bottle initially?	1
	ii.) How much solvent has evaporated out of the bottle after 30 hours?	1
	iii.) How long is it before half the initial amount of solvent has evaporated from the bottle?	1
	iv.) If the solvent continues to evaporate will the bottle ever become empty? Explain.	1
(b.)	Boxes in a storeroom are stacked in a pile such that there are 25 on the b row, 22 on the next, 19 on the next, and so on until 117 boxes are on the altogether.	
	i.) How many rows of boxes are there?	2
	ii.) How many boxes are there on the top row?	1
(c.)	By expressing 1.25 as the sum of an infinite geometric series, find the simple equivalent fraction for 1.25 .	2
(d.)	The graph $y = e^x - 1$ is rotated about the x-axis from $x = 1$ to $x = 3$. Find the volume generated.	3

(a.) The diagram shows a part of the circle $x^2 + y^2 = 25$. The point P(x, y) is on the circle and O is the origin. Given M (2, 0) and N (0, 4) and \angle MOP is θ radians.

	i.) Show that the area A, of the quadrilateral OMPN is given by $A = 5\sin\theta + 10\cos\theta$	2
	ii.) Find the value of $\tan \theta$ for which A is maximum	3
	iii.) Hence find (in surd form) the coordinates of P for which A is maximum	2
(b.)	Alice is retiring tomorrow and her Super Fund contains \$450,000. The fun earning 15% p.a. compound interest, compounded monthly. Alice wishes twithdraw a regular amount of \$6000 per month to cover her expenses.	
	i.) Show that after 1 month she will have an amount A in her account where $A_1 = 450000 \times 1.0125 - 6000$	1
	ii.) Find an expression for the amount remaining after n months	1
	iii.) How many years will the money last?	2
	iv.) If she wishes to withdraw \$6000 per month from her account for 30 years, use your calculator to approximate the required interest rate.	1

Marks

Question 3 (12) Yr. 12 TRIAL 2007 - Auswers - TOTAL (120) Question 4 C(7,4) (12) Question 2 Question 1 (12) 4 = 2x2 - 8x+1 - B(0,3) tau & LO (x-m)= +a(y-n) ÷ (y+7) $\sqrt{21} \underbrace{\bigwedge_{2}}_{2} :: \sin \theta = \underbrace{\bigoplus_{1}}_{2} \underbrace{\bigvee_{21}}_{5}$ i) focal length = a = = b) $z^3 = 6z$ ii) vertex (2, -7) A(-1,-2) iii) focus (2, -67) $\begin{array}{c} (\overline{3x-1}) = \frac{1}{2} \frac{x^{-1}(3x-1) - x^{\frac{1}{2}}(3)}{(3x-1)^{-1}} \\ (\overline{3x-1}) = \frac{1}{2} \frac{x^{-1}(3x-1) - x^{-1}(3x-1)}{(x^{-1})^{-1}} \\ (\overline{3x-1}) = \frac{1}{2} \frac{x^{-1}(3x-1) - x^{-1}(3x-1)}{(x^{-1})^{-1}} \\ (\overline{3x-1}) = \frac{1}{2} \frac{x^{-1}(3x-1) - x^{-1}(x^{-1})}{(x^{-1})^{-1}} \\ (\overline{3x-1}) = \frac{1}{2} \frac{x^{-1}(3x-1) - x^{-1}(x^{-1})}{(x^{-1})^{-1}} \\ (\overline{3x-1}) = \frac{1}{2} \frac{x^{-1}(3x-1)}{(x^{-1})^{-1}} \\ (\overline{3x-1}) = \frac{1}{2} \frac{x^{-1}(3x-1)}{(x^{-1})^{-1}} \\ (\overline{3x-1}) = \frac{1}{2} \frac{x^{-1}(x^{-1}) - x^{-1}(x^{-1})}{(x^{-1})^{-1}} \\ (\overline{3x-1})$ (a) E(3, 1)iv) directrix y=-7% i) Tn = a + 9d = 31 d=3(1)(4=4(1))FD $A \doteq \frac{0.5}{3} \left(0.17318 + 4 \times 0.64183 + 0.9809 \right)$ = 0.62009 = 0.62 1 9 = 3x F) Areas = 1 ACxd ii) P=1-P(noprise) $\frac{5}{3}$ 2x $= 1 - \frac{85}{100} \times \frac{84}{99}$ $P = 0.278 \text{ or } \frac{143}{500} \bigcirc$ 3 = 20 AC= 100 = 10 0 $Area = \frac{1}{2} \times 10 \times \frac{17}{5} = 170$ \odot 5 3 $g)_{j}r = \frac{1}{2}AC = 5$ (1) answer: $\chi \leq \frac{5}{3}$, $\chi \geq 3\frac{3}{2}$ ii) E(3,1) centre 0 r=5:. $(x-3)^2 + (y-1)^2 = 5^2 0$

2Unit Trial – Baulkham Hills High 2007

Question 7 (12) Question 6- cont (12) Question 5 showing min . (b) 6x - x+ $\left(\frac{3\overline{1}}{2},3\right)$ (1) 1 (a) $y = ln(x^2 + 2)$ $-(j) \alpha + \beta = -\frac{b}{a} = \frac{1}{b}$ \mathcal{O} $y' = \frac{2\pi}{\pi^2 + 2}$ (1) Distance Apart (25,1) = 161(0.33) - 40(0.33)+164 $(ii) \times B = \frac{C}{a} = \frac{5}{6}$ $m = \frac{2}{3} \bigcirc y = \ln 3 \bigcirc$ (D)= 12.5 Question 6 12) : $y - ln 3 = \frac{2}{3} (x - l)$ $(ii) d^{2} + b^{2} = (d + b)^{2} - 2db$ (a) y= x (x-3 0=2x-3y-2+3/n3 $=(\frac{1}{6})^2 - 2 \times \frac{5}{6} = -\frac{59}{36}$ (i) $y = 1(x-3)^3 + x \cdot 3(x-3)^2$ (1) \bigcirc 0 = 2x - 3y - 2 + ln 27 $\frac{2}{x-3+3x}$ 0 = (x - 3)(ii) cuts >c-axis . y=0 E) 10927 32= x. 10932 $(b) f(x) = \frac{2x^{2} + 1}{2c}$ x = or $\chi = \frac{3}{4} \leftarrow 0 (bota)$ $0 \rightarrow y = -\frac{2/87}{256} = -8.54$ O = I- 2sinx $() \frac{-1}{\log_3 32} = 1 \log_3 \frac{1}{27} = 1 \log_3 \frac{1}{27} = 1 \log_3 \frac{1}{27} = 1 \log_3 \frac{1}{27} \log_3 \frac{1}$ dsinx = 1sinx = $\frac{1}{2}$ $f(x) = \int \frac{2x^{2} + 1}{x} dx \quad O$ $\therefore \chi = \frac{\pi}{6}, \frac{5\pi}{6}$ $y'' = 2(x-3)(4x-3) + (x-3)^{2} 4$ $y' = 2(x-3)(4x-3) + (x-3)^{2} 4$ $y'' = 2(x-3)[6x-9] \qquad \text{Georegian}$ $y''(3) = 0 \qquad (3,0) \qquad \text{horizontal}$ $y''(3) = 0 \qquad (3,0) \qquad \text{horizontal}$ \bigcirc = {2x + 1/2 dx $\frac{log_3 32}{3} = log_3 2^{2}$ $y''(3) = 0 \therefore (3,0)$ (iii) Area = 51-25 in doc + 151-25 invide f(x) = x2+ / 1 x + C () -8.54) Min it ッ"(ユ) $\frac{1}{3}/_{0}$ 32 = $/_{0}$ 2[×] $/_{0}$ 32³ = $/_{0}$ 2[×] 5= 1+ 0+C .. C=4 (T) 13 ·. f(x) = x + 10x +4 $\begin{array}{c} (ii) \ y'' = 2(x-3)[6x-9'] = 0 \\ both \\ (i) \ y = 0 \\ y = 0 \\ y = -\frac{3}{16} \end{array}$ $32^{\frac{1}{3}}$ $(2^{5})^{\frac{1}{3}}$ $\begin{array}{c} C\\ (i) d = \left((8 + 5t)^{2} + (10 - 6t)^{2} \right) \end{array}$ "+2cos = -0-2cos 0. = d = 6 + + 80+ + 25+ + 100+ 120+ + 36+4 (310) horiz.pt. 2/1 y"/12 = 70 \bigcirc 0.255649 $P = \sqrt{6/2^2 - 402 + 164}$ of inflexion (the correctansuer = 1.94 \cap $\frac{1}{2} \frac{1}{2} \frac{1}$ includes the knowledge] of the abs. value (ii) P'= 12 (61t - 40t+164) = (1226-20) D= 122t-20 (b) i) $\cos(4POR) = \frac{5^{2}+5^{2}-6^{2}}{2\times5\times5^{2}}$ (iii) infl. 2 (612-200++164)2 Q=LPOQ = 1.287 radians D D = 1222-40 ·· += 0.327 D ii)A===ro-==rsin ~ POBO ① shape = 0.33 hours = 1 × 5 × 0 - 1 5 sin 0 = 4.0875

7.7 cont.	$: d = \left[\left[10t^{2} - \frac{5}{3}t^{3} \right]^{4} + \left[\left[10t^{2} + \frac{5}{3}t^{3} \right]^{6} \right]$	B.9 cont.	guestion 10 (12)
$\frac{1}{(2-k)x^{2}-4(k-2)x-5}=0$	$\frac{160}{2} + \left -\frac{160}{3} \right =$	(a) iv) since to explantio	4)
$\Delta = b^{2} - 4ac > 0 \qquad D \\ \left[-4(k-2)\right]^{2} - 4_{k}(2-k)(-5) > 0$	$d = \frac{320}{3} = 106.6 \text{ m}$	V=0 the bottle will never	$\begin{array}{c} (a) \\ (b) \\ (b) \\ (b) \end{array}$
16 (K-2)2-20 (K-2) >0		become empty	
4(K-2)[4(K-2)-5]>0 4(K-2)[4K-13]>0	(b)) L C in common ABC = < EDC = 90° (given) ABC = 10 C AST (given)	()T=a=25 / A.P a=25	i) A = - OH + OP + sin OF
	: ABC III ACDE (Marcing Es =)	$\begin{array}{c} \left(\begin{array}{c} 0 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\$	$= \frac{1}{2} \times 2 \times 5 \times \sin \theta$ $= 5 \sin \theta ()$
$K \leq 2 \text{ or } K > \frac{B}{4}$	$\binom{(i)}{AC} \stackrel{EC}{=} \frac{Cb}{BC} \left(\begin{array}{c} \text{nutching sides} \\ \text{in the same ratio} \end{array} \right) $	$S_{n} = 117 = \frac{n}{2} \left(2 \times 25 - (n-1) \times 3 \right)$ or $117 = 25 + 22 + 19 + 16 + 13 + 10 + 7$	A, OPN = 2 ONXOPX Sin (90°-0
Question 8 (12)	$: BC \times CE = AC \times CD$	+ + + 1 :. 9 rows (2)	======================================
$(a) V = 5t(4-t) = 20t - 5t^{2}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	ii) Iboxonly ()	$= 10 \cos \theta$ $\therefore A = 5 \sin \theta + 10 \cos \theta$
	$(\overrightarrow{BE+EC}) \times CE = (\overrightarrow{AD+DC}) \times CD$ BE. EC+ EC ² = AD. DC + DC ²	$(c) 1.25 = 1.2 + \frac{5}{100} + \frac{5}{1000} + $	$H = 5\cos\theta - 10\sin\theta$ $\theta = 5\cos\theta - 10\sin\theta$
$a = \frac{dv}{dt} = 20 - 10t D$	$EC^{2} - DC^{2} = AD \cdot DC - BE \cdot EC$ $Py \frac{Dx + y + Dx}{DE^{2}} = AD \times DC - BE \times EC$	0v 1+ 2 + 5 + 5 10 + 100 + 1000 +	$\frac{10\sin\theta = 5\cos\theta}{\tan\theta = \frac{1}{2}}$
$a(t=4)=-20m/s^{2}$ (1)	$DE^2 = AD_{\times}DC - BE_{\times}EC$		showing Max: +9n0=2: 0=26.5
$x = \int v dt = \int a dt - 5t^2 dt$	$\frac{\text{Question 9}}{(a) V = 2000 e^{-0.005t}}$	$\frac{1}{1 \cdot 25} = 1 \cdot 2 + \frac{50}{900} = \frac{113}{90}$	A" = -5 sin 0 - 10 cos 0 (A" (0=265) = -11.18 - 0 - Mai
$x = 10t^{2} - \frac{5}{3}t^{3} + c (1)$ 0 = 0 - 0 + c : c = 0 (1)	i) t=0 . V= 2000mL ()	$(d) V = \pi \int (e^{2} - i)^{3} dx$	iii) since tan 0= = mop
$x = 10 t^{2} - \frac{5}{3} t^{3}$	ii) $V = 2000 e^{-0.005 \times 30} /72/.41$ \therefore evaporated 2000 - 1721.41	$\frac{13}{V=T}\int e^{-2e+1} dx$	and $PO=5=\sqrt{x^2+y^2}$
iii) $V = 20t - 5t^2 = 5t(4-t)$	= 278.58mLD		$\frac{1}{2} = \frac{y}{\chi} = \frac{y}{\chi}$
0/11/2 4 b	$\begin{array}{l} \text{iii} 1000 = 2000 \ e^{-0.005t} \\ 10t = -0.005t \end{array}$	$= \pi \int \frac{1}{2} \frac{1}{e} \frac{1}{e$	25 = 26 + 9 every
$d = \int_{0}^{4} (20t - 5t^{2}) dt + \int_{0}^{5} 20t dt = \int_{0}^{1} (20t - 5t^{2}) dt + \int_{0}^{5} 20t dt = \int_{0}^{1} (20t - 5t^{2}) dt + \int_{0}^{1} (20t - 5t^{2$	t = 138.629 hours	= 11× 165.285 = 519.26 ()	
			$y = \frac{\sqrt{20}}{2} = \sqrt{5} \int \frac{P(2\sqrt{5}, \sqrt{5})}{D}$

. 1

Q.10 cont. b) i) $A_1 = 450000 \times (1 + \frac{1.25}{100}) - 6000$ () = 450000 × 1.0125 - 6000 (ii) A2 = A, × 1.0125 - 6000 = 450000 × 1.0125 - 6000 × 1.0125 - 6000 $\frac{A_{n} = 450000 \times 1.0125^{-} - 6000 \times 1.0125^{-} - 6000}{0R - A_{n} = 450000 \times 1.0125^{-} - 6000 \left[1.0125^{+} - 41 \right]}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} = \begin{array}{c} \begin{array}{c} 450 \ 000 \times 1.0125^{n} - 60 \ 00 \times \left(\begin{array}{c} 1.0125^{n} - 1 \end{array} \right) \end{array} \end{array} \end{array}$ 0 = 450000 x 1.0125 - 480000 (1.0125 -1) 0 = 450000 x 1.0125 -4 FO.000 x 1.005 +480000 - 30 000 × 1.015 = 480 000 1.0125- = n = In 16 In 1.0125 $\int \left\{ n = 223.19 \mod 14 \right\} = 18.59 \ yrs \left(18 \ yrs \ 7.2 \ mon \ 46 \right)$ (1V) Try $\tau = 16\%$: $\tau = \frac{.16}{.100}$