QUESTION 1

a) Evaluate $2 e^{-0.72}$ correct to 2 significant figures 2
b) Simplify fully $\sqrt{27}+\sqrt{48}-2 \sqrt{75}$
c) Solve $|2 x+3|=3 x$
d) Find the value of θ correct to the nearest degree

e) Solve $5-5 x \leq 4$
f) Find the limiting sum of the geometric series $2-\frac{2}{3}+\frac{2}{9}-\frac{2}{27}+\cdots$

QUESTION 2 (START A NEW PAGE NOW)

a) Differentiate with respect to x :
(i) $x^{2} \cdot \cos x$ 2
(ii) $\tan ^{2}(4 x+1)$2
b) Find $\int \frac{x}{3 x^{2}+1} d x$
c) Evaluate $\int_{0}^{\frac{\pi}{9}} \sin 3 x . d x$
d) The diagram below shows a sketch of the curve $y=f(x)$.

Copy the diagram onto your answer sheet and use it to draw a sketch of the gradient function $y=f^{\prime}(x)$

QUESTION 3 (START A NEW PAGE NOW)

a) The diagram (not to scale) shows $\triangle A B C$ with vertices $\mathrm{A}(-2,2), \mathrm{B}(-1,-5)$ and $\mathrm{C}(6,-6)$

Copy the diagram neatly onto your answer sheet
(i) $\quad \mathrm{P}$ is the midpoint of AC . Show that the coordinates of P are $(2,-2)$.
(ii) Find the gradient of BP.
(iii) Show that BP is perpendicular to AC.
(iv) Show that the equation of BP is $y=x-4$.
(v) Find the coordinates of D , if P is the midpoint of BD .
(vi) Which shape best describes the geometric figure ABCD? Explain.
b) Find the value(s) of k such that the roots of $x^{2}+(3 k+1) x+4 k+5=0$ are real and equal.

QUESTION 4 (START A NEW PAGE NOW)

a) In the diagram, $\angle B=90^{\circ}, \angle A=60^{\circ}$ and $\mathrm{AB}=\mathrm{AD}=10 \mathrm{~m}$. BD is an arc of the circle with centre A

Calculate the shaded area in exact form.
b) In an arithmetic progression, $T_{2}=7$ and $T_{7}=52$.
(i) Find the common difference and the first term.
(ii) Find the value of the first term which is greater than 1000.
c) α and β are the roots of $2 x^{2}-9 x-3=0$. Find the value of:
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\alpha^{2}+\beta^{2}$ 1
(iv) $\alpha^{3}+\beta^{3}$

QUESTION 5 (START A NEW PAGE NOW)

a) Find the coordinates of the point on the curve $y=3 x^{2}-2 x-1$ where the tangent is parallel to $4 x-y-1=0$.
b) Solve $\sin x=\frac{1}{2}$ where $0<x<2 \pi$
c) Evaluate

$$
\sum_{n=4}^{7} \frac{1}{n-2}
$$

d) The equation $(x-1)^{2}=-4 y+2$ represents a parabola.
(i) Find the coordinates of the vertex.
(ii) Find the focal length.
(iii) Sketch the parabola, clearly showing the directrix, the focus and the x-intercepts

QUESTION 6 (START A NEW PAGE NOW)

a) ABCD is a parallelogram and P, Q are the midpoints of AB, DC respectively.

The intervals PR and QS are perpendicular to the diagonal DB .

(i) Prove $\triangle B P R$ and $\triangle D Q S$ are congruent.
(ii) If $\mathrm{AB}=10 \mathrm{~cm}, \mathrm{PR}=3 \mathrm{~cm}$ and $\mathrm{BD}=14 \mathrm{~cm}$ find the length of SR .
b) (i) Sketch the graph of $y=2 \cos 2 x$ for $-\pi \leq x \leq \pi$.
(ii) On the same diagram, sketch the line $x+y=1$.
(iii) Hence determine the number of solutions of the equation $2 \cos 2 x=1-x$.
(iv) Let the negative solution to $2 \cos 2 x=1-x$ be $x=N$. Indicate N on the x-axis of your diagram.
c) Calculate the exact area of the region bounded by the curve $y=e^{2 x}$, the y-axis and the line $y=e^{4}$.

QUESTION 7 (START A NEW PAGE NOW)

a) A circle has radius 2 cm . Find the size of the angle subtended at the centre of this circle by an arc of length 2.2 cm . Answer correct to the nearest minute .
b) Solve $\log _{e} x-\log _{e}(x-4)=\log _{e} 2$
c) Find all values of k for which $y=e^{k x}$ is a solution of $y^{\prime \prime}-y^{\prime}-12 y \geq 0$
d) In the diagram (not to scale), CD is parallel to AB and DE is parallel to CA .
$A C=15 \mathrm{~cm}, \mathrm{AB}=22 \mathrm{~cm}, \mathrm{CD}=8 \mathrm{~cm}$ and $\mathrm{BE}=12 \mathrm{~cm}$.

(i) Prove triangle ABC is similar to triangle DCE 2
(ii) Hence find the length of BC

QUESTION 8 (START A NEW PAGE NOW)

a) (i) Show that $\int_{0}^{2} \frac{1}{1+x} d x=\ln 3 \quad 1$
(i) Hence use Simpson's rule with three function values to find an approximation to $\ln 3$.
b) The region bounded by the parabola $y=x^{2}$ and the circle $x^{2}+y^{2}=12$ is shown. The parabola and circle intersect at P and Q .

(i) $\quad \mathrm{P}$ and Q have the same y-coordinate. Find its value.
(ii) Find the exact value of the solid generated when the shaded region is rotated about the y-axis.
c) Kim and Lee toss a biased coin alternately, with Kim going first. The probability that the coin shows 'heads' on any toss is $\frac{1}{3}$. The first person to throw a head wins the game. What is the probability that:
(i) Kim wins the game on her first throw?
(ii) Lee wins on his first throw?
(iii) after 4 tosses of the coin, there is no winner?

QUESTION 9 (START A NEW PAGE NOW)

a) The diagram shows the velocity-time graph for a particle moving in a straight line.

State the times between $\mathrm{t}=0$ and $\mathrm{t}=8$ at which:
(i) The velocity is zero
(ii) The acceleration is zero 1
(iii) The speed is increasing 2
b) The population of Town a is $P_{A}=8000 e^{0.02 t}$ while the population of Town B is $P_{B}=12000 e^{-0.01 t}$, where t is the time in years. How many years will it be until the two populations are equal? Answer correct to 1 decimal place.
c) When Susan was born, her father deposited $\$ 200$ into a Trust account earning 12% p.a. interest compounding annually. The interest is paid on her birthday each year. Susan's father decided to deposit an additional \$200 into this account on her birthday each year, immediately after the interest is received.
(i) Find the value that the initial deposit would amount to on her $18^{\text {th }}$ birthday.
(ii) Let $A_{n}=$ total amount in her account on her nth birthday

Show that $A_{n}=\frac{5000\left(1.12^{n+1}-1\right)}{3}$
(iii) Susan's father made his last deposit of $\$ 200$ on her $17^{\text {th }}$ birthday. On her eighteenth birthday, he gave all the money in the account to Susan. How much money did she receive?

QUESTION 10 (START A NEW PAGE NOW)

a) The gradient function of a curve $y=f(x)$ is given by $f^{\prime}(x)=x^{2}(3-x)$.
(i) Show that the curve $y=f(x)$ has two stationary points and determine their nature.
(ii) If $f(0)=2$ and the maximum value of $f(x)$ is $8 \frac{3}{4}$, draw a possible sketch of $y=f(x)$
b) A circular window of radius $\sqrt{5}$ metres requires three metal strips AB, DC and FG for reinforcement as shown. O is the centre of the window, and $\mathrm{OF}=\mathrm{OG}=y$ metres and $\mathrm{FB}=\mathrm{FA}=\mathrm{CG}=\mathrm{GD}=x$ metres.

(i) Given that L is the total length of the metal strips (ie. $\mathrm{L}=\mathrm{AB}+\mathrm{CD}+\mathrm{FG}$) show that

$$
\mathrm{L}=4 x+2 \sqrt{5-x^{2}}
$$

(ii) The window will have maximum strength when the total length L is a maximum. Find the value of x for which the window has maximum strength.

Question 1
Solutions: 2 unit Trial 2010
a) 0.9735045
(i)

$$
=0.97 \quad(25 f)
$$

(1) Total/izo
b)

$$
\begin{aligned}
& 3 \sqrt{3}+4 \sqrt{3}-10 \sqrt{3} \\
& =-3 \sqrt{3}
\end{aligned}
$$

(2) - - and encor
c) $2 x+3=3 x$

$$
3=x
$$

Test

$$
\begin{aligned}
& \text { LHS }=16+31=9 \\
& \text { RHS }=3 \times 3 \div 9
\end{aligned}
$$

or

$$
\begin{aligned}
2 x+3 & =-3 x \\
5 x & =-3 \\
x & =-3
\end{aligned}
$$

(1) both
Teot

$$
\text { L4S }=\left|-\frac{6}{5}+3\right|=\frac{9}{5}
$$

RHS $=-\frac{9}{5} \quad$-natequal

$$
x=3 \quad 01 y .
$$

d)

$$
\frac{5}{\sin \theta}=\frac{12}{\sin 73^{\circ}}
$$

$$
\theta=23^{\circ}
$$

(i)
e)

$$
\begin{array}{r}
-5 x \leqslant-1 \\
x \geqslant \frac{1}{5}
\end{array}
$$

f) $a=2,-1=-1 / 3$

$$
\begin{align*}
& S_{\infty}=\frac{a}{1-1}=\frac{2}{1--^{1 / 3}} \\
&==\frac{2}{4 / 3} \\
&=1.5 \tag{r}
\end{align*}
$$

Question 2.
a) i,
iii) $y=\tan ^{2}(4 x+1)$

$$
\begin{align*}
y^{\prime} & =2 \tan (4 x+1) \cdot \sec ^{2}(4 x+1)-4 \\
& =8 \tan (4 x+1) \cdot \sec ^{2}(4 x+1) \tag{2}
\end{align*}
$$

b) $\int \frac{x}{3 x^{2}+1} d x$

$$
\begin{aligned}
& =\frac{1}{6} \int \frac{-6 x}{3 x^{2}} \cdot d x \quad \frac{f(x)}{f(x)} \quad \\
& =\frac{1}{6} \ln \left(3 x^{2}+1\right) \\
& \hline \pi
\end{aligned}
$$

c) $\int_{0}^{\pi / 9} \sin 3 x d x$

$$
\begin{equation*}
=-\frac{1}{3}[\cos 3 x]_{0}^{\pi / 9} \tag{2}
\end{equation*}
$$

$$
=-\frac{1}{3}\left(\cos \frac{\pi}{3}-\cos 0\right)
$$

$$
=-\frac{1}{3}\left(\frac{1}{2}-1\right)
$$

$$
=-\frac{1}{3} \times-\frac{1}{2}
$$

$$
\begin{equation*}
=\frac{1}{6} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& y=x^{2} \cdot \cos x \\
& y^{\prime}=u v^{\prime}+v u \prime \\
& {\left[\begin{array}{cc}
u=x^{2} & u^{\prime}=2 x \\
v=\cos x & v^{\prime}=-\sin x
\end{array}\right]} \\
& =x^{2}-\sin x+\cos x \cdot 2 x-1 \\
& =-x^{2} \sin x+2 x \cdot \cos x
\end{aligned}
$$

QuESTION 3

$$
\begin{aligned}
& \text { a) i) } P=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& \square=\left(\frac{-2+6}{2}, \frac{2-6}{2}\right) \\
& 11 \text { (1) } \\
& \square \square \\
& =(4 / 2,-4 / 2)=(2,-2)
\end{aligned}
$$

(iii) $M_{A C}=\frac{-6-2}{6-2}=\frac{-8}{8}=-1$

Question 4
a) Area shaded

c) $2 x^{2}-\frac{9 x-\frac{3}{2}=0}{}$

(iv) $\alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right) \quad$ (1)

b) $x=\frac{\pi}{6}, \frac{5 \pi}{6} \quad \quad$ (2) $[1$ each $]$
c) $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}=1 \frac{17}{60}$ or $\frac{77}{60}$ (1)
di) $\quad(x-1)^{2}=-4(y-1 / 2)$
(l) vertex $(1,1 / 2)$
(1)
focus
if $x \neq 0$

QuESTION 6.
a) -i $\operatorname{In} \triangle B P R, \triangle D Q S$:

$$
\angle P R B=\angle D S Q \quad \text { Given } 9 Q^{\text {each }} \text {) }
$$

$A B \| D C$ (opp sides of parm. /|)
$\angle P B R^{2}=\angle S D Q \quad$ (alternate $\left.\angle S ; A B / / D C\right)$

$$
\begin{equation*}
B P=\frac{1}{2} \cdot A B \tag{1}
\end{equation*}
$$

$D Q=\frac{1}{2} \cdot D C \quad-(P, Q$ are midpts of sides $)$
but $A B=D C$ (opp sids of porn equal)
$\therefore \beta P=D Q \quad$ (halving equal sides)
$\therefore \triangle B P R=\triangle D Q S$ by $A A S$.
(1)
(ii) $14-4-4=6 \mathrm{~cm}$
(1)
b) (i) and (ii) and (iv):

(i) $P_{d}=\pi \pi$
$A_{m p}=2$
(ii) Line $($,
(iii) 3
(iv) Show N

$$
=\frac{1}{2} e^{4}-\frac{1}{2} e^{0}
$$

$$
=\frac{1}{2} e^{4}-1 / 2
$$

Area shaded $=2 e^{4}-\left(\frac{1}{2} e^{2}-\frac{1}{2}\right)$
(1)

QUESTION 7
a) $l=c \theta$

$$
\begin{align*}
2.2 & =2 \theta \\
\theta & =1.1 \text { radians } \tag{1}\\
& =1.1 \times \frac{180}{\pi} \text { deg. } \\
& =63^{\circ} 2^{\prime}
\end{align*}
$$

(1)
must be nearest
b)

$$
\begin{align*}
\log _{e} \frac{x}{x-4} & =\log _{e} 2 \tag{1}\\
\frac{x}{x-4} & =2 \\
x & =2 x-8 \\
8 & =x \tag{1}
\end{align*}
$$

c)

$$
\begin{align*}
& y=e^{k x} \\
& y^{\prime}=k e^{k x}(1) \tag{1}\\
& y^{\prime \prime}=k^{2} e^{k x}(1) k^{2}\left(e^{k x}-k k^{k x}-12 e^{k x} \geqslant 0\right. \\
& e^{k x}\left(k^{2}-k-12\right) \geqslant 0
\end{align*}
$$

$\left[\pm e^{k x}\right.$ and factorise $] \quad(k-4)(k+3) \geqslant 0$
Roots: $k=4,-3$
Soln:

$$
k \geqslant 4, \quad k \leqslant-3
$$

d) $\left.\begin{array}{rlll}\quad \text { (i) } \quad \angle D C E=\angle A B C & & \text { (alternat } \angle s, A B / / D C) \\ \angle C E D & =\angle A C B & & \text { (alternate }\end{array} \quad \angle s, A C / / D E\right)$ (i) $\therefore \triangle A B C \| \triangle D C E$ (matehing' $\angle s$ equal) (1)
(ii)

$$
\begin{align*}
\text { Let } E C=x \quad \frac{x}{x+12} & =\frac{8 / 4}{12} 11 \\
11 x & =4 x+48 \\
7 x & =48 \\
x & =\frac{48}{7} \\
\therefore B C & =12+\frac{48}{7}=\frac{132}{7} \tag{1-}
\end{align*}
$$

(ii) | x | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $y=\frac{1}{x+1}$ | 1 | $1 / 2$ | $1 / 3$ |

x	0	1	2
$y=\frac{1}{x+1}$	1	$1 / 2$	$1 / 3$

$$
\begin{align*}
\ln 3 & \doteq \frac{h}{3}\left(y_{0}+4 y_{1}+y_{2}\right) \\
& =\frac{1}{3}\left(1+4 \times \frac{1}{2}+\frac{1}{3}\right) \tag{1}\\
& =\frac{10}{9} .
\end{align*}
$$

b) (i)

Q QUESTION 8
a) (i)

$$
\begin{align*}
\int_{0}^{2} \frac{1}{1+x} \cdot d x & =[\ln (1+x)]_{c}^{2} \\
& =\ln 3-\ln 1 \tag{1}\\
& =\ln 3
\end{align*}
$$

$$
y=x^{2}, \quad x^{2}+y^{2}=12:
$$

$$
y+y^{2}=12
$$

$$
\begin{align*}
& y^{2}+y-12=0 \\
& (y+4)(y-3)=0 \\
& y=-4 \quad \text { or } \quad y=3 \tag{1}
\end{align*}
$$

ii)

$$
\begin{aligned}
&=\pi\left[\frac{y^{2}}{2}\right]_{0}^{3} \\
&=\frac{9 \pi}{2} k_{2} \\
&=\pi \int_{3}^{\sqrt{12}} 12-y^{2} \cdot d y \\
&=\pi\left[12 y-\frac{y^{3}}{3}\right]_{3}^{\sqrt{12}} \\
&=\pi\left(\left(12 \sqrt{12}-\frac{12 \sqrt{12}}{3}\right)-(36-9)\right) \\
&=\pi(0 . \sqrt{13}-77)
\end{aligned}
$$ Limits, $3, \sqrt{12}: 0$

$$
\begin{equation*}
=\pi(16 \sqrt{3}-27) \tag{1}
\end{equation*}
$$

\therefore Total ral $=v_{1}+v_{2}$

$$
\begin{align*}
& =\frac{9 \pi}{2}+\pi(16 \sqrt{3}-27) \tag{1}\\
& =\pi\left(\frac{9}{2}+16 \sqrt{3}-27\right) \\
& =\pi\left(16 \sqrt{3}-\frac{45}{2}\right)
\end{align*}
$$

c) (i) $1 / 3$
(1)
(ii) $2 / 3 \times 1 / 3=2 / 9$
(iii) $\left(\frac{2}{3}\right)^{4}=\frac{16}{81}$ (H)

QUESTION 9.
a) (i) $t=1,5$
c) $(i) \quad A=200(1.12)^{18}=\$ 1537.99$
(ii)

$$
\begin{aligned}
A_{1} & =200(1.12)+200 \\
A_{2} & =A 1 \times 1.12+200 \\
& =200(1.12)^{2}+200(1.12)+200 \text { Pevelopme } \\
A_{3} & =A_{2} \times 1.12+200 \\
& =200(1.12)^{3}+200(1.12)^{2}+200(1.12)+200 \\
& =200\left(1.12^{3}+1.12^{2}+1.12+1\right)
\end{aligned}
$$

Continuing the pattern:

$$
\begin{align*}
& A_{A}=200\left(1.12^{n}+1.12^{n-1}+\cdots+1.12+1\right)(1 \tag{1}\\
& =200 \times \frac{1\left(1.12^{n+1}-1\right)}{1.12-1} \\
& \text { geon serie } \\
& a=1 \\
& r=1.12 \\
& =\frac{200 \times\left(1.12^{n+1}-1\right)}{0.12} \\
& (n+1) \text { term } \\
& S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \\
& =\frac{5000\left(1.12^{n+1}-1\right)}{3}
\end{align*}
$$

(iii) Final ant $=A_{17} \times 1.12$ or $A_{18}-200$
b)

$$
\begin{align*}
8000 e^{0.02 t} & =12000 e^{-0.01 t} \\
e^{0.03 t} & =1.5 \tag{1}\\
0.03 t & =\ln 1.5 \\
t & =\frac{\ln 1.5}{0.03}=13.5 y+5
\end{align*}
$$

Question 10
a) (i) Stat pts when $f^{\prime}(x)=x^{2}(3-x)=0$
ie. When $x=0$ or $x=3$
u. u. $x=0$
Testing

$$
\begin{align*}
& \begin{array}{c|ccc}
x & -1 & 0 & 1 \\
f^{\prime}(x) & +0 & +
\end{array} \quad \therefore \text { Horizontal } p+\text { of } \\
& (-1)^{2} \cdot(3+1) \quad 1^{2}(3-1) \tag{1}\\
& =1 \times 4^{-}=1 \times 2
\end{align*}
$$

\therefore Max turn pt at $x=3$

$$
\begin{align*}
& 2^{2}(3-1) & 4^{2}(3-4) \tag{1}\\
= & 4 \times 1 & =16 \times-1
\end{align*}
$$

b) $(i) L$

$$
\begin{aligned}
& =A B+C D+F G \\
& =2 x+2 x+2 y \quad \text { but } \quad\left\{\begin{array}{l}
x^{2}+y^{2}=5 \\
y=\sqrt{5-x^{2}} \\
=4 x+2 \sqrt{5-x^{2}}
\end{array}, \quad\right. \text { (1) }
\end{aligned}
$$

Testing with $L^{\prime \prime}$ (since $L^{\prime \prime}$ is messy)
(ii)
\qquad
\qquad
(ii) For max $L, L^{\prime}=0$ and $L^{\prime \prime}<0$

$$
\begin{aligned}
L^{\prime} & =4+2 \cdot \frac{1}{2}\left(5-x^{2}\right)^{-1 / 2} \cdot-2 x \\
& =4-\frac{2 x}{\sqrt{5-x^{2}}}=0 \quad \text { (1) }
\end{aligned}
$$

If they use $L^{\prime \prime}$ (not recommended)

$$
\begin{aligned}
& \begin{array}{l}
L^{\prime}=4-\underbrace{2 x\left(5-x^{2}\right)^{-1 / 2}} . \\
L^{\prime \prime}=0-\binom{2 x \cdot x\left(5-x^{2}\right)^{-3 / 2}}{\left(5-x^{2}\right)^{-1 / 2} \cdot 2}
\end{array} \\
& =-\frac{2 x}{\left(5-x^{2}\right)^{3 / 2}}-\frac{2}{\sqrt{5-x^{2}}} \\
& =\frac{-4}{1^{3 / 2}}-\frac{2}{\sqrt{5-4}} \text { when } x=2 \\
& =-4-2 \quad(1) \\
& =-6<0 \quad \operatorname{Max} L \text { when } x=2
\end{aligned}
$$

OR

$$
\begin{aligned}
& L^{\prime \prime}=4-\left[\frac{2 x}{\left(5-x^{2}\right)^{1 / 2}}\right] \quad \begin{array}{ll}
u=2 x & u^{\prime}=2 \\
v=\left(5-x^{2}\right)^{1 / 2} & v^{\prime}=\frac{1}{2}\left(5-x^{2}\right)^{-1 / 2} .
\end{array} \\
& =-\left(\frac{\sqrt{5-x^{2}} \cdot 2-2 x \cdot \frac{-x}{\sqrt{5-x^{2}}}}{5-x^{2}}\right) \\
& =\frac{-x^{-2 x}}{\sqrt{5-x^{2}}} \\
& =-\left(\frac{2 \sqrt{5-x^{2}}+\frac{2 x^{2}}{\sqrt{5-x^{2}}}}{5-x^{2}}\right) \\
& =-\left(\left.\begin{array}{cc}
2 \sqrt{1}+8 / \sqrt{1}
\end{array}\right|^{\text {sher }} x=2 \quad \text { (1) } \quad-(2+8)<0 \therefore\right. \text { Max }
\end{aligned}
$$

