

BAULKHAM HILLS HIGH SCHOOL
 TRIAL 2013
 YEAR 12 TASK 4

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time - 180 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- Show all necessary working in Questions 11-16
- Marks may be deducted for careless or badly arranged work
- All the diagrams are not to scale

Total marks - 100
Exam consists of $\mathbf{1 0}$ pages.
This paper consists of TWO sections.
Section 1-Page 2 and 3 (10 marks) Questions 1-10

- Attempt Question 1-10
- Allow about 15 minutes for this section

Section II - Pages 4-9 (90 marks)

- Attempt questions 11-16
- Allow about 2 hours and 45 minutes for this section

Table of Standard Integrals is on page 10

Section I-10 marks

Use the multiple choice answer sheet for question 1-10
Allow about 15 minutes for this section.

1. Evaluate to three significant figures $\frac{4.67 \times \sin 28^{\circ}}{\sqrt{4.6 \times 10^{6}}}$
(A) 1.02
(B) 0.06
(C) 2.89×10^{7}
(D) 1.02×10^{-3}
2. The value of the limit $\lim _{x \rightarrow 10} \frac{x^{2}-100}{x-10}$
(A) undefined
(B) 0
(C) 8
(D) 20
3. Solve the equation $2 x-5=\frac{x+3}{2}$
(A) $x=\frac{-7}{3}$
(B) $x=\frac{-2}{3}$
(C) $x=\frac{8}{3}$
(D) $x=\frac{13}{3}$
4. The first term of an arithmetic progression is 3 , and eleventh term is 23 . The $n^{\text {th }}$ term is
(A) $T_{n}=3+23(n-1)$
(B) $T_{n}=23+10(n-1)$
(C) $T_{n}=3+2(n-1)$
(D) $T_{n}=3+10(n-1)$
5. Given that $\cos x=0.5$ and $0^{\circ}<x<90^{\circ}$, which of the following has the greatest value?
(A) $\cos ^{2} x$
(B) $\sin x$
(C) $\tan x$
(D) 0.75
6. Given that $f(x)=x^{2}+x$, find the values of b for which $f^{\prime \prime}(b)=f(b)$
(A) $b=2$ and 1
(B) $b=-1$ and 2
(C) $b=-2$ and -1
(D) $b=-2$ and 1
7. If $\log _{10} 7=a$ then $\log _{10}\left(\frac{1}{70}\right)$ is equal to
(A) $-(1+a)$
(B) $(1+a)^{-1}$
(C) $\frac{a}{10}$
(D) $\frac{1}{10 a}$
8. The number of animals P on an island, at time t is given by $\mathrm{P}=7000 e^{-k t}$, where k is a positive constant. Over time the number of animals on the island is
(A) increasing exponentially.
(B) decreasing exponentially.
(C) increasing at a constant rate
(D) decreasing at a constant rate.
9. If $z=1-y^{3}$ and $y=1-x$, then $z=$
(A) $x^{3}+3 x^{2}+3 x$
(B) $x^{3}-3 x^{2}+3 x$
(C) $x^{3}-3 x^{2}-3 x$
(D) $x^{3}+3 x^{2}-3 x$
10. Interest rates are increasing at an decreasing rate. Which of the following graphs represents the above statement.
(A)

(B)

(C)

(D)

Section II - Extended Response

Attempt questions 11-16.
Allow about 2 hours and 45 minutes for this section.
Answer each question on a SEPARATE PAGE. Clearly indicate question number.
Each piece of paper must show your BOS\#.
In Question 11-16, your responses should include relevant mathematical reasoning and/or calculation

Question 11 (15 marks)
Marks
a) Solve for x

$$
\frac{x+6}{2} \leq x
$$

b) Express $\frac{3+\sqrt{2}}{6+\sqrt{2}}$ with rational denominator.
c) Factorise $3 x^{2}-48 y^{2}$
d) Solve for x $|2 x-5|=3$
e) Find the value of k for which $(k-2) x^{2}-2 k x-1=0$ has real and distinct roots.
f) If α and β are the roots of $2 x^{2}-3 x+6=0$ then write the value of :
(i) $\alpha+\beta \quad 1$
(ii) $\alpha \beta \quad 1$
(iii) $(2+\alpha)(2+\beta) \quad 2$

Question 12 (15 marks)

a) A bush walker walks from Point A on a bearing of 030° for 2.4 km to Point B . He changes direction at B to a bearing of 145° to avoid a swamp and follows this course for 3.6 km to Point C.

(i) Copy the diagram in your booklet and mark on it all the given information.
(ii) Calculate the distance from Point A to Point C (to one decimal place).
(iii) What is the bearing of Point C from Point A?
b) Differentiate the following functions with respect to x
(i) $\cos ^{2} 3 x$
(ii) $\ln \left(\frac{1-x}{1+x}\right)$
c)

(i) Show that the equation through $\mathrm{A}(-3,4)$ and $\mathrm{B}(1,-2)$ is $3 x+2 y+1=0$.
(ii) Find the perpendicular distance from $\mathrm{C}(0,-3)$ to the line AB .
(iii) Hence find the area of $\triangle A B C$.
d) Find the value of $\tan x$ when $\tan ^{2} x+\sec ^{2} x=9$

Question 14 (15 marks)
a) Tangents of the parabola $y=x^{2}+a x-3$ at $x=1$ and $x=0$ are known to be perpendicular. Find the value of a.
b) In the diagram ABCD is a square. PC bisects $\angle A C B$ and Q is the foot of the perpendicular from P to $A C$.

(i) Copy the diagram into your booklet
(ii) Prove that $\triangle \mathrm{PBC} \equiv \triangle \mathrm{PQC}$.
(iii) Hence if $B C=x \mathrm{~cm}$ and $P B=\frac{1}{3} A B$, prove that the area of $\triangle A P Q$ is $\frac{x^{2}}{6} \mathrm{~cm}^{2}$.
c) A train travels from Oxford to Cambridge. It's velocity \dot{x} after leaving Oxford is given by $\dot{x}=\frac{1}{5} t(4-t)$ where x is measured in kilometres and time in minutes. Find
(i) The time taken to travel to Cambridge.
(i) The maximum velocity attained.
(ii) The distance between Oxford and Cambridge.
d) Sketch a possible function which could have the gradient function as graphed below.

End of Question 14

Question 13 (15 marks)

a) Find
(i) $\int \frac{2}{3 x}-e^{-3 x} d x$
(ii) $\int_{0}^{\frac{\pi}{6}} \sec ^{2} 2 x d x$
b) Find the equation of the tangent to the curve
$y=3 \sin \frac{x}{2} \quad$ at $\quad x=\frac{3 \pi}{2}$
c) For the function $y=x^{3}-6 x^{2}+9 x+1$ find the
(i) Stationary points and determine their nature.
(ii) Coordinates of any point of inflexion.
(iii) Hence sketch the curve for $-1 \leq x \leq 5$

Question 15 (15 marks)
a) The depth of water in the cross section of a creek 4 m wide was measured and recorded in the table below.

(i) By applying Simpson's Rule with the five depth measurements, find the cross sectional area of the creek.
(ii) If the water is flowing at a rate $0.25 \mathrm{~ms}^{-1}$, calculate the volume of water which passes this point in one day.
b) The shaded segment has an area one half of the semicircle with centre O and radius r. $C D \| A B$.

Prove that $\frac{\pi}{2}=\theta-\sin \theta$.
c) The population of a country given by $P=P_{o} e^{k t}$, is increasing at a rate proportional to its size. The population was 9 million in 1954 and 20 million in 2004.
(i) Find the value of P_{0} and k
(ii) At what rate is the population increasing after 10 years??
(iii) In what year will the population reach 50 million?
d) If $y^{2}=(2 m-y)(2 n-y)$ show that $\frac{1}{m}, \frac{1}{y}, \frac{1}{n}$ is an arithmetic sequence.

End of Question 15

a) Kelvin borrows $\$ 200000$ from his bank. Interest is compounded monthly at 0.425% per month. A_{n} is the amount owed after n payments, $\$ \mathrm{M}$ is the amount of the monthly instalments and the loan is repaid after n months.
(i) Show that $A_{2}=200000(1.00425)^{2}-M(1.00425)-M$
(ii) Show that the monthly repayment, $\$ M$ is given by

$$
M=\frac{200000(1.00425)^{n}(0.00425)}{1.00425^{n}-1}
$$

(iii) Find the amount of the monthly instalments if Kelvin agrees to repay the loan over 30 years.
(iv) How much will Kelvin pay in total after 30 years?
(v) If Kelvin instead decided to pay monthly instalment of $\$ 1331$ from the beginning of the loan, how long will he take to repay the loan?
b) If $\sin x \neq \pm 1$ show that

$$
\begin{equation*}
1+\sin ^{2} x+\sin ^{4} x+\sin ^{6} x+\cdots=\sec ^{2} x \tag{2}
\end{equation*}
$$

c) (i) If r is the radius of the cone show that $r^{2}=2 h R-h^{2}$
(ii) Show that volume of the cone that can be inscribed in a sphere of radius R is given by
$V=\frac{1}{3} \pi\left(2 h^{2} R-h^{3}\right)$ where h is the height of the inscribed cone.

(ii) Show that the volume of the largest cone is $\frac{8}{27}$ of the volume of the sphere.

End of Exam

STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, \quad x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, a \neq 0 \\
\int \cos a x d x & =\frac{1}{a} \sin a x, a \neq 0 \\
\int \sin a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sec ^{2} a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan -\frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin { }^{-1} \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{array}
$$

NOTE: $\ln x=\log _{e} x, x>0$
$M \cdot C$
Q1D Q2D Q3D Q4C Q5 C
$26 D$ Q7 $A 8 B$ Q9 $B E A$
ill a) $\frac{x+6}{2} \leq x$

$$
x+6 \leq 2 x
$$

$$
6 \leq x
$$

-(2) with working.

$$
x \geqslant 6
$$

b)

$$
\begin{align*}
& \frac{3+\sqrt{2}}{6+\sqrt{2}} \times \frac{6-\sqrt{2}}{6-\sqrt{2}} \tag{1}\\
& \frac{18-3 \sqrt{2}+6 \sqrt{2-2}}{36-2} \\
& \frac{16+3 \sqrt{2}}{34}-(1) \tag{1}
\end{align*}
$$

c)

$$
\begin{align*}
& 3\left(x^{2}-16 y^{2}\right) \tag{1}\\
& 3(x-4 y)(x+4 y)
\end{align*}
$$

d)

$$
\begin{array}{c|c}
2 x-5=3 & 2 x-5=-3 \\
2 x=8 & 2 x=2 \\
x=4 & x=1
\end{array}
$$

e) Fir reat a destinct $n 0 i \hbar$

$$
\begin{gather*}
\Delta>0 \\
4 k^{2}-4 x-1 \times(k-2)>0 \tag{1}\\
4 k^{2}+4 k-8>0 \\
k^{2}+k-2>0 \tag{1}\\
(k+2)(k-1)>0 \\
k>i_{\text {of }} k<-2 \tag{1}
\end{gather*}
$$

(i) $\alpha+\beta=\frac{-b}{c}=\frac{3}{L}$
if (ii) $\alpha \beta=\frac{c}{a}=\frac{6}{2}=3$
(iii) $4+2(\alpha+\beta)+\alpha \beta=4+2 \times \frac{3}{2}+3=10$

$$
\begin{equation*}
2 y+4=-3 x+3 \tag{1}
\end{equation*}
$$

$$
3 x+2 y+1=0 \text {. }
$$

$812 a$

in

$$
\begin{align*}
& \angle C B A=65^{\circ} \tag{I}\\
& A C^{2}=(2.4)^{2}+(3.6)^{2}-2 \times 2.4 \times 3.6 \cos 65^{\circ} \\
& A C=3.4 \mathrm{~km}
\end{align*}
$$

(ii)
(iii)

$$
\left.\begin{array}{rl}
D & =\frac{|3 \times 0+2 \times-3+1|}{\sqrt{9+3}}-(1) \\
& =\frac{5}{\sqrt{3}} \\
d_{A B} & =\sqrt{4^{2}+36}=\sqrt{52} \\
A_{\gamma} & =\frac{1}{2} \times \frac{5}{\sqrt{3}} \times \sqrt{\sqrt{52}} \tag{1}\\
& =\frac{1}{2} \times: \frac{125}{\sqrt{13}} \times \sqrt{18} \times 2 \\
& =5 u^{2}
\end{array}\right] \text { (1) }
$$

iii)

$$
\begin{align*}
& \frac{\sin A}{3 \cdot 6}=\frac{\sin 65^{\circ}}{3.4} \\
& \sin A=\frac{3.6 \times \sin 65^{\circ}}{3 \cdot 4} \\
& A=73^{\circ} 39^{\prime} \text { or } 74^{\circ} \\
& \therefore \text { Bearing of Cram } A=30+73^{\circ} 39^{\prime} \tag{1}\\
& =103^{\circ} 39^{\prime} \\
& \operatorname{cor} 107^{\circ}
\end{align*}
$$

b) (i)

$$
\begin{aligned}
y & =\cos ^{2} 3 x \\
y^{\prime} & =2 \cos 3 x \times-\sin 3 x \times 3 \\
& =-6 \sin 3 x \cos 3 x
\end{aligned}
$$

Q13a(i) $\int \frac{2}{3 x}-e^{-3 x} d x$

$$
=\frac{2}{3} \ln x+\frac{e^{-3 x}}{3}+C
$$

- 1 for anyerror.
(ii)

$$
\begin{align*}
y & =\ln (1-x)-\ln (1+x)-(1) \tag{1}\\
y^{\prime} & =\frac{1}{1-x} x^{-1}-\frac{1}{1+x} \tag{1}\\
& =\frac{-1}{1-x}-\frac{1}{1+x}(1)=\frac{-2}{1-x x^{2}}
\end{align*}
$$

(-1) if noc
(ii)

$$
\left.\int_{0}^{\pi / 6} \sec ^{2} 2 x d x=\frac{1}{2} \tan 2 x\right]_{0}^{\pi / 6}
$$

$$
=\frac{1}{2} \tan \frac{\pi}{3}=\frac{\sqrt{3}}{2}
$$

3)

$$
\begin{align*}
& y=3 \cos \frac{x}{2} \times \frac{1}{2} \\
& m_{T}=\frac{3}{2} \times \cos \frac{3 \pi}{4}=-\frac{3}{2 \sqrt{2}} \tag{1}\\
& y=3 \times \sin \frac{3 \pi}{4}=\frac{3}{\sqrt{2}} \tag{1}
\end{align*}
$$

eq. qt tangent is

$$
\begin{aligned}
& y-\frac{3}{\sqrt{2}}=-\frac{3}{2 \sqrt{2}}\left(x-\frac{3 \pi}{2}\right) \\
& 2 \sqrt{2} y-6=-3 x+\frac{9 \pi}{2} \\
& 3 x+2 \sqrt{2} y-6-9 \pi / 2=0 \\
& y=x^{3}-6 x^{2}+9 x+1 \\
& y^{\prime}=3 x^{2}-12 x+9
\end{aligned}
$$

For stat pots $y^{\prime}=0$

$$
3\left(x^{2}-4 x+3\right)=0
$$

$$
(x-3)(x-1)=0
$$

$$
\left.\begin{array}{l}
x=3,1 \tag{1}\\
y=1,5
\end{array}\right\}
$$

ordinates of stats pis ane $(3,1),(1,5)$

$$
y^{\prime \prime}=6 x-12
$$

at $x=1$

$$
\begin{align*}
& y^{\prime \prime}=6-12=-6<0 \tag{1}\\
& \therefore \quad \text { max at }(1,5)
\end{align*}
$$

at $x=3$

$$
\begin{align*}
y^{\prime \prime}= & 18-12 \tag{1}
\end{align*}=6 \$ 0010 \text { min at }(3,1)
$$

$(-1,-15)$
(014 a

$$
\left.\begin{array}{l}
y^{\prime}=2 x+a \\
\text { at } x=1 \\
m_{1}=2+a \tag{1}\\
\text { at } x=0 \\
m_{2}=a
\end{array}\right]
$$

\therefore concality changes. Hence $(2,3)$ is a P.O.I
(iii) For $1 \leq x \leq 5$
when $x=-1, y=-15$

$$
x=5 \quad y=21
$$

\therefore end pis are $(-1,-15)(5,21)$

$$
\text { Ar. } \triangle P B C=\frac{1}{2} x \times \frac{1}{3} x
$$

$$
\begin{equation*}
=\frac{x^{2}}{6} \tag{1}
\end{equation*}
$$

(1) Shape
(1) Cable dy int
(7) end pts
(iii)
b) (ii) In $\triangle P B C \& \triangle P Q C$

$$
\begin{aligned}
& \text { In } \triangle P B C A \triangle A 0^{\circ}(\text { given, } \angle \text { in a } \\
& \left.\angle P Q C=\angle P Q C=90^{\circ}\right) \\
& \angle B C P=\angle Q \angle P(P C \text { bisect } \angle A C B
\end{aligned}
$$

$A C$ is common

$$
\begin{equation*}
\therefore \triangle P B C \equiv \triangle P Q C(A A S) \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& A B=B C=x(\text { Sides of } s q) \\
& \therefore P B=\frac{x}{3}
\end{aligned}
$$

\therefore Ar $\triangle P Q C=\frac{x^{2}}{6}(\because \triangle P B C \equiv \triangle P Q C$.

$$
\text { Ar } \triangle A B C=\frac{1}{2} x \times x=\frac{1}{2} x^{2}
$$

$$
\begin{equation*}
\therefore \text { Ar } \triangle A P Q=\frac{x^{2}}{6}-2 \times \frac{x^{2}}{6} \tag{1}
\end{equation*}
$$

$$
=\frac{x^{2}}{6}<m^{2}
$$

c) (i) When $\dot{x}=0$

$$
\begin{gather*}
\frac{1}{5} t(u-t)=0 \\
t=0 \text { or } 4 \\
\text { time }=4 \text { min. } \tag{1}
\end{gather*}
$$

$$
\begin{aligned}
& \text { iii } v=\dot{x}=\frac{4}{5} t-\frac{1}{5} t^{2} \\
& \frac{d v}{d t} \dot{\theta}=\ddot{x}=\frac{4}{5}-\frac{2}{5} t \\
& \frac{d^{2} v}{d t}=-\frac{2}{5}
\end{aligned}
$$

inax vel when $\frac{d v}{d t}=0$

$$
\begin{gather*}
\frac{4}{5}-\frac{2}{5} t=0 \tag{1}\\
t=2 \tag{1}
\end{gather*}
$$

Sinie $\frac{d^{2} v}{d t^{2}}=\frac{-2}{5}<0$ forall $t, t=2$ gines man. vel.
(1)

$$
\begin{equation*}
\text { manivel }=\frac{2}{5}(4-2)=\frac{4}{5} \mathrm{~km} / \mathrm{m} \tag{i}
\end{equation*}
$$

(iii)

$$
\begin{align*}
x & =\int_{0}^{4}\left(\frac{4}{5} t-\frac{1}{5} t^{2}\right) d t \\
& \left.=\frac{2 t^{2}}{5}-\frac{1}{15} t^{3}\right]_{0}^{4} \\
& =\frac{32}{5}-\frac{64}{15}=2 \frac{2}{15} \mathrm{~km} \tag{0}
\end{align*}
$$

b) Ar of $\operatorname{seg} C D E=\frac{1}{4} \cap r^{2}$

Ar.of $\triangle D O C=\frac{1}{2} r^{2} \sin \theta$
Ar:of secter $D O C=\frac{1}{2} r^{2} Q$
\therefore Arroseg CDE

$$
\left.\begin{array}{rl}
& =\text { Ar } q \text { secter }-\operatorname{Ar} q \\
\frac{1}{4} \pi r^{2} & =\frac{1}{2} r^{2} \theta-\frac{1}{2} r^{2} \sin \theta \\
\frac{1}{2} \pi & =\theta-\sin \theta
\end{array}\right]
$$

(iii)

$$
\begin{aligned}
P & =9 \times e^{\frac{1}{50} \ln \left(\frac{20}{9}\right) \times 60} \\
& =23.4632 \text { millions }
\end{aligned}
$$

$=168620$ peryerv
(iv)

$$
\begin{align*}
& \frac{50}{9}=e^{k t} \tag{1}\\
& \ln \left(\frac{50}{9}\right)=k t \\
& t=\frac{1}{k} \times \ln \left(\frac{50}{9}\right) \\
& =\frac{\ln \left(\frac{50}{9}\right)}{1}=107.375
\end{align*}
$$

c) (i) Initially $t=0, p=9000000$
(1) 15d If $y^{2}=(2 m-y)(2 x-y)$
then $y^{2}=4 m n-2 m y-2 m y+y^{2}$

$$
\begin{aligned}
& 4 m n-2 m y-2 m y=0 \\
& 2 m n=m y+n y
\end{aligned}
$$

$\div m n y$

$$
\begin{align*}
& \frac{2}{y}=\frac{1}{n}+\frac{1}{m} \tag{1}\\
& \frac{1}{y}+\frac{1}{y}=\frac{1}{n}+\frac{1}{m} \\
& \frac{1}{y}-\frac{1}{m}=\frac{1}{n}-\frac{1}{y} \tag{1}
\end{align*}
$$

$\therefore \frac{1}{m}, \frac{1}{y}, \frac{1}{n}$ are an aritumetic sequeule.

Si(i)

$$
\begin{aligned}
& p=\$ 200000 \\
& h=0.425
\end{aligned}
$$

$$
A_{1}=200000(1.00425)-M
$$

$$
\begin{aligned}
& A_{2}=A_{1}(1.00425)-M \\
&= {[200000(1.00425)-M] \times(1) } \\
&(1.00425)-M
\end{aligned}
$$

$$
=200000(100425)^{2}-M(1.00425)
$$

$$
\text { i) } \begin{aligned}
& A_{3}= A_{2}(1.00425)-M \\
&= {\left[200000(1.00425)^{2}-M(1+1.00425)\right] } \\
& \times(1.00425)-M \\
&= 200000(1.00425)^{3}-M(1+1.00425 \\
&\left.+(1.00425)^{2}\right]
\end{aligned}
$$

(iii) $\quad 30$ years $=30 \times 12$ morths

$$
\begin{aligned}
& \ddot{A}_{h}=200000(1.00425)^{n}-m(1+1.00425+ \\
&\left.\cdots(1.00425)^{n-1}\right]-(1) \\
& A_{n}=200000(1.00425)^{n}-M\left(\frac{1.00425-1}{0.00425}\right) \\
& G .8 \text { with } a=1 \\
& r=1.00425
\end{aligned}
$$

(v) $1331=\frac{200000(1.00425)^{4} \times 0.0042}{1.00425^{4}-1}$

If the loan is paid after n montith $+331(1.00425)^{h}-1331=850(1.004$:

$$
\begin{aligned}
& A_{n}=0 \frac{1}{n}\left(\frac{1.00425^{n}-1}{0.00425}\right)=\frac{200000(1.00425)^{n}}{(1)} \\
& m=\frac{200000(1.00425)^{n}(0.00425)}{100425^{n}-1}
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
30 \text { years } & =30 \times 12 \text { monturnewt } \\
& =360 \text { instal }
\end{aligned} \begin{array}{r}
1.00425^{360}-1
\end{array}
$$

$$
\begin{equation*}
=1085.90 \tag{1}
\end{equation*}
$$

(b)

$$
\begin{aligned}
& 1+\sin ^{2} x+\sin ^{4} x+\sin ^{6} x \cdots \\
& a=1 \quad r=\sin ^{2} x \\
& \text { ferall values of } x
\end{aligned}
$$

$-1 \leq \sin x \leq 1$ ferall values of x

$$
\begin{align*}
& \sin x \neq \pm 1 \\
\therefore & -1<\sin ^{x}<1 \tag{1}\\
& 0
\end{align*}
$$

\therefore liniting sum exists.

$$
\therefore \operatorname{lin} \dot{\sin }+\frac{a}{1-2}=\frac{1}{1-\sin ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x
$$

D) in Given R is the radius of sphere of h the height. No of inscribed cone.

$$
\begin{aligned}
& O D=A D-O A=h-R \\
& B D^{2}=O B^{2}-O D^{2} \\
& r^{2}=h^{2}-(h-R)^{2}=\left(2 h R-h^{2}\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
V_{\text {cone }} & =\frac{1}{3} \pi r^{2}-h \\
& =\frac{1}{3} \pi\left(2 h R-h^{2}\right) \times h \\
& =\frac{1}{3} \pi 2 h^{2} R-h^{3}
\end{aligned}
$$

(iii)

$$
\frac{d v}{d h}=\frac{\pi}{3} \times\left(\cdot h R-3 h^{2}\right)
$$

For man or $\min \frac{d v}{d t}=0$

$$
\begin{gathered}
\frac{1}{3} \pi\left(4 h R-3 h^{2}\right)=0 \\
h(4 R-3 h)=0
\end{gathered}
$$

$$
\begin{equation*}
h=0 \text { or } h=\frac{4 R}{3} \tag{1}
\end{equation*}
$$

not possible

$$
\begin{align*}
& \frac{d^{2} v}{d h^{2}}=\frac{1}{3} \pi(4 R-6 h) \\
& a t h=\frac{4 R}{3} \\
& \frac{d^{2} v}{d h^{2}}=\frac{1}{3} \pi\left(4 R-6 \times \frac{4 R}{3}\right) \\
&=-\frac{4 \pi R}{3}<0
\end{align*}
$$

\therefore Vol is max. at $h=\frac{4 R}{3}$

$$
\begin{aligned}
& \frac{1}{3} \pi\left(2 \times \frac{16 R^{2}}{9} \times R-\frac{64 R^{3}}{27}\right) \\
& =\frac{1}{3} \pi\left(\frac{32 R^{3}}{9}-\frac{64 R^{3}}{27}\right) \\
& =\frac{32 \pi R^{3}}{81}
\end{aligned}
$$

(1) hark withworkir

$$
V_{\text {sphere }}=\frac{4}{3} \pi R^{3}
$$

$$
\begin{aligned}
& \text { sphere }=\frac{\frac{1}{3} 11 K}{V o g \text { longest Cone }} \\
& \therefore \frac{32 \pi R^{3}}{81} \\
&=\frac{8 / 3 R^{3}}{\frac{4}{3}}
\end{aligned}
$$

$$
=8 / 27
$$

$\therefore V$. of the largest cone is $\frac{8}{27} v$. qu the slue

