

Baulkham Hills High School

2019

Higher School Certificate Trial Examination

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- NESA-approved calculators may be used
- A Reference Sheet is provided at the end of this paper.
- In questions 11-16 show relevant mathematical reasoning and/or calculations.

Total Marks 100

Section I

10 marks

- Attempt questions 1 10
- Allow about 15 minutes for this section

Section II 90 marks

- Attempt Questions 11 16
- Allow about 2 hours and 45 minutes for this section.

Section I

10 marks Attempt questions 1-10 Allow about 15 minutes for this section. Use the multiple choice answer sheet for questions 1-10

1.	Evaluate $\frac{e}{\sqrt{2.13+0.04^3}}$, correct to four significant figures
	(A) 1.871
	(B) 0.8504
	(C) 1.130
	(D) 1.863
2.	What is the slope of the line with equation $4x - 2y + 3 = 0$?
	(A) -2
	(B) $-\frac{1}{2}$ (C) $\frac{1}{2}$ (D) 2
	$(C) = \frac{1}{2}$
	(C) $\frac{1}{2}$
	(D) 2
3.	The first three terms of an arithmetic series are -11 , -7 and -3 . What is the 15^{th} term of this series?
	(A) 59
	(B) 255
	(C) 45
	(D) 495
4.	Sixty tickets are sold in a raffle. There are two prizes. Jane buys five tickets. Which expression gives the probability that Jane wins both prizes?
	(A) $\frac{5}{60} + \frac{4}{59}$
	(B) $\frac{5}{60} + \frac{4}{60}$
	(C) $\frac{5}{60} \times \frac{4}{59}$
	(D) $\frac{5}{60} \times \frac{4}{60}$

The diagram shows the x-intercepts of the curve y = f(x).

Expression to evaluate the area bounded by this curve and the x-axis is

 $\int_{-2}^{-2} f(x) dx$ (A) $\left|\int_{0}^{0}f(x)dx\right|+\int_{0}^{1}f(x)dx$ (B)

(C)
$$\int_{-2}^{0} f(x)dx + \int_{0}^{1} f(x)dx$$

(D)
$$\int_{-2}^{0} f(x)dx + \left| \int_{0}^{1} f(x)dx \right|$$

6.

5.

What is the value of the derivative of $y = 2\sin 2x - 3\tan x$ at x = 0?

- (A) -1
- **(B)** 1
- (C) 3
- (D)

0

7. Using Simpson's rule with 4 subintervals, which expression gives the approximate area under the curve $y = xe^x$ between x = 1 and x = 5?

- (A) $\frac{1}{3}(e + 6e^2 + 4e^3 + 10e^4 + 3e^5)$ (B) $\frac{2}{3}(e + 6e^2 + 4e^3 + 10e^4 + 3e^5)$ (C) $\frac{2}{3}(e + 8e^2 + 6e^3 + 16e^4 + 5e^5)$ (D) $\frac{1}{3}(e + 8e^2 + 6e^3 + 16e^4 + 5e^5)$

The diagram shows a sketch of the graph of $y = 2\sin x - 1$ and $y = \frac{1}{2}x$.

How many solutions are there for the equation $2\sin x - 1 = \frac{1}{2}x$, where $-\pi \le x \le \pi$?

(A) 3
(B) 2
(C) 1
(D) 0

9.

What are the solution of $\cos(x - \frac{\pi}{3}) = \frac{1}{2}$ for $0 \le x \le 2\pi$.

(A) $x = 0, \frac{\pi}{6}$

(B)
$$x = \frac{2\pi}{3}, 2\pi$$

(C) $x = \frac{\pi}{3}, \frac{5\pi}{6}$

(D) $x = \frac{\pi}{3}, 0$

8.

10. The diagram below shows the region bounded by the curve $y = x^2$, the y-axis and the line y = 16.

Which of the following gives the volume of the solid of revolution when the region is rotated about the y-axis?

(A) $\pi \int_{0}^{4} x^{4} dx$ (B) $\pi \int_{0}^{16} x^{4} dx$

(C)
$$\pi \int_{0}^{4} y dy$$

(D) $\pi \int_{0}^{16} y dy$

END OF SECTION I

Section II

90 marks
Attempt questions 11-16
Allow about 2 hours and 45 minutes for this section
Answer each question in the appropriate page of the writing booklet. Extra sheets of writing paper are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

QUESTION 11 (15 marks). Answer on the appropriate page.

a) Simplify: $3x - (8 - 13x)$.	1
b) Factorise fully $81 - 3x^3$.	2
c) Express $\frac{4}{2-\sqrt{5}}$ with a rational denominator	2
d) Solve $ 3 - 2x = 4$	2
e) Differentiate $(x - e^x)^5$.	2
f) Evaluate $\int_{0}^{\frac{\pi}{3}} \sin 2x dx$	2
g) Differentiate $\ln\left(\frac{2x}{x-2}\right)$.	2

h) The curve y = f(x) passes through the point $(\frac{1}{2}, 0)$ and its derivative function is 2 $f'(x) = 2e^{2x-1} - 1$. Find the equation of the curve.

End of Question 11

QUESTION 12 (15 marks). Answer on the appropriate page.

a) Find the solutions of $2\sin\theta = \sqrt{3}$ for $0 \le \theta \le 2\pi$.

b) Find
$$\int (1 + \sec^2 x) dx$$
 2

c) Evaluate the limiting sum of the series $4 - 1 + \frac{1}{4} - \frac{1}{16} + \cdots$ 2

d) Find
$$f'(x)$$
, where $f(x) = \frac{x^2 - 3}{3x - 4}$.

e) For what values of k does the quadratic equation $x^2 - 8x + k = 0$ have real distinct roots? 2

- f) $P(1, \frac{1}{4})$ is a point on the parabola $y = \frac{x^2}{4}$.
 - (i) Find the coordinates of the focus.
 - (ii) Show that the equation of the tangent to the parabola is 2x 4y 1 = 0. 2
 - (iii) Find the coordinates of the point of intersection of the tangent at P and the directrix of 2 the parabola.

End of Question 12

QUESTION 13 (15 marks). Answer on the appropriate page.

- a) One of the roots of $x^2 + mx + n = 0$ is three times the other. Prove that $3m^2 = 16n$. 2
- b) (i) Find the domain and the range for the function $f(x) = \sqrt{4 x^2}$ 2
 - (ii) On the same number plane, shade the region where the points P(x, y) satisfy both of 3 the inequalities $y < \sqrt{4 - x^2}$ and $y \ge x - 5$.
- c) Consider the curve $y = (1 + x^2)(2 x)$.
 - (i) Show that there are stationary points at x = 1 and at $x = \frac{1}{3}$. Hence determine their 3 nature.
 - (ii) Find the coordinates of any point of inflexion on the curve.
 - (iii) Sketch the curve, labelling the stationary points, point of inflexion and y-intercept, 4 in the domain $-1 \le x \le 3$.

End of Question 13

QUESTION 14 (15 marks). Answer on the appropriate page.

(a)

NOT TO SCALE

i) Show that the area, S, of the region ACDB is given by $S = \frac{\pi}{8}(R^2 - r^2)$.	2
ii) Find the perimeter of the region ACDB in terms of R and r .	2

Question 14 continues on the following page

8 | Page

Question 14 (continued)

b) In the diagram A, B and C are the points (1, 0), (0, 8) and (7, 4) respectively.

(i)	Show that the equation of AC is $2x - 3y - 2 = 0$.	2
(ii)	Find the angle between AC and the x-axis.	1
(iii)	Point D lies on AC and $BD \perp AC$. Show that the equation of BD is $3x + 2y - 16 = 0$.	2
(iv)	Show that BD is the perpendicular bisector of AC .	2
(v)	Prove that $\triangle ABD \equiv \triangle CBD$.	2
(vi)	Find the area of $\triangle ABC$.	2

End of Question 14

QUESTION 15 (15 marks). Answer on the appropriate page.

(a) John and Peter play against each other in a tennis match. The champion will be the first person to win two games. John's probability of winning each game is 0.6 and Peter's probability of winning each game is 0.4.

- (ii) What is the probability that John wins the match?
- (b) Joe's employer makes contributions to his superannuation scheme on 1st January each year. Any amount invested in this scheme earns interest at the rate of 7.5% per annum, compounded annually.
 - (i) Let *M* be the annual contribution. Show that the first contribution to the scheme is 1 worth $M(1 + \frac{7.5}{100})^n$ at the end of the *n*th year.
 - (ii) Hence show that the value of the investment, A_n , at the end of the n^{th} year is 2

$$A_n = \frac{M \times 1.075 \times (1.075^n - 1)}{0.075}$$

(iii) The employer makes an annual contribution of \$20526. Joe decides to change jobs 2 when his investment is worth more than \$750 000. What is the least number of whole years that Joe will need to be in this current job?

(c) A particle is moving in a straight line. Its velocity, \dot{x} , at time t seconds is given by

 $\dot{x} = 2\cos t - 1$ where $t \ge 0$.

Initially, the particle is at the origin, 0, where the displacement is x = 0 and x is measured in metres.

(i) Find an expression for x in terms of t .	2
(ii) Describe the initial motion of the particle.	1
(iii) Determine when the particle first comes to rest.	1
(iv) Calculate the total distance travelled in the first π seconds.	2

End of Question 15

2

QUESTION 16 (15 marks). Answer on the appropriate page.

(a) A truck travelled 140 km from port P to port Q on a bearing of 050° T. It then travelled 260 km from port Q to port R on a bearing of 130°T.

(i) Explain v	why angle PQR is 100°.	1
(ii) Find the	distance between ports P and R, correct to the nearest km .	2

(b) A quantity of a radioactive material decays according to the equation

$$\frac{dM}{dt} = -kM$$

where M is the mass of the material in kg, t is the time in years and k is a constant.

- (i) Show that $M = Ae^{-kt}$ is a solution to the equation, where A is a constant. 1
- (ii) The half-life period of the material for decay is 300 years. If the initial amount of
 material is 20kg, find the amount, correct to two decimal places, remaining after
 700 years.

Question 16 continues on the following page

The diagram shows the graph of $y = \frac{1}{\sqrt{3-2x}}$. The region bounded by this graph, x = 0.5, x = 1.0 and the x – axis is rotated about the x – axis. Find the volume of the solid of revolution formed in exact form.

(d) A rectangular metal sheet is 30 cm high and 15 cm wide. The lower right-hand corner of the sheet is folded over along PQ so as to reach the leftmost edge of the sheet. Let x be the horizontal distance and y be the vertical distance folded as shown in the diagram.

(i) Show that
$$y = \frac{hx}{2x-15}$$
 where $h = \sqrt{x^2 - (15-x)^2}$.

2

2

3

(ii) Show that L, the length of the FOLD, is given by
$$L^2 = \frac{2x^3}{2x-15}$$
.

(iii) Hence, find the minimum length of L.

End of Question 16

End of Examination

Baulkham Hills High School Trial HSC Examination 2019 Marking Guideline - Mathematics

Section I (10 marks)

Award 1 mark to each correct answer.

Answers: 1. D 2. D 3. C 4. C 5. D 6. B 7. D 8. A 9. B 10. D

Section II (90 marks)

In all questions, award FULL marks for correct answers with necessary working.

Use this suggested solutions in conjunction with the marking criteria.

Question	Suggested solutions	Marking criteria
11(a)	-8 + 16x	1- correct answer
11(b)	$81 - 3x^3 = 3(3^3 - x^3)$ = 3(3 - x)(9 + 3x + x ²)	2- correct solution1- HCF & identified the difference of cubes
11(c)	$\frac{4}{2-\sqrt{5}} = \frac{4}{2-\sqrt{5}} \times \frac{2+\sqrt{5}}{2+\sqrt{5}}$ $= \frac{8+4\sqrt{5}}{4-5}$ $= -8 - 4\sqrt{5}$	2- correct solution1- multiplied by the conjugate surd
11(d)	$= -8 - 4\sqrt{5}$ $\frac{Case: 3 - 2x \ge 0}{3 - 2x = 4}$ $x = -\frac{1}{2}$ Test: <i>LHS</i> = 3 + 1 = 4; <i>RHS</i> = 4 <i>LHS</i> = <i>RHS</i> . $\frac{Case: 3 - 2x < 0}{-3 + 2x = 4}$ $x = \frac{7}{2}$ Test: <i>LHS</i> = $ 3 - 2 \times \frac{7}{2} = 4$; <i>RHS</i> = 4 <i>LHS</i> = <i>RHS</i> . $x = -\frac{1}{2} \text{ and } x = \frac{7}{2}$	2- both values for <i>x</i> 1- one value for <i>x</i>
11(e)	$\frac{d(x-e^x)^5}{dx} = 5(x-e^x)^4 \times (1-e^x)$	2- correct solution 1- correct use of either the power rule or the chain rule.

Question	Suggested solutions	Marking criteria
11(f)	$\int_{0}^{\frac{\pi}{3}} sin2xdx = \left[-\frac{1}{2} \times cos2x\right]_{0}^{\frac{\pi}{3}} = \frac{3}{4}$	2- correct solution 1- correct integration.
11(g)	$\frac{d[\ln\left(\frac{2x}{x-2}\right)]}{dx} = \frac{d[\ln(2x)]}{dx} - \frac{d[\ln(x-2)]}{dx}$ $= \frac{1}{x} - \frac{1}{x-2}$ $= \frac{-2}{x^2 - 2x}$	 2- correct solution [not necessarily as a single fraction] 1- correct use of a rule for differentiation.
11(h)	$y = \int (2e^{2x-1} - 1)dx = 2 \times \frac{1}{2} \times e^{2x-1} - x + C$ $\left(\frac{1}{2}, 0\right) lies on the curve. \therefore C = -\frac{1}{2}$ $y = e^{2x-1} - x - \frac{1}{2}$	2- correct solution1- integral without the integration constant.
12(a)	$2\sin\theta = \sqrt{3} \text{ for } 0 \le \theta \le 2\pi.$ $\sin\theta = \frac{\sqrt{3}}{2}$ $\theta = \frac{\pi}{3}, \frac{2\pi}{3}$	2- correct solution 1- reference angle = $\frac{\pi}{3}$.
12(b)	$\int (1 + \sec^2 x) dx = \int dx + \int \sec^2 x dx$ $= x + tanx + C$	2- correct solution 1- expressed as sum of $\int dx$ and $\int sec^2 x dx$.
12(c)	$4 - 1 + \frac{1}{4} - \frac{1}{16} + \dots \text{ is a GP with } a = 1 \text{ and } r = -\frac{1}{4}.$ As $ r < 1$, $S_{\infty} = \frac{4}{1 - (-\frac{1}{4})} = \frac{16}{5} = 3\frac{1}{5}$	2- correct solution 1- $a = 1$ and $r = -\frac{1}{4}$.

$$f'(x) = \frac{(3x-4)\frac{d(x^2-3)}{dx} - (x^2-3)\frac{d(3x-4)}{dx}}{(3x-4)^2}$$

$$= \frac{(3x-4) \times 2x - (x^2-3) \times 3}{(3x-4)^2}$$

$$= \frac{3x^2 - 8x + 9}{(3x-4)^2}$$

Question	Suggested solutions	Marking criteria
	For real distinct roots $\Delta > 0$	2- correct solution
	where $\Delta = (-8)^2 - 4 \times 1 \times k$	$1 - (-8)^2 - 4 \times 1 \times k > 0$ or
12(e)		equivalent expression
	4k < 64	
	<i>k</i> < 16	
	$x^2 = 4y and \ P(1, \frac{1}{4})$	1- correct answer
12(f)(i)	4a = 4 , $a = 1$ hence the focus is $(0, 1)$	
(ii)	Gradient, m, at $P = \frac{2x}{4}$ where $x = 1$. $\therefore m = \frac{1}{2}$	2- correct solution
	Equation of the tangent to the parabola at P :	1- gradient of the tangent
	$y - \frac{1}{4} = \frac{1}{2}(x - 1)$	at P
	$y = \frac{1}{4} - \frac{1}{2}(x = 1)$ 2x - 4y - 1 = 0	
(iii)	Equation of the directrix: $y = -1$.	2- correct solution
	substitute $y = -1$ in $2x - 4y - 1 = 0$: $x = \frac{3}{2}$	1- equation of the directrix.
	Required coordinates: $(\frac{3}{2}, -1)$	
13(a)	Let the roots be α and 3α .	2- correct proof
	$\alpha + 3\alpha = -m$ and $\alpha \times 3\alpha = n$	1- sum and product of roots
	$4\alpha = -m$ and $3\alpha^2 = n$	
	$3 \times (\frac{-m}{4})^2 = n \qquad \rightarrow 3m^2 = 16n$	
	$3 \times (-4) = n \rightarrow 3m = 10n$	
10/1.)//)		
13(b)(i)	Domain = $\{x: -2 \le x \le 2\}$	1- correct answer
	$Range = \{ y \colon 0 \le y \le 2 \}$	1- correct answer
(ii)	y $y = \sqrt{4 - x^2}$ y = x - 5 -2 -5	 3- correct solution [showing all included and excluded points for the region] 2- correct shapes and intercepts (on both axes) for both curves 1- correct graph of ONE of the given functions.

13(c)(i)	At stationary points $\frac{dy}{dx} = 0$ where $y = (2 - x)(1 + x^2)$ $\frac{dy}{dx} = -3x^2 + 4x - 1$ = (x - 1)(1 - 3x) $(x - 1)(1 - 3x) = 0 \rightarrow x = 1 \text{ or } x = \frac{1}{3}$ Stationary points are $A(1, 2)$ and $B\left(\frac{1}{3}, \frac{50}{27}\right)$.	3 - correct solution 2- both x values when $\frac{dy}{dx} = 0$. 1- found $\frac{dy}{dx}$.
	x0.911.1 $\frac{dy}{dx}$ ± 0.17 0 -0.23 $\therefore \exists a \max imum at A$ At point $B(\frac{1}{3}, \frac{50}{27})$ x0.3 $\frac{1}{3}$ 0.34 $\frac{dy}{dx}$ -0.07 0 ± 0.0132 $\therefore \exists a \min m at B$	
13(c)(ii) (iii)	$\frac{d^2 y}{dx^2} = -6x + 4$ $\frac{d^2 y}{dx^2} = 0 \Rightarrow x = \frac{2}{3}$ At point $C\left(\frac{2}{3}, \frac{52}{27}\right), \frac{d^2 y}{dx^2} = 0 \text{ and } \exists a \text{ change in concavity.}$ $\frac{x 0.65 \frac{2}{3} 0.67}{\frac{d^2 y}{dx^2} +0.1 0 -0.02}$ Point C is a point of inflexion.	1- correct answer
	$(-1,6)$ $(0,2)$ C^{A} $(2,0)$	 4- correct solution[includes the restricted domain and correct shape] 3- stationary points, point of Inflexion AND <i>y</i> —intercept 2- stationary points and point of inflexion 1- <i>y</i> —intercept
14(a)(i)	Area of the region ACDB = Sector OAB - Sector OCD = $\frac{1}{2} \times R^2 \times \frac{\pi}{4} - \frac{1}{2} \times r^2 \times \frac{\pi}{4}$ $S = \frac{\pi}{8}(R^2 - r^2)$	 2- correct proof 1- correct algebraic expression for area of a sector

14(a)(ii) Perimeter of the region ACDB = $AC + BD + arc CD + arc AB$ = $(R - r) + (R - r) + \frac{\pi r}{4} + \frac{\pi R}{4}$ = $2(R - r) + \frac{\pi}{4}(R + r)$ 14b(i) $m_{AC} = \frac{4 - 0}{7 - 1} = \frac{2}{3}$ Equation of AC: $y - 0 = \frac{2}{3}(x - 1)$ 2x - 3y - 2 = 0 (ii) Angle between AC and the x-axis = $tan^{-1}(\frac{2}{3})$ = $33^{\circ}41'$ (or $\approx 34^{\circ}$) (iii) $A(1, 0), B(0, 8)$ and $C(7, 4)$. $BD \perp AC$ $m_{BD} \times \frac{2}{3} = -1 \therefore m_{BD} = -\frac{3}{2}$ Equation of BD: $y - 8 = -\frac{3}{2}(x - 0)$ 3x + 2y - 16 = 0 (iv) $M(4, 2)$ where M is the midpoint of AC. Equation of AC: $2x - 3y - 2 = 0$ Solving simultaneously, we have $D(4,2)$. Hence M and D are one and the same point. $\therefore BD$ is the perpendicular bisector of AC. 14(b) (v) $In AMBD$ and $ACBD$, AD = DC [D is the midpoint of AC] $\angle ADB = 90^{\circ} = \angle CDB[BD \perp AC, proven]$ BD is common $AABD = \angle ACBD [SAS]$ (vi) $ AABC = \frac{1}{2} \times AC \times BD$ $BD = \sqrt{(4 - 0)^{2} + (2 - 8)^{2}} = \sqrt{52}$ units $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$ = 26 units ² 2 correct proof 1 correct proof 1 - statements with incorrect = condition. 2 - correct proof 1 - an expression to evaluate $ AABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$ = 26 units ²			
$= (R - r) + (R - r) + \frac{\pi r}{4} + \frac{\pi R}{4}$ $= 2(R - r) + (R - r) + \frac{\pi}{4} (R + r)$ 14b(i) $m_{AC} = \frac{4 - 0}{7 - 1} = \frac{2}{3}$ Equation of AC: $y - 0 = \frac{2}{3}(x - 1)$ 2x - 3y - 2 = 0 (ii) Angle between AC and the x-axis = tan ⁻¹ (\frac{2}{3}) $= 33^{\circ}41' (or \approx 34^{\circ})$ (iii) A(1, 0), B(0, 8) and C(7, 4). BD $\perp AC$ $m_{BD} \times \frac{2}{3} = -1 \therefore \ m_{BD} = -\frac{3}{2}$ Equation of BD: $y - 8 = -\frac{3}{2}(x - 0)$ 3x + 2y - 16 = 0 (iv) M(4, 2) where M is the midpoint of AC. Equation of BD: $3x + 2y - 16 = 0$ Equation of BD: $3x + 2y - 16 = 0$ Equation of AC: $2x - 3y - 2 = 0$ Solving simultaneously, we have D(4,2). Hence M and D are one and the same point. .BD is the perpendicular bisector of AC. 14(b) (v) In AABD and ACBD, AABD $= \Delta CBD [BD \perp AC, proven]$ BD is common $\Delta ABD = \Delta CBD [BAS]$ (vi) $ AABC = \frac{1}{2} \times AC \times BD$ $BD = \sqrt{(4 - 0)^{2} + (2 - 8)^{2}} = \sqrt{52}$ units $AC = \sqrt{(7 - 1)^{2} + (4 - 0)^{2}} = \sqrt{52}$ units $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$	14(a)(ii)	Perimeter of the region ACDB	2- correct answer
$= 2(R-r) + \frac{\pi}{4}(R+r)$ $= 2(R-r) + \frac{\pi}{4}(R+r)$ 14b(i) $m_{AC} = \frac{4-0}{7-1} = \frac{2}{3}$ Equation of AC: $y - 0 = \frac{2}{3}(x-1)$ $2x - 3y - 2 = 0$ (ii) Angle between AC and the x-axis = tan ⁻¹ (\frac{2}{3}) $= 33^{\circ}41' (or \approx 34^{\circ})$ (iii) A(1,0), B(0,8) and C(7,4). BD $\perp AC$ $m_{BD} \times \frac{2}{3} = -1 \therefore m_{BD} = -\frac{3}{2}$ Equation of BD: $y - 8 = -\frac{3}{2}(x-0)$ $3x + 2y - 16 = 0$ (iv) M(4,2) where M is the midpoint of AC. Equation of BD: $3x + 2y - 16 = 0$ Equation of BD: $3x + 2y - 16 = 0$ Equation of AC: $2x - 3y - 2 = 0$ Solving simultaneously, we have D(4,2). Hence M and D are one and the same point. $\therefore BD$ is the perpendicular bisector of AC. 14(b) (v) In ΔABD and ΔCBD, $AABD = \Delta CBD [SAS]$ (vi) $ \Delta ABC = \frac{1}{2} \times AC \times BD$ $BD = \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52}$ units $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$			- .
$= 2(R-r) + \frac{\pi}{4}(R+r)$ $= 2(R-r) + \frac{\pi}{4}(R+r)$ 14b(i) $m_{AC} = \frac{4-0}{7-1} = \frac{2}{3}$ Equation of AC: $y - 0 = \frac{2}{3}(x-1)$ $2x - 3y - 2 = 0$ (ii) Angle between AC and the x-axis = tan ⁻¹ (\frac{2}{3}) $= 33^{\circ}41' (or \approx 34^{\circ})$ (iii) A(1,0), B(0,8) and C(7,4). BD $\perp AC$ $m_{BD} \times \frac{2}{3} = -1 \therefore m_{BD} = -\frac{3}{2}$ Equation of BD: $y - 8 = -\frac{3}{2}(x-0)$ $3x + 2y - 16 = 0$ (iv) M(4,2) where M is the midpoint of AC. Equation of BD: $3x + 2y - 16 = 0$ Equation of BD: $3x + 2y - 16 = 0$ Equation of AC: $2x - 3y - 2 = 0$ Solving simultaneously, we have D(4,2). Hence M and D are one and the same point. $\therefore BD$ is the perpendicular bisector of AC. 14(b) (v) In ΔABD and ΔCBD, $AABD = \Delta CBD [SAS]$ (vi) $ \Delta ABC = \frac{1}{2} \times AC \times BD$ $BD = \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52}$ units $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$		$= (R - r) + (R - r) + \frac{\pi r}{4} + \frac{\pi R}{4}$	for the arc lengths
14b(i) $\mathbf{x}_{AC} = \frac{4-0}{7-1} = \frac{2}{3}$ 2- correct proof 1- correct gradient14b(i) $\mathbf{x}_{AC} = \frac{4-0}{7-1} = \frac{2}{3}$ 2- correct proof 1- correct gradientEquation of AC: $y - 0 = \frac{2}{3}(x - 1)$ $2x - 3y - 2 = 0$ 1- correct answer(ii)Angle between AC and the x-axis = $tan^{-1} \left(\frac{2}{3}\right)$ 1- correct answer $= 33^{\circ}41'$ (or $\approx 34^{\circ}$)1- correct proof $1- m_{BD} = -\frac{3}{2}$ 2- correct proof $1- m_{BD} = -\frac{3}{2}$ (iii) $A(1,0)$, $B(0,8)$ and $C(7,4)$. $BD \pm AC2- correct proof1- m_{BD} = -\frac{3}{2}Equation of BD: y - 8 = -\frac{3}{2}(x - 0)3x + 2y - 16 = 02- correct proof1- corritates of D.(iv)M(4,2) where M is the midpoint of AC.Equation of BD: 3x + 2y - 16 = 0Equation of AC: 2x - 3y - 2 = 0Solving simultaneously, we have D(4,2). Hence M and Dare one and the same point.x - BD is the perpendicular bisector of AC.2- correct proof1- correct proof1- correct proof1- statements with incorrect \equivcondition.14(b) (v)In \Delta ABD and \Delta CBD,ABD = \Delta CBD [SAS]2- correct proof1- statements with incorrect \equivcondition.(vi) \Delta ABC = \frac{1}{2} \times AC \times BDBD = \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52} unitsAC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52} units \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}2- correct answer1- an expression to evaluate \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$		4 4	
14b(i) $\mathbf{x}_{AC} = \frac{4-0}{7-1} = \frac{2}{3}$ 2- correct proof 1- correct gradient14b(i) $\mathbf{x}_{AC} = \frac{4-0}{7-1} = \frac{2}{3}$ 2- correct proof 1- correct gradientEquation of AC: $y - 0 = \frac{2}{3}(x - 1)$ $2x - 3y - 2 = 0$ 1- correct answer(ii)Angle between AC and the x-axis = $tan^{-1} \left(\frac{2}{3}\right)$ 1- correct answer $= 33^{\circ}41'$ (or $\approx 34^{\circ}$)1- correct proof $1- m_{BD} = -\frac{3}{2}$ 2- correct proof $1- m_{BD} = -\frac{3}{2}$ (iii) $A(1,0)$, $B(0,8)$ and $C(7,4)$. $BD \pm AC2- correct proof1- m_{BD} = -\frac{3}{2}Equation of BD: y - 8 = -\frac{3}{2}(x - 0)3x + 2y - 16 = 02- correct proof1- corritates of D.(iv)M(4,2) where M is the midpoint of AC.Equation of BD: 3x + 2y - 16 = 0Equation of AC: 2x - 3y - 2 = 0Solving simultaneously, we have D(4,2). Hence M and Dare one and the same point.x - BD is the perpendicular bisector of AC.2- correct proof1- correct proof1- correct proof1- statements with incorrect \equivcondition.14(b) (v)In \Delta ABD and \Delta CBD,ABD = \Delta CBD [SAS]2- correct proof1- statements with incorrect \equivcondition.(vi) \Delta ABC = \frac{1}{2} \times AC \times BDBD = \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52} unitsAC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52} units \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}2- correct answer1- an expression to evaluate \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$		π	
$m_{AC} = \frac{y-1}{7-1} = \frac{z}{3}$ Equation of AC: $y - 0 = \frac{2}{3}(x - 1)$ $2x - 3y - 2 = 0$ (ii) Angle between AC and the x-axis = $tan^{-1}\left(\frac{2}{3}\right)$ $= 33^{\circ}41' (or \approx 34^{\circ})$ (iii) A(1,0), B(0,8) and C(7,4). BD $\perp AC$ $m_{BD} \times \frac{2}{3} = -1 \therefore \ m_{BD} = -\frac{3}{2}$ Equation of BD: $y - 8 = -\frac{3}{2}(x - 0)$ $3x + 2y - 16 = 0$ (iv) M(4, 2) where M is the midpoint of AC. Equation of AC: $2x - 3y - 2 = 0$ Solving simultaneously, we have D(4,2). Hence M and D are one and the same point. $\therefore BD$ is the perpendicular bisector of AC. 14(b) (v) In $\Delta ABD = a\Delta CBD$ [$BD \perp AC, proven$] $BD \equiv \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52}$ units $AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52}$ units $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$ $1 - correct gradient$ 1- correct gradient 1- correct answer 1- correct answer 2- correct proof 1- statements with incorrect = condition. 2- correct answer 1- an expression to evaluate [ΔABC] and ΔCBD , $AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52}$ units $AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52}$ units		$= 2(R-r) + \frac{1}{4}(R+r)$	
$m_{AC} = \frac{y-1}{7-1} = \frac{z}{3}$ Equation of AC: $y - 0 = \frac{2}{3}(x - 1)$ $2x - 3y - 2 = 0$ (ii) Angle between AC and the x-axis = $tan^{-1}\left(\frac{2}{3}\right)$ $= 33^{\circ}41' (or \approx 34^{\circ})$ (iii) A(1,0), B(0,8) and C(7,4). BD $\perp AC$ $m_{BD} \times \frac{2}{3} = -1 \therefore \ m_{BD} = -\frac{3}{2}$ Equation of BD: $y - 8 = -\frac{3}{2}(x - 0)$ $3x + 2y - 16 = 0$ (iv) M(4, 2) where M is the midpoint of AC. Equation of AC: $2x - 3y - 2 = 0$ Solving simultaneously, we have D(4,2). Hence M and D are one and the same point. $\therefore BD$ is the perpendicular bisector of AC. 14(b) (v) In $\Delta ABD = a\Delta CBD$ [$BD \perp AC, proven$] $BD \equiv \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52}$ units $AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52}$ units $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$ $1 - correct gradient$ 1- correct gradient 1- correct answer 1- correct answer 2- correct proof 1- statements with incorrect = condition. 2- correct answer 1- an expression to evaluate [ΔABC] and ΔCBD , $AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52}$ units $AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52}$ units			
$m_{AC} = \frac{y-1}{7-1} = \frac{z}{3}$ Equation of AC: $y - 0 = \frac{2}{3}(x - 1)$ $2x - 3y - 2 = 0$ (ii) Angle between AC and the x-axis = $tan^{-1}\left(\frac{2}{3}\right)$ $= 33^{\circ}41' (or \approx 34^{\circ})$ (iii) A(1,0), B(0,8) and C(7,4). BD $\perp AC$ $m_{BD} \times \frac{2}{3} = -1 \therefore \ m_{BD} = -\frac{3}{2}$ Equation of BD: $y - 8 = -\frac{3}{2}(x - 0)$ $3x + 2y - 16 = 0$ (iv) M(4, 2) where M is the midpoint of AC. Equation of AC: $2x - 3y - 2 = 0$ Solving simultaneously, we have D(4,2). Hence M and D are one and the same point. $\therefore BD$ is the perpendicular bisector of AC. 14(b) (v) In $\Delta ABD = a\Delta CBD$ [$BD \perp AC, proven$] $BD \equiv \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52}$ units $AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52}$ units $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$ $1 - correct gradient$ 1- correct gradient 1- correct answer 1- correct answer 2- correct proof 1- statements with incorrect = condition. 2- correct answer 1- an expression to evaluate [ΔABC] and ΔCBD , $AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52}$ units $AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52}$ units	14b(i)	4 0 0	2- correct proof
Find the set of the s	140(1)	$m_{AC} = \frac{4-0}{} = \frac{2}{}$	
(ii) 2x - 3y - 2 = 0 (iii) Angle between AC and the x-axis = tan ⁻¹ $\left(\frac{2}{3}\right)$ = 33°41' (or \approx 34°) (iii) A(1,0), B(0,8) and C(7,4). BD \perp AC $m_{BD} \times \frac{2}{3} = -1$ \therefore $m_{BD} = -\frac{3}{2}$ Equation of BD: $y - 8 = -\frac{3}{2}(x - 0)$ 3x + 2y - 16 = 0 (iv) M(4,2) where M is the midpoint of AC. Equation of BD: $3x + 2y - 16 = 0$ Equation of AC: $2x - 3y - 2 = 0$ Solving simultaneously, we have D(4,2). Hence M and D are one and the same point. \therefore BD is the perpendicular bisector of AC. 14(b) (v) In ΔABD and ΔCBD , AD = DC [D is the midpoint of AC] 2^{-} correct proof 1- coordinates of D. 2- correct proof 1- coordinates of D. 2- correct proof 1- statements with incorrect \equiv condition. 2- correct answer 1- an expression to evaluate $ \Delta ABC = \frac{1}{2} \times AC \times BD$ $BD = \sqrt{(4 - 0)^2 + (2 - 8)^2} = \sqrt{52}$ units $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$		7 - 1 3	
(ii) 2x - 3y - 2 = 0 (iii) Angle between AC and the x-axis = tan ⁻¹ $\left(\frac{2}{3}\right)$ = 33°41' (or \approx 34°) (iii) A(1,0), B(0,8) and C(7,4). BD \perp AC $m_{BD} \times \frac{2}{3} = -1$ \therefore $m_{BD} = -\frac{3}{2}$ Equation of BD: $y - 8 = -\frac{3}{2}(x - 0)$ 3x + 2y - 16 = 0 (iv) M(4,2) where M is the midpoint of AC. Equation of BD: $3x + 2y - 16 = 0$ Equation of AC: $2x - 3y - 2 = 0$ Solving simultaneously, we have D(4,2). Hence M and D are one and the same point. \therefore BD is the perpendicular bisector of AC. 14(b) (v) In ΔABD and ΔCBD , AD = DC [D is the midpoint of AC] 2^{-} correct proof 1- coordinates of D. 2- correct proof 1- coordinates of D. 2- correct proof 1- statements with incorrect \equiv condition. 2- correct answer 1- an expression to evaluate $ \Delta ABC = \frac{1}{2} \times AC \times BD$ $BD = \sqrt{(4 - 0)^2 + (2 - 8)^2} = \sqrt{52}$ units $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$		- 2 (1)	
(ii) Angle between AC and the x-axis = $tan^{-1}\left(\frac{2}{3}\right)$ = 33°41' (or \approx 34°) (iii) A(1,0), B(0,8) and C(7,4). BD \perp AC $m_{BD} \times \frac{2}{3} = -1$ \therefore $m_{BD} = -\frac{3}{2}$ Equation of BD: $y - 8 = -\frac{3}{2}$ Equation of BD: $3x + 2y - 16 = 0$ (iv) M(4,2) where M is the midpoint of AC. Equation of AC: $2x - 3y - 2 = 0$ Solving simulaneously, we have D(4,2). Hence M and D are one and the same point. \therefore BD is the perpendicular bisector of AC. 14(b) (v) In ΔABD and ΔCBD , $\Delta ABD \subset [D \ is the midpoint of AC]$ $\angle ADB = 90^\circ = \angle CDB[BD \perp AC, proven]$ BD is common $\Delta ABD \equiv \Delta CBD [SAS]$ (vi) $ \Delta ABC = \frac{1}{2} \times AC \times BD$ $BD = \sqrt{(4 - 0)^2 + (2 - 8)^2} = \sqrt{52}$ units $AC = \sqrt{(7 - 1)^2 + (4 - 0)^2} = \sqrt{52}$ units $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$		Equation of AC: $y - 0 = \frac{1}{3}(x - 1)$	
(ii) Angle between AC and the x-axis = $tan^{-1}\left(\frac{2}{3}\right)$ = 33°41' (or \approx 34°) (iii) A(1,0), B(0,8) and C(7,4). BD \perp AC $m_{BD} \times \frac{2}{3} = -1$ \therefore $m_{BD} = -\frac{3}{2}$ Equation of BD: $y - 8 = -\frac{3}{2}$ Equation of BD: $3x + 2y - 16 = 0$ (iv) M(4,2) where M is the midpoint of AC. Equation of AC: $2x - 3y - 2 = 0$ Solving simulaneously, we have D(4,2). Hence M and D are one and the same point. \therefore BD is the perpendicular bisector of AC. 14(b) (v) In ΔABD and ΔCBD , $\Delta ABD \subset [D \ is the midpoint of AC]$ $\angle ADB = 90^\circ = \angle CDB[BD \perp AC, proven]$ BD is common $\Delta ABD \equiv \Delta CBD [SAS]$ (vi) $ \Delta ABC = \frac{1}{2} \times AC \times BD$ $BD = \sqrt{(4 - 0)^2 + (2 - 8)^2} = \sqrt{52}$ units $AC = \sqrt{(7 - 1)^2 + (4 - 0)^2} = \sqrt{52}$ units $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$			
(iii) A(1,0), B(0,8) and C(7,4). BD \perp AC $m_{BD} \times \frac{2}{3} = -1$ \therefore $m_{BD} = -\frac{3}{2}$ Equation of BD: $y - 8 = -\frac{3}{2}$ Equation of AC: $2 - correct \text{ proof}$ Equation of AC: $2x - 3y - 2 = 0$ Solving simultaneously, we have $D(4,2)$. Hence M and D are one and the same point. \therefore BD is the perpendicular bisector of AC. 14(b) (v) In ΔABD and ΔCBD , $\Delta ABD \subset [D$ is the midpoint of AC] $\angle ADB = 90^{\circ} = \angle CDB[BD \perp AC, proven]$ BD is common $\Delta ABD \equiv \Delta CBD [SAS]$ (vi) $ \Delta ABC = \frac{1}{2} \times AC \times BD$ $BD = \sqrt{(4 - 0)^2 + (2 - 8)^2} = \sqrt{52}$ units $AC = \sqrt{(7 - 1)^2 + (4 - 0)^2} = \sqrt{52}$ units $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$		2x-3y-2=0	
(iii) $= 33^{\circ}41' (\text{or} \approx 34^{\circ})$ $A(1,0), B(0,8) \text{ and } C(7,4).$ $BD \perp AC$ $m_{BD} \times \frac{2}{3} = -1 \therefore m_{BD} = -\frac{3}{2}$ Equation of $BD: y - 8 = -\frac{3}{2}(x - 0)$ $3x + 2y - 16 = 0$ (iv) M(4,2) where M is the midpoint of AC. $Equation of BD: 3x + 2y - 16 = 0$ Equation of $AC: 2x - 3y - 2 = 0$ Solving simultaneously, we have $D(4,2)$. Hence M and $Dare one and the same point.\therefore BD \text{ is the perpendicular bisector of } AC. 14(b) (v) In \Delta ABD and \Delta CBD, ADB = 0C [D \text{ is the midpoint of } AC] 2 \text{ correct proof} 1 \text{ statements with incorrect } \equiv context{ condition.} ABD = \Delta CBD [SAS] (vi) \Delta ABC = \frac{1}{2} \times AC \times BD BD = \sqrt{(4 - 0)^{2} + (2 - 8)^{2}} = \sqrt{52} \text{ units} \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$	(ii)	Angle between AC and the x-axis = $tan^{-1} \left(\frac{2}{-}\right)$	1- correct answer
(iii) $A(1,0), B(0,8) \text{ and } C(7,4).$ $BD \perp AC$ $m_{BD} \times \frac{2}{3} = -1 \therefore \ m_{BD} = -\frac{3}{2}$ Equation of $BD: y - 8 = -\frac{3}{2}(x - 0)$ $3x + 2y - 16 = 0$ (iv) $M(4,2) \text{ where } M \text{ is the midpoint of } AC.$ $Equation of BD: \ 3x + 2y - 16 = 0$ Equation of AC: $2x - 3y - 2 = 0$ Solving simultaneously, we have $D(4,2)$. Hence M and D are one and the same point. $\therefore BD \text{ is the perpendicular bisector of } AC.$ 14(b) (v) $In \Delta ABD \text{ and } \Delta CBD,$ $\Delta ABD \equiv \Delta CBD [SAS]$ (vi) $ \Delta ABC = \frac{1}{2} \times AC \times BD$ $BD = \sqrt{(4 - 0)^2 + (2 - 8)^2} = \sqrt{52} \text{ units}$ $AC = \sqrt{(7 - 1)^2 + (4 - 0)^2} = \sqrt{52} \text{ units}$		(3)	
$BD \perp AC$ $m_{BD} \times \frac{2}{3} = -1 \therefore \ m_{BD} = -\frac{3}{2}$ Equation of BD : $y - 8 = -\frac{3}{2}(x - 0)$ $3x + 2y - 16 = 0$ (iv) $M(4, 2) \text{ where } M \text{ is the midpoint of } AC.$ Equation of BD : $3x + 2y - 16 = 0$ Equation of AC : $2x - 3y - 2 = 0$ Solving simultaneously, we have $D(4, 2)$. Hence M and D are one and the same point. $\therefore BD$ is the perpendicular bisector of AC . $14(b) (v)$ $In \Delta ABD and \Delta CBD,$ $AD = DC [D is the midpoint of AC] 2 \text{ correct proof} 1 \text{ statements with incorrect} \equiv condition. 2^{2} \text{ correct proof} 2 \text{ correct proof} 1 \text{ statements with incorrect} \equiv condition. 2^{2} \text{ correct answer} 2^{2} \text{ correct answer} 3ABD = \Delta CBD [SAS] (vi) \Delta ABC = \frac{1}{2} \times AC \times BD BD = \sqrt{(4 - 0)^{2} + (2 - 8)^{2}} = \sqrt{52} \text{ units} \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$		$= 33^\circ 41'$ (or $pprox 34^\circ$)	
$BD \perp AC$ $m_{BD} \times \frac{2}{3} = -1 \therefore \ m_{BD} = -\frac{3}{2}$ Equation of BD : $y - 8 = -\frac{3}{2}(x - 0)$ $3x + 2y - 16 = 0$ (iv) $M(4, 2) \text{ where } M \text{ is the midpoint of } AC.$ Equation of BD : $3x + 2y - 16 = 0$ Equation of AC : $2x - 3y - 2 = 0$ Solving simultaneously, we have $D(4, 2)$. Hence M and D are one and the same point. $\therefore BD$ is the perpendicular bisector of AC . $14(b) (v)$ $In \Delta ABD and \Delta CBD,$ $AD = DC [D is the midpoint of AC] 2 \text{ correct proof} 1 \text{ statements with incorrect} \equiv condition. 2^{2} \text{ correct proof} 2 \text{ correct proof} 1 \text{ statements with incorrect} \equiv condition. 2^{2} \text{ correct answer} 2^{2} \text{ correct answer} 3ABD = \Delta CBD [SAS] (vi) \Delta ABC = \frac{1}{2} \times AC \times BD BD = \sqrt{(4 - 0)^{2} + (2 - 8)^{2}} = \sqrt{52} \text{ units} \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$			
$BD \perp AC$ $m_{BD} \times \frac{2}{3} = -1 \therefore \ m_{BD} = -\frac{3}{2}$ Equation of BD : $y - 8 = -\frac{3}{2}(x - 0)$ $3x + 2y - 16 = 0$ (iv) $M(4, 2) \text{ where } M \text{ is the midpoint of } AC.$ Equation of BD : $3x + 2y - 16 = 0$ Equation of AC : $2x - 3y - 2 = 0$ Solving simultaneously, we have $D(4, 2)$. Hence M and D are one and the same point. $\therefore BD$ is the perpendicular bisector of AC . $14(b) (v)$ $In \Delta ABD and \Delta CBD,$ $AD = DC [D is the midpoint of AC] 2 \text{ correct proof} 1 \text{ statements with incorrect} \equiv condition. 2^{2} \text{ correct proof} 2 \text{ correct proof} 1 \text{ statements with incorrect} \equiv condition. 2^{2} \text{ correct answer} 2^{2} \text{ correct answer} 3ABD = \Delta CBD [SAS] (vi) \Delta ABC = \frac{1}{2} \times AC \times BD BD = \sqrt{(4 - 0)^{2} + (2 - 8)^{2}} = \sqrt{52} \text{ units} \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$	/		
$m_{BD} \times \frac{2}{3} = -1 \therefore \ m_{BD} = -\frac{3}{2}$ Equation of $BD: \ y - 8 = -\frac{3}{2} (x - 0)$ $3x + 2y - 16 = 0$ (iv) $M(4, 2) \text{ where } M \text{ is the midpoint of } AC.$ Equation of $BD: \ 3x + 2y - 16 = 0$ Equation of $AC: \ 2x - 3y - 2 = 0$ Solving simultaneously, we have $D(4, 2)$. Hence M and D are one and the same point. $\therefore BD$ is the perpendicular bisector of AC . 14(b) (v) $In \Delta ABD and \Delta CBD,$ $AD = DC [D is the midpoint of AC] 2 \cdot \text{ correct proof} 1 - statements with incorrect \equiv condition.14(b) (v) In \Delta ABD and \Delta CBD, AD = DC [D is the midpoint of AC] 2 \cdot \text{ correct proof} 1 - statements with incorrect \equiv condition.(vi) \Delta ABC = \frac{1}{2} \times AC \times BD BD = \sqrt{(4 - 0)^2 + (2 - 8)^2} = \sqrt{52} \text{ units} AC = \sqrt{(7 - 1)^2 + (4 - 0)^2} = \sqrt{52} \text{ units} \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$	(iii)		
$\begin{bmatrix} y & y & y & z & z \\ Equation of BD: y & y & z & z & z \\ Equation of BD: y & y & z & z & z & z \\ 3x + 2y & -16 & = 0 & & & & & \\ 2 & correct proof & & & & \\ 2 & correct proof & & & & \\ 1 & coordinates of D. & & & & \\ 2 & correct proof & & & & \\ 1 & coordinates of D. & & & & \\ 2 & correct proof & & & & \\ 1 & coordinates of D. & & & & \\ 2 & correct proof & & & & \\ 1 & coordinates of D. & & & & \\ 14(b) (v) & In \Delta ABD and \Delta CBD, & & & & \\ AD & = DC [D is the midpoint of AC] & & & & \\ ADB & = 90^{\circ} & z & CDB [BD \perp AC, proven] & & & \\ BD & is common & & & \\ ABD & \equiv \Delta CBD [SAS] & & & & \\ (vi) & \Delta ABC & = \frac{1}{2} \times AC \times BD & & \\ BD & = \sqrt{(4-0)^2 + (2-8)^2} & = \sqrt{52} units & & \\ AC & = \sqrt{(7-1)^2 + (4-0)^2} & = \sqrt{52} units & & \\ \Delta ABC & = \frac{1}{2} \times \sqrt{52} \times \sqrt{52} & & \\ \end{bmatrix}$		$BD \perp AC$	1- $m_{BD} = -\frac{3}{2}$
$\begin{bmatrix} y & y & y & z & z \\ Equation of BD: y & y & z & z & z \\ Equation of BD: y & y & z & z & z & z \\ 3x + 2y & -16 & = 0 & & & & & \\ 2 & correct proof & & & & \\ 2 & correct proof & & & & \\ 1 & coordinates of D. & & & & \\ 2 & correct proof & & & & \\ 1 & coordinates of D. & & & & \\ 2 & correct proof & & & & \\ 1 & coordinates of D. & & & & \\ 2 & correct proof & & & & \\ 1 & coordinates of D. & & & & \\ 14(b) (v) & In \Delta ABD and \Delta CBD, & & & & \\ AD & = DC [D is the midpoint of AC] & & & & \\ ADB & = 90^{\circ} & z & CDB [BD \perp AC, proven] & & & \\ BD & is common & & & \\ ABD & \equiv \Delta CBD [SAS] & & & & \\ (vi) & \Delta ABC & = \frac{1}{2} \times AC \times BD & & \\ BD & = \sqrt{(4-0)^2 + (2-8)^2} & = \sqrt{52} units & & \\ AC & = \sqrt{(7-1)^2 + (4-0)^2} & = \sqrt{52} units & & \\ \Delta ABC & = \frac{1}{2} \times \sqrt{52} \times \sqrt{52} & & \\ \end{bmatrix}$			
$\begin{bmatrix} y & y & y & z & z \\ Equation of BD: y & y & z & z & z \\ Equation of BD: y & y & z & z & z & z \\ 3x + 2y & -16 & = 0 & & & & & \\ 2 & correct proof & & & & \\ 2 & correct proof & & & & \\ 1 & coordinates of D. & & & & \\ 2 & correct proof & & & & \\ 1 & coordinates of D. & & & & \\ 2 & correct proof & & & & \\ 1 & coordinates of D. & & & & \\ 2 & correct proof & & & & \\ 1 & coordinates of D. & & & & \\ 14(b) (v) & In \Delta ABD and \Delta CBD, & & & & \\ AD & = DC [D is the midpoint of AC] & & & & \\ ADB & = 90^{\circ} & z & CDB [BD \perp AC, proven] & & & \\ BD & is common & & & \\ ABD & \equiv \Delta CBD [SAS] & & & & \\ (vi) & \Delta ABC & = \frac{1}{2} \times AC \times BD & & \\ BD & = \sqrt{(4-0)^2 + (2-8)^2} & = \sqrt{52} units & & \\ AC & = \sqrt{(7-1)^2 + (4-0)^2} & = \sqrt{52} units & & \\ \Delta ABC & = \frac{1}{2} \times \sqrt{52} \times \sqrt{52} & & \\ \end{bmatrix}$		$m \times \frac{2}{2} - 1 \cdot m - \frac{3}{2}$	
(iv) 3x + 2y - 16 = 0 (iv) M(4, 2) where M is the midpoint of AC. Equation of BD : $3x + 2y - 16 = 0Equation of AC: 2x - 3y - 2 = 0Solving simultaneously, we have D(4,2). Hence M and Dare one and the same point.\therefore BD \text{ is the perpendicular bisector of } AC.14(b) (v)In \Delta ABD \text{ and } \Delta CBD,AD = DC [D is the midpoint of AC]\angle ADB = 90^{\circ} = \angle CDB[BD \perp AC, proven]BD is common\Delta ABD \equiv \Delta CBD [SAS](vi) \Delta ABC = \frac{1}{2} \times AC \times BDBD = \sqrt{(4 - 0)^2 + (2 - 8)^2} = \sqrt{52} \text{ units}AC = \sqrt{(7 - 1)^2 + (4 - 0)^2} = \sqrt{52} \text{ units} \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}2- correct proof1- statements with incorrect \equivcondition.2- correct answer1- an expression to evaluate \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$		$m_{BD} \wedge \frac{1}{3} = -1 \cdots m_{BD} = -\frac{1}{2}$	
(iv) 3x + 2y - 16 = 0 (iv) M(4, 2) where M is the midpoint of AC. Equation of BD : $3x + 2y - 16 = 0Equation of AC: 2x - 3y - 2 = 0Solving simultaneously, we have D(4,2). Hence M and Dare one and the same point.\therefore BD \text{ is the perpendicular bisector of } AC.14(b) (v)In \Delta ABD \text{ and } \Delta CBD,AD = DC [D is the midpoint of AC]\angle ADB = 90^{\circ} = \angle CDB[BD \perp AC, proven]BD is common\Delta ABD \equiv \Delta CBD [SAS](vi) \Delta ABC = \frac{1}{2} \times AC \times BDBD = \sqrt{(4 - 0)^2 + (2 - 8)^2} = \sqrt{52} \text{ units}AC = \sqrt{(7 - 1)^2 + (4 - 0)^2} = \sqrt{52} \text{ units} \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}2- correct proof1- statements with incorrect \equivcondition.2- correct answer1- an expression to evaluate \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$		Equation of <i>BD</i> : $y - 8 = -\frac{3}{2}(x - 0)$	
(iv) $M(4,2) \text{ where } M \text{ is the midpoint of } AC.$ Equation of BD : $3x + 2y - 16 = 0$ Equation of AC : $2x - 3y - 2 = 0$ Solving simultaneously, we have $D(4,2)$. Hence M and D are one and the same point. $\therefore BD \text{ is the perpendicular bisector of } AC.$ 14(b) (v) $In \Delta ABD \text{ and } \Delta CBD,$ AD = DC [D is the midpoint of AC] $\angle ADB = 90^{\circ} = \angle CDB [BD \perp AC, proven]$ BD is common $\Delta ABD \equiv \Delta CBD [SAS]$ (vi) $ \Delta ABC = \frac{1}{2} \times AC \times BD$ $BD = \sqrt{(4 - 0)^2 + (2 - 8)^2} = \sqrt{52} \text{ units}$ $AC = \sqrt{(7 - 1)^2 + (4 - 0)^2} = \sqrt{52} \text{ units}$ $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$			
Equation of BD: 3x + 2y - 16 = 0 $Equation of AC: 2x - 3y - 2 = 0$ Solving simultaneously, we have $D(4,2)$. Hence M and D are one and the same point. $\therefore BD$ is the perpendicular bisector of AC. $14(b) (v) In \Delta ABD and \Delta CBD,$ $AD = DC [D is the midpoint of AC]$ $\angle ADB = 90^{\circ} = \angle CDB [BD \perp AC, proven]$ $BD is common$ $\Delta ABD \equiv \Delta CBD [SAS]$ $(vi) \Delta ABC = \frac{1}{2} \times AC \times BD$ $BD = \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52} units$ $AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52} units$ $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$		3x + 2y - 16 = 0	
Equation of BD: 3x + 2y - 16 = 0 $Equation of AC: 2x - 3y - 2 = 0$ Solving simultaneously, we have $D(4,2)$. Hence M and D are one and the same point. $\therefore BD$ is the perpendicular bisector of AC. $14(b) (v) In \Delta ABD and \Delta CBD,$ $AD = DC [D is the midpoint of AC]$ $\angle ADB = 90^{\circ} = \angle CDB [BD \perp AC, proven]$ $BD is common$ $\Delta ABD \equiv \Delta CBD [SAS]$ $(vi) \Delta ABC = \frac{1}{2} \times AC \times BD$ $BD = \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52} units$ $AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52} units$ $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$			
Equation of BD: $3x + 2y - 16 = 0$ 1- coordinates of D.Equation of AC: $2x - 3y - 2 = 0$ 1- coordinates of D.Solving simultaneously, we have $D(4,2)$. Hence M and D are one and the same point. $\therefore BD$ is the perpendicular bisector of AC.1- coordinates of D.14(b) (v)In $\triangle ABD$ and $\triangle CBD$, $AD = DC [D is the midpoint of AC]\angle ADB = 90^\circ = \angle CDB[BD \perp AC, proven]BD is common\triangle ABD \equiv \triangle CBD [SAS]2- correct proof1- statements with incorrect \equivcondition.(vi) \triangle ABC = \frac{1}{2} \times AC \times BDBD = \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52} unitsAC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52} units2- correct answer1- an expression to evaluate \triangle ABC and the size ofAC or BD. \triangle ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}\sqrt{52}\sqrt{52}$	(iv)	M(4,2) where M is the midpoint of AC.	2- correct proof
Equation of AC: $2x - 3y - 2 = 0$ Solving simultaneously, we have $D(4,2)$. Hence M and D are one and the same point. $\therefore BD$ is the perpendicular bisector of AC.2- correct proof14(b) (v)In $\triangle ABD$ and $\triangle CBD$, $AD = DC [D is the midpoint of AC]\angle ADB = 90^{\circ} = \angle CDB[BD \perp AC, proven]BD is common\triangle ABD \equiv \triangle CBD [SAS]2- correct proof(vi) \triangle ABC = \frac{1}{2} \times AC \times BDBD = \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52} unitsAC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52} units \triangle ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}2- correct answer1- an expression to evaluate \triangle ABC and the size ofAC or BD.$			
Solving simultaneously, we have $D(4,2)$. Hence M and D are one and the same point. $\therefore BD$ is the perpendicular bisector of AC . 14(b) (v) In $\triangle ABD$ and $\triangle CBD$, AD = DC [D is the midpoint of AC] $\angle ADB = 90^{\circ} = \angle CDB$ [$BD \perp AC$, proven] BD is common $\triangle ABD \equiv \triangle CBD$ [SAS] (vi) $ \triangle ABC = \frac{1}{2} \times AC \times BD$ $BD = \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52}$ units $AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52}$ units $ \triangle ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$			
are one and the same point. $\therefore BD$ is the perpendicular bisector of AC.2- correct proof14(b) (v)In $\triangle ABD$ and $\triangle CBD$, $AD = DC [D is the midpoint of AC]$ $\angle ADB = 90^\circ = \angle CDB[BD \perp AC, proven]$ BD is common $\triangle ABD \equiv \triangle CBD [SAS]$ 2- correct proof(vi) $ \triangle ABC = \frac{1}{2} \times AC \times BD$ $BD = \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52}$ units2- correct answer 1- an expression to evaluate $ \triangle ABC and the size of$ $AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52}$ units $ \triangle ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$		Equation of AC: $2x - 3y - 2 = 0$	
\therefore BD is the perpendicular bisector of AC.2- correct proof14(b) (v)In $\triangle ABD$ and $\triangle CBD$, $AD = DC [D is the midpoint of AC]$ $\angle ADB = 90^{\circ} = \angle CDB [BD \perp AC, proven]$ $BD is common$ $\triangle ABD \equiv \triangle CBD [SAS]$ 2- correct proof(vi) $ \triangle ABC = \frac{1}{2} \times AC \times BD$ $BD = \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52} units$ $AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52} units$ 2- correct answer 1- an expression to evaluate $ \triangle ABC $ and the size of AC or BD. $ \triangle ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$ $ \triangle ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$		Solving simultaneously, we have $D(4,2)$. Hence M and D	
14(b) (v)In $\triangle ABD$ and $\triangle CBD$, $AD = DC [D is the midpoint of AC]$ $\angle ADB = 90^\circ = \angle CDB[BD \perp AC, proven]$ $BD is common$ $\triangle ABD \equiv \triangle CBD [SAS]$ 2- correct proof 1- statements with incorrect \equiv condition.(vi) $ \triangle ABC = \frac{1}{2} \times AC \times BD$ $BD = \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52}$ units2- correct answer 1- an expression to evaluate $ \triangle ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$ $ \triangle ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$ $AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52}$ units		are one and the same point.	
$AD = DC [D \text{ is the midpoint of } AC]$ $\angle ADB = 90^{\circ} = \angle CDB[BD \perp AC, proven]$ $BD \text{ is common}$ $\Delta ABD \equiv \Delta CBD [SAS]$ (vi) $ \Delta ABC = \frac{1}{2} \times AC \times BD$ $BD = \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52} \text{ units}$ $AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52} \text{ units}$ $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$		\therefore BD is the perpendicular bisector of AC.	
$ \begin{split} & \angle ADB = 90^\circ = \angle CDB[BD \perp AC, proven] \\ & BD \text{ is common} \\ & \Delta ABD \equiv \Delta CBD [SAS] \end{split} $ condition. (vi) $ \begin{split} & \Delta ABC = \frac{1}{2} \times AC \times BD \\ & BD = \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52} \text{ units} \\ & AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52} \text{ units} \\ & \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52} \end{split} $	14(b) (v)	In $\triangle ABD$ and $\triangle CBD$,	2- correct proof
BD is common $\Delta ABD \equiv \Delta CBD [SAS]$ (vi) $ \Delta ABC = \frac{1}{2} \times AC \times BD$ $BD = \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52} \text{ units}$ $AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52} \text{ units}$ $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$			1- statements with incorrect \equiv
(vi) $ \begin{aligned} \Delta ABD &\equiv \Delta CBD [SAS] \\ \Delta ABC &= \frac{1}{2} \times AC \times BD \\ BD &= \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52} \text{ units} \\ AC &= \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52} \text{ units} \\ \Delta ABC &= \frac{1}{2} \times \sqrt{52} \times \sqrt{52} \end{aligned} $ 2- correct answer 1- an expression to evaluate $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52} $			condition.
(vi) $ \Delta ABC = \frac{1}{2} \times AC \times BD$ $BD = \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52} \text{ units}$ $AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52} \text{ units}$ $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$			
$BD = \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52} \text{ units}$ $AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52} \text{ units}$ $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$		$\nabla ARD \equiv \nabla CRD [2A2]$	
$BD = \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52} \text{ units}$ $AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52} \text{ units}$ $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$		1	
$BD = \sqrt{(4-0)^2 + (2-8)^2} = \sqrt{52} \text{ units}$ $AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52} \text{ units}$ $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$	(vi)	$ \Delta ABC = \frac{1}{2} \times AC \times BD$	
$AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52} \text{ units}$ $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$		L	-
$AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52} \text{ units}$ $ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$		$DD = \gamma(1 - 0) + (2 - 0) = \sqrt{52} \text{ mms}$	-
$ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$		$AC = \sqrt{(7-1)^2 + (4-0)^2} = \sqrt{52}$ where	
L		$AC = \sqrt{(7 - 1)} + (4 - 0) = \sqrt{32}$ units	
L			
$= 26 units^2$		$ \Delta ABC = \frac{1}{2} \times \sqrt{52} \times \sqrt{52}$	
		= 26 units ²	

Question	Suggested solutions		Marking criteria
15(a)(i)	1 st Game 2nd Game 3rd Game	SAMPLE SPACE	2- correct answer1- correct diagram not
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ЬЬ ЫЪ ТЬЪ ТЪЪ ТЪЪ	showing the probability.
(ii)	P(John is the champion) = P(win in 2 games) + P(win = 0.6 × 0.6 + 0.6 × 0.4 × 0.6 + 0.6 × = 0.648		2- correct answer1- identified the ways of winning the match.
15(b)(i)	15(b)(i) the value of M after the 1st year = $M + M \times \frac{7.5}{100}$ $= M \left(1 + \frac{7.5}{100}\right)$ the value of M after the 2nd year $= M \left(1 + \frac{7.5}{100}\right) \left(1 + \frac{7.5}{100}\right)$ $= M \left(1 + \frac{7.5}{100}\right)^2$ Hence, the value of M after the nth year		1- correct proof.
(ii)	$= M \left(1 + \frac{7.5}{100}\right)^n$		
	The value of the last contribution $= M (1)$ The value of the 2 nd last contribution $= M$ The value of the 3rd last contribution $= M$	$\left(1+\frac{7.5}{100}\right)^2$	2- correct solution1- identified that the final value of each <i>M</i> is a term of a GP.
	Note that the above values are the terms of first term $a = M \left(1 + \frac{7.5}{100}\right)^1$ with a common $r = 1.075$.		
	$\therefore A_n = \frac{a(r^n - 1)}{(r - 1)}$		
	$\therefore A_n = \frac{M \times 1.075(1.075^n - 1.075)}{0.075}$	- 1)	

15b(iii)	Let <i>n</i> be the number of years in the current job to generate \$750 000. <i>Also given</i> $M = 20526 . $750000 = \frac{20526 \times 1.075(1.075^{n} - 1)}{0.075} $ (A) $1.075^{n} = 3.5492$	2- correct answer 1- equation (A)
	$\therefore n = \frac{ln3.5492}{ln1.075} = 17,515 \dots$	
	Joe needs to be in the current job for at least 18 years.	
15(c)(i)	$\dot{x} = 2cost - 1 \text{ where } t \ge 0.$ $x = \int (2cost - 1)dt = 2sint - t + C$	2- correct answer1- integral expression for <i>x</i>.
	$x = \int (2\cos t - 1)dt = 2\sin t - t + c$ Initially, $t = 0$ and $x = 0$. $C = 0$. $x = 2\sin t - t$	
15(c)(ii)	Initially, $t = 0$ and $x = 0$. $\dot{x} = 1$ m/s. The particle is at O and moves to the right with the speed 1 m/s.	1- correct description
(iii)	The particle comes to rest when $\dot{x} = 0$. $0 = 2cost - 1 \rightarrow cost = \frac{1}{2}$ $t = \frac{\pi}{3}, \frac{5\pi}{3}, \dots$ After $\frac{\pi}{3}$ seconds the particle first come to rest.	1- correct answer
(iv)	Total distance travelled $= \int_{0}^{\frac{\pi}{3}} (2cost - 1)dt + \left \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} (2cost - 1)dt \right $ $= 2\sqrt{3} + \frac{\pi}{3} metres$	2- correct solution1- correct expression to calculate the TOTAL distance travelled.
16(a)(i)	Correct explanation for angle $PQR = 100^{\circ}$	1 – correct answer
(ii)	$PR^{2} = 140^{2} + 260^{2} - 2 \times 140 \times 260 \text{cos} 100^{\circ}$ $\approx 316 \text{ km}$	2 – correct solution 1 – correct use of the cosine rule
16(b)(i)	$M = Ae^{-kt} $ (1) $\frac{dM}{dt} = A \times (-k) e^{-kt}$ $= -k(A e^{-kt})$ $= -kM$ $\therefore M = Ae^{-kt} \text{ is a solution to the differential equation (1)}$	1- correct proof

16(b)(ii)	$t = 0, M = 20 \rightarrow 20 = A$ $A \rightarrow \frac{A}{2} in \ 300 \ years$ $\frac{A}{2} = Ae^{-300k} \rightarrow k = \frac{1}{300} \times ln2$ When $t = 700, M = 20e^{-\frac{700ln2}{300}}$ $= 20 \times 2^{-\frac{7}{3}}$ $= 3.96kg(2dp)$	2- correct answer1- formed the equation to calculate k using half-life period.
16(c)	$V = \pi \int_{a}^{b} y^{2} dx$ where $a = 0.5, b = 1.0$ and $y = \frac{1}{\sqrt{3 - 2x}}$ $V = \pi \int_{0.5}^{1} \frac{1}{3 - 2x} dx$ $V = [-\frac{\pi}{2} \ln(3 - 2x)]_{0.5}^{1}$ $V = \frac{\pi}{2} \ln 2 \text{ cubic units}$	 3- correct solution 2- correct expression for the definite integral showing limits 1- correct use of the formula for the volume .
16(d)(i)	$15 cm$ $30 cm$ $h cm$ B C F $y cm$ $B = C = \frac{1}{2}xy$ $D = \frac{1}{2}(15 - x)h \text{ where } h = \sqrt{x^2 - (15 - x)^2}$ $A = \frac{1}{2} \times 15[(30 - h) + (30 - y)]$ $30 \times 15 = xy + \frac{1}{2}(15 - x)h + \frac{1}{2} \times 15[(30 - h) + (30 - y)]$ $0 = 2xy - hx - 15y$ $y(2x - 15) = hx$ $\therefore y = \frac{hx}{2x - 15}$	 2- correct proof 1- formed an equation in terms of <i>x</i>, <i>y</i> and <i>h</i>.

16(d)(ii)	$L^2 = x^2 + y^2$ (A)	2- correct proof
	$L^{2} = x^{2} + \left(\frac{hx}{2x - 15}\right)^{2}$	1- equation (A) to find L
	$2^{2} - x^{2} + (2x - 15)^{2}$	
	By substituting for h	
	$=\frac{x^2[(2x-15)^2+(2x-15)15]}{(2x-15)^2}$	
	$L^2 = \frac{2x^3}{2x - 15}$	
16(d)(iii)	$\frac{d(L^2)}{dx} = \frac{(2x - 15) \times 6x^2 - 2x^3 \times 2}{(2x - 15)^2}$	2- correct answer
	dx $(2x-15)^2$	1- valid value for <i>x</i>
	$\frac{d(L^2)}{dx} = 0 \to (2x - 15) \times 6x^2 - 2x^3 \times 2 = 0$	
	$2x^2(4x - 45) = 0$	
	$As \ x \neq 0, \qquad x = \frac{45}{4} = 11.25$	
	x11.2011.2511.30 $\frac{d(L^2)}{dx}$ -50.1760+51.076	
	Hence for $minimum L, x = 11.25$	
	$L = \sqrt{\frac{2 \times 11.25^3}{2 \times 11.25 - 15}} = 19.485$	
	minimum length of the FOLD is 19.5 cm (1dp)	

End of Marking Guideline