2020
TRIAL - YEAR 12
HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Advanced

General

Instructions

- Reading time - 10 minutes
- Working time -3 hours
- Write using black pen
- Calculators approved by NESA may be used
- A reference sheet is provided at the back of this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total marks: Section I-10 marks (pages 2-5)
 100
 - Attempt Questions 1-10
 - Allow about 15 minutes for this section

Section II - 90 marks (pages 6-34)

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section

Section I - 10 marks

Allow 15 minutes for this section

1. Which expression is equal to $\int \tan ^{2} x d x$?
(A) $\frac{\tan ^{3} x}{3}+C$
(B) $\tan x-x+C$
(C) $\tan x+x+C$
(D) $\sec ^{2} x+C$
2. $\frac{d}{d x} \log _{e} \frac{4 x^{2}-9}{2 x-3}$ is equal to which of the following?
(A) $\frac{6}{2 x-3}$
(B) $\frac{2}{2 x+3}$
(C) $\frac{6(2 x+3)}{(2 x-3)^{2}}$
(D) $\frac{6(4 x+1)}{(2 x-3)^{2}}$
3. Which of the following could be a primitive for $f^{\prime}(x)=\frac{x}{e^{x^{2}-8}}$?
(A) $-\frac{1}{2}\left(e^{x^{2}-8}\right)+8$
(B) $\frac{1}{2} \ln \left(e^{x^{2}-8}\right)+8$
(C) $\quad \ln \left(e^{8-x^{2}}\right)-8$
(D) $\quad-\frac{1}{2}\left(e^{8-x^{2}}\right)-8$
4. For the curve shown, which inequalities are correct?

(A) $\frac{d y}{d x}>0$ and $\frac{d^{2} y}{d x^{2}}>0$
(B) $\frac{d y}{d x}>0$ and $\frac{d^{2} y}{d x^{2}}<0$
(C) $\frac{d y}{d x}<0$ and $\frac{d^{2} y}{d x^{2}}<0$
(D) $\frac{d y}{d x}<0$ and $\frac{d^{2} y}{d x^{2}}>0$
5. Results for a test are given as z-scores. In this test Angela gained a z - score of 3.The test has a mean of 55 and standard deviation of 6 . What was Angela's actual mark in this test?
(A) 58
(B) 73
(C) 64
(D) 67
6. The graph with the equation $y=k(x-2)^{3}$ is shown below, for some positive constant k.

If the area of the shaded region is 34 , what is the value of k ?
(A) $\frac{136}{15}$
(B) 8
(C) 4
(D) $\frac{34}{9}$
7. The time, T, in seconds that divers can hold their breath is normally distributed with $\mu=120$ and $\operatorname{Var}(T)=400$. In what range of time length would you expect to find the middle 95% ?
(A) $100 \leq x \leq 140$
(B) $80 \leq x \leq 160$
(C) $60 \leq x \leq 180$
(D) $40 \leq x \leq 200$
8. The exact value of $I=\int_{1}^{2} \frac{\ln x}{x} d x=\frac{1}{2}(\ln 2)^{2}$. The approximation of I using the Trapezoidal Rule with 2 function values is
(A) smaller by 28%
(B) larger by 28%
(C) smaller by 72%
(D) larger by 72%
9. Given a function $f(x)=\frac{x}{x^{2}-5}$

Which of the following statements is true?
(A) $f(x)$ is even and one-to-one.
(B) $f(x)$ is even and many-to-one.
(C) $f(x)$ is odd and one-to-one.
(D) $f(x)$ is odd and many-to-one.
10. The amount M of certain medicine present in the blood after t hours is given by $M=9 t^{2}-t^{3}$ for $0 \leq t \leq 9$.

When is the amount of medicine in the blood increasing most rapidly?
(A) $t=0$
(B) $t=9$
(C) $t=6$
(D) $t=3$

Section II- Extended Response

Attempt Questions 11-16.

Allow about 2 hours and 45 minutes for this section.

Question 11(15 Marks)

a) Differentiate the following
(i) $y=(4 x-5)(4 x+5)$
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\text { (ii) } y=\sin ^{2} x
$$

\qquad
\qquad
\qquad
\qquad
\qquad
b) In an arithmetic series, the third term is 5 and the tenth term is 26 . Find the sum of 2 the first 14 terms.
\qquad
c) Evaluate

$$
\int_{1}^{4} 5(9 x-4)^{4} d x
$$

\qquad
d) Solve the following equation for x.

$$
e^{2 x}+3 e^{x}-10=0
$$

\qquad
(ii) Hence find $\int \tan x \sec ^{2} x d x$.
\qquad
Question 11 continued on the next page
f) Given a function $f(x)= \begin{cases}6 x-6 x^{2} & 0 \leq x \leq 1 \\ 0 & \text { Otherwise }\end{cases}$
(i) Show that $f(x)$ represents probability density function.
\qquad
(ii) Find the mode of the probability density function $f(x)$.
\qquad

Question 12 (13 Marks)

a) Find the value(s) of b such that $y=2 x+b$ is a tangent to the parabola

$$
y=2 x^{2}+6 x-5
$$

\qquad
Question 12 continued on the next page
b) Angela guesses three questions in her multiple choice test, which has four options per question. Find the probability that Angela gets:
(i) Only one correct answer.
\qquad
(ii) At least one correct answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Question 12 continued on the next page
c)
(i) Sketch the hyperbola by shifting $y=\frac{1}{x-1}$ horizontally 3 units to the right 2 and 1 unit down.

(ii) State the equation of the shifted hyperbola, then find all the intercepts of the shifted hyperbola with the axes and mark them on your graph in part (i).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Question 12 continued on the next page
d) Consider the piece-wise defined function.

$$
f(x)= \begin{cases}x^{2}-1 & x \leq 1 \\ 4-x^{2} & x>1\end{cases}
$$

(i) Find $f(1)$
\qquad
\qquad
(ii) Find x if $f(x)=0$ 2
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Sketch the function showing all intercepts.

End of Question 12

Question 13 (18 Marks)

a) (i) Sketch the graphs of $f(x)=2 x-2 x^{2}$ and $g(x)=x-1$ on the same number plane.

(ii) Using your graphs from part (i), or otherwise solve the inequality

$$
x-1<2 x-2 x^{2} .
$$

\qquad
Question 13 continued on the next page
b) A surveyor stands at a point P, which is due east of the tower $O T$, of height h metres. The angle of elevation of the top of the tower T from P is 30°. The surveyor then walks 100 metres to point B, which is on a bearing of 150° from the foot of tower O. The angle of elevation of the top of the tower from B is now 45°.

(i) Express the length of $O P$ in terms of h. $\quad 1$
\qquad
Question 13 continued on the next page
(ii) Show that $(100)^{2}=h^{2}+\frac{h^{2}}{\tan ^{2} 30^{\circ}}-\frac{h^{2}}{\tan 30^{\circ}}$.
\qquad
(iii) Hence find the height of the tower. Answer correct to 1 decimal place.
\qquad
c) The following information shows a group of people's waist measurements and weights.

Waist $(\mathrm{cm}) x$	72	67	85	96	80	90	98	105
Weight $(\mathrm{kg}) y$	58	50	72	85	70	79	82	84

(i) Calculate the correlation coefficient, r, for their waist and weight measurements 2 correct to 3 decimal places and hence describe the strength of the relationship.
\qquad
(ii) Find the equation of the Least -Squares Regression Line.
\qquad
d) Given the function $f(x)=\ln \left(x^{2}+1\right)$.
(i) Find the domain of $f(x)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Find any stationary point(s) and determine their nature.
\qquad
(iv) Sketch the graph of $f(x)=\ln \left(x^{2}+1\right)$ showing all features from $\quad 2$ part (ii) and (iii).

Question 14 (14 marks)

a) (i) Prove the following identity

$$
(1+\tan x)^{2}=2 \tan x+\sec ^{2} x
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Hence find the area bounded by $y=(1+\tan x)^{2}$ and the x-axis between 3

$$
-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}
$$

\qquad
b) Given $y=2 \sin \left(2 x-\frac{\pi}{3}\right)$
(i) State the amplitude and period.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Find the exact values of all intercepts of
$y=2 \sin \left(2 x-\frac{\pi}{3}\right)$ with the axes for $0 \leq x \leq \pi$.
\qquad
(iii) Hence sketch the graph of $y=2 \sin \left(2 x-\frac{\pi}{3}\right)$ for $0 \leq x \leq \pi$, showing all features from part (i) and (ii) and the global maximum and minimum.

Question 14 continued on the next page
c) A bag contains three red balls and four black balls. Two balls are selected at random without replacement from the bag.

Let X be the number of black balls drawn.
(i) Fill in the following table and hence find exact value of $E(X)$.

x	0	1	2
$P(X=x)$			

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Find $E\left(X^{2}\right)$ and hence find $\operatorname{Var}(X)$ and standard deviation σ. 2
\qquad

Question 15 (16 marks)

a) The velocity v of a particle in metres per second is given by the formula $v=5\left(1+e^{-t}\right)$, where t is the time in seconds.
(i) Find the initial velocity of the particle.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Is the particle ever stationary? Justify your answer. 1
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Sketch the graph of the velocity.

Question 15 continued on the next page
\qquad
Question 15 continued on the next page
b) The line $y=m x$ is a tangent to the curve $y=\ln (2 x-1)$ at a point P.
(i) Sketch the line and the curve on the same diagram, clearly indicating the point P.

Question 15 continued on the next page
(ii) Show that the coordinates of P are $\left(\frac{2+m}{2 m}, \frac{2+m}{2}\right)$.
\qquad
(iii) Hence show that $2+m=\ln \left(\frac{4}{m^{2}}\right)$.
\qquad

c) Given the probability density function

$$
f(x)= \begin{cases}2 e^{-2 x} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(i) Find the cumulative distribution function $F(x)$.
\qquad
(ii) Hence find the median.
\qquad

Question 16 (14 marks)

a) Michelle borrows $\$ 450000$ to be repaid by regular monthly repayments of $\$ M$ over a period of 25 years at 6% per annum reducible monthly. Interest is calculated and charged just before each repayment.
Let A_{n} be the amount owing after n-repayments.
(i) Show that the expression for the amount owing after two repayments is

$$
A_{2}=450000(1.005)^{2}-M(1.005)-M .
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Show that the amount owing after n-repayments is

$$
A_{n}=450000(1.005)^{n}-M \frac{(1.005)^{n}-1}{0.005}
$$

\qquad
Question 16 continued on the next page
b) An isosceles triangle $\triangle A B C$ is inscribed within a unit circle centred at O, as shown in the diagram below. Let M be the midpoint of $B C, \angle B A C=\theta$ and $\angle B O M=\theta$.

(i) Show that the area of $\triangle A B C$ is $A=\sin \theta(1+\cos \theta)$.
\qquad
(ii) Hence prove that the area of the isosceles triangle $\triangle A B C$ is maximum when it 3 is equilateral.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad *
\qquad
Question 16 continued on the next page
c) The graph of $f(x)=x^{2} e^{k x}$ and $g(x)=-\frac{2 x e^{k x}}{k}$ and the line $x=2$ is drawn below, where k is a positive constant. $f(x)=g(x)$ at only one point, that is at $(0,0)$.

Let A be the area of the region bounded by the curve $y=f(x), y=g(x)$ and the line $x=2$.
(i) Write down a definite integral that gives the value of A.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) The function $f(x)$ from part (i) is given by $f(x)=x^{2} e^{k x}$, where k is a positive constant. Show that $f^{\prime}(x)=x e^{k x}(k x+2)$.
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Using the results of part (i) and (ii), or otherwise, find the value of k such that 2 $A=\frac{16}{k}$.
\qquad

End of Exam

Answers - Multipte Choice 2020
Yr. I2 TRIAL - Matas Adranced
(1)

$$
\begin{align*}
\int \tan ^{2} x d x & =\int \sec ^{2} x-1 d x \tag{B}\\
& =\tan x-x+c
\end{align*}
$$

(2)

$$
\begin{array}{r}
\frac{d}{d x} \log _{e} \frac{4 x^{2}-9}{2 x-3}=\frac{d}{d x} \log _{e} \frac{(2 x-3)(2 x+3)}{(2 x-3)} \tag{B}\\
\quad=\frac{d}{d x} \log _{e}(2 x+3)=\frac{2}{2 x+3}
\end{array}
$$

(3)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x}{e^{x^{2}-8}} \therefore f(x)=\int \frac{x}{e^{2}-8} d x \\
f(x) & =\int x \cdot\left(e^{x^{2}-8}\right)^{-1} d x=\int x e^{8-x^{2}} d x \\
& =-\frac{1}{2} \int \frac{-2 x}{g^{\prime}(x)} \cdot e^{\left(8-x^{2}\right.} d x(x) \\
d x & \frac{-1}{2} e^{8-x^{2}}+C
\end{aligned}
$$

but c-canbe any coustant
(4) curve is decreasin $\left.\therefore \frac{d y}{d x}<0\right\}$
curve is concave up:. $\left.\frac{\frac{d y}{d y}}{d c^{2}}>0\right\}$
(5)

$$
\frac{1}{\mu=\bar{x}=55+3 \sigma} \quad \frac{1}{z=3} \therefore \text { scone }=55+3 \times 6=73
$$

(6)

$$
\begin{aligned}
\text { Anea }=34 & =\left|\int_{1}^{2} k(x-2)^{3} d x\right|+\int_{2}^{4} k(x-2)^{3} d x \\
34 & =k\left|\int(x-2)^{3} d x\right|+k \int_{2}^{4}(x-2)^{3} d x \\
34 & =k\left|\left[\frac{(x-2)^{4}}{4}\right]_{1}^{2}\right|+k\left[\frac{(x-2)^{4}}{4}\right]_{2}^{4} \\
34 & =k\left(0-\frac{1}{4} \left\lvert\,+K\left[\frac{16}{4}-0\right]\right.\right. \\
34 & =k\left(\frac{1}{4}+4\right) \\
& \therefore K=8
\end{aligned}
$$

(D) 9
(B)
(7) $\mu=120 \quad \sigma=20\left(\operatorname{Var}(T)=\sigma^{2}\right)$ middle 95% is 2σ around μ.

80
(8) $I \div \frac{h}{2}$ (firstralue + last value)

$$
=\frac{1}{2}\left(\frac{\ln 1}{2}+\frac{\ln 2}{2}\right)=\frac{1}{4} \ln 2=\begin{gathered}
0.17328 \ldots \\
\text { smaller }
\end{gathered}
$$

Exact $I=\frac{1}{2}(\ln 2)^{2}=0.2402265$

$$
\begin{equation*}
\therefore \%=\frac{\text { approx. } I-E \times a c t I}{\text { Exact } I}=\frac{\frac{1}{2}(\ln 2)^{2}-\frac{1}{4} \ln 2}{\frac{1}{2}(\ln 2)^{2}} * 100 \tag{A}
\end{equation*}
$$

$\%=27.865 \% \div 28 \%$ sumaller
(9) $f(-x)=\frac{-x}{(-x)^{2}-5}=\frac{-x}{x^{2}-5}=-f(x) \therefore$ odd
by horiz. line test
 \therefore may to one
(10) $M=9 t^{2}-t^{3}$

$$
\frac{d M}{d t}=18 t-3 t^{2}=3 t(6-t)
$$

Section II- Extended Response
Attempt Questions 11-16.
Allow about 75 minutes for this section.
Question 11(14 Marks)
a) Differentiate the following
(i) $\quad y=(4 x-5)(4 x+5)=16 x^{2}-25$

$$
\begin{aligned}
& =16 x+20+16 x-20=32 x
\end{aligned}
$$

Marks 1 - correct sol
(ii) $y=\sin ^{2} x$

b) In AP. $T_{3}=5$ and $T_{10}=26$. Find the sum of S_{14}.

AP: $T_{3}=5 \quad T_{10}=26$

c) Evaluate

$$
\int_{1}^{4} 5(9 x-4)^{4} d x
$$

$=\frac{1}{9} \cdot(9 x-4)^{5} \cdot(\ldots)$
$=\frac{1}{9}\left[(9.4)(9-4)^{5}\right]$

$$
=\frac{1}{9} \sqrt{5} \sqrt{5}=372
$$

d.). $e^{2 x}+3 e^{x}-10=0$
\qquad

$$
m^{2}+3 m-10=0
$$

$$
(m+5)(m-2)=0
$$

$$
m=-5
$$

$$
m=+2
$$

…e? $\overbrace{}^{x}$

$$
e^{x}=\eta
$$

$$
\therefore \text { solution } x=\ln \eta \text { Conly }
$$

Question 11 continued on the next page
e)
(i) Show that $\frac{d}{d x}\left(\sec ^{2} x\right)=2 \tan x \sec ^{2} x$
(ii) Hence find $\int \tan x \sec ^{2} x d x$

$$
\begin{aligned}
& \cdots \sec x=(\tan x \sec x d x
\end{aligned}
$$

$$
\begin{aligned}
& \because \tan x \sec x d x \\
& O R=\frac{1}{2}\left(1+\tan ^{2} x\right) \times C
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
Question 11 continued on the next page
f) Given a function $f(x)= \begin{cases}6 x-6 x^{2} & 0 \leq x \leq 1 \\ 0 & \text { Otherwise }\end{cases}$
(i) Show that $f(x)$ represents probability density function.
(ii) Find the mode of the probability density function $f(x)$

By skewering $\begin{aligned} f(x) & =6 x-6 x^{2} \\ f(x) & =6 x(1-x\end{aligned}$

He highest value of $f(x)$
\qquad
\qquad
\qquad
End of Question 11

Question 12 (1 3Marks)
a) Find the values) of m such that $y=2 x+m$ is a tangent to the parabola

$$
\begin{equation*}
y=2 x^{2}+6 x-5 . \tag{2}
\end{equation*}
$$

2 - correct sol.

$$
y=2 x+m
$$

$$
2=y \text { gradient of turgent }
$$

1- finds point of contact byusiz calculus

Sub. $(-1,-q)$ мй

1-finds gindient function correct thy
\& x-coord of pt. on contact

$$
\begin{aligned}
& 2 x+m=2 x^{2}+6 x-5 \cdots \cdots \\
& \text { opuadri"equ. } \\
& \text { tue solution) } \\
& 0=b^{2}-4 a c
\end{aligned}
$$

$$
\begin{aligned}
& 0=16+40+8 m \\
& m=-7
\end{aligned}
$$

$$
\begin{aligned}
& \therefore y^{\prime}=4 x+6 \text { where } m=2 \\
& \therefore 2=4 x+6 \\
& -1=x=x-2(-1)^{2}+6(-1)-5
\end{aligned}
$$

b) Angela guesses three questions in her multiple choice test, which has four options per question. Find the probability that Angela gets

i) Only one correct

$$
\begin{aligned}
& P=P(C i p)+P(L C i)+P(1 L C) \quad 1-\text { correct sown } \\
& =\left(\frac{1}{4}\right)^{2} \times\left(\frac{3}{4}\right)^{2}+\left(\frac{1}{4}\right) \times\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{2} \times\left(\frac{1}{4}\right) \\
& =3 \times\left(\frac{4}{4}\right) \times\left(\frac{3}{4}\right)^{2}=\frac{27}{64}
\end{aligned}
$$

(ii) At least one correct

$$
\begin{aligned}
& \text { P(a+least one correct) } \\
& =1-\neq \text { (no correct) } \\
& =1-\left(\frac{3}{4}\right)^{3}=\frac{37}{64}
\end{aligned}
$$

c)
(i) Sketch the hyperbola by shifting $y=\frac{1}{x=1}$ horizontally 3 units to the right 2 and 1 unit down.

(d) Consider the piece -wise defined function.

$$
f(x)= \begin{cases}x^{2}-1 & x \leq 1 \\ 4-x^{2} & x>1\end{cases}
$$

(i) Find $f(1)$
correct shape and one of the asymptotes correct
(ii) State the equation of the shifted hyperbola, then find all the intercepts 2 of the shifted hyperbola with the axes and mark them on your graph in part (i).

$$
\begin{gathered}
a t x=1 \\
f(x)=4-1^{2}=3
\end{gathered}
$$

End of Question 12

Question 13 (18 Marks)
a) (i) Sketch the graphs of $f(x)=2 x-2 x^{2}$ and $g(x)=x-1$ on the same 2 number plane.

(ii) Using your graphs from part (i), or otherwise solve the inequality
b) A surveyor stands at a point P, which is due east of the tower $O T$, of height h metres. The angle of elevation of the top of the tower T from P is 30°. The surveyor then walks 100 metres to point B, which is on a bearing of 150° from the foot of tower O. The angle of elevation of the top of the tower from B is now 45°.

(i) Express the length of $O P$ in terms of h.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Question 13 continued on the next page
(ii) Show that $(100)^{2}=h^{2}+\frac{h^{2}}{\tan ^{2} 30^{\circ}}-\frac{h^{2}}{\tan 30^{\circ}}$.

(iii) Hence find the height of the tower. Answer correct to 1 decimal place.

\qquad
\qquad
\qquad
\qquad
Question 13 continued on the next page
c) The following information shows a group of people's waist measurements and weights.

Waist $(\mathrm{cm}) x$	72	67	85	96	80	90	98	105
Weight $(\mathrm{kg}) y$	58	50	72	85	70	79	82	84

(i) Calculate the correlation coefficient, r, for their waist and weight measurements and hence describe the strength of the relationship.

(ii) Find the equation of the Least -Squares Regression Line.
\qquad
\qquad from calculator
\qquad
\qquad
$A=-8.2368$
from their "r" correct conclusion for strength oftuerelationship
\qquad

$$
B=0.93203
$$

$$
y=A+B x
$$

\qquad

$$
y=-8.2368+0.93203 x
$$

\qquad
Question 13 continued on the next page
d) Given the function $f(x)=\ln \left(x^{2}+1\right)$.
(i) Find the domain of $f(x)$.

$$
x^{2}+1>0
$$

1-correct solus.
which is always

\qquad
\qquad
(ii) Find any stationary points) and determine their nature.
\qquad
\qquad

$$
x=0
$$

..
Nature by for or table
\qquad
\qquad
\qquad
\qquad
\qquad
(or) $f^{\prime}(x)=\frac{2}{\left(x^{2}+1\right)^{2}}$

Question 13 continued on the next page
(iii) Find any points) of inflection.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{2\left(x^{2}+1 \cdot\right)-2 x \cdot(2 x)}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 2-2 x^{2}=0 \quad \therefore x= \pm 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { otinflexion }
\end{aligned}
$$..mints of inflexion

(iv) Sketch the graph of $f(x)=\ln \left(x^{2}+1\right)$ showing all features from
part (ii) and (iii).

End of Question 13

Question 14 (14 marks)
a) (i) Prove the following identity
b) given $y=2 \sin \left(2 x-\frac{\pi}{3}\right)$

$$
\begin{aligned}
& (1+\tan x)^{2}=2 \tan x+\sec ^{2} x \\
& \angle 145=(1+\operatorname{Lan} x)^{2} \\
& =1+2 \tan x+\tan x \\
& =\underbrace{14 \tan ^{2}>} x+2 \tan x \\
& \text { - } \sec x \neq 2 \text { <an } x \\
& =A H S
\end{aligned}
$$

(ii) Hence find the area bounded by $y=(1+\tan x)^{2}$ and the x-axis between 3

$$
-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}
$$

Question 14 continued on the next page
(i) State the amplitude and period.

exact values of
(ii) $\frac{\text { exact }}{\text { Find } \sqrt{\text { all intercepts of } y} y}=2 \sin \left(2 x-\frac{\pi}{3}\right)$ with the axes for $0 \leq x \leq \pi$
y-int: $x=0$

$$
\begin{aligned}
& y=2 \sin \left(2(0)-\frac{11}{3}\right) \\
& y=-\frac{\sqrt{3}}{2}=\sqrt{3}
\end{aligned}
$$

$x-i n+i \quad y=0$
\qquad
\qquad
Question 14 continued on the next page
(iii) Hence sketch the graph of $y=2 \sin \left(2 x-\frac{\pi}{3}\right)$ for $0 \leq x \leq \pi$ showing all features from part (i) and (ii) and global maximum and minimum.

Question 14 continued on the next page
c) A bag contains three red balls and four black balls. Two balls are selected at random without replacement from the bag.
Let X be the number of black balls drawn. exact value of
(i) Fill in the following table and hence find $E(X)$.

x	0	1	2
$P(X=x)$	$R R-1 / 7$	$R B$ Br BR	BB $2 / 7$

$$
E(x)=\sum \partial
$$

(ii) Find $E\left(X^{2}\right)$ and hence find $\operatorname{Var}(X)$ and σ

End of question 14

Question 15 (16 marks)
a) The velocity v of a particle in metres/seconds is given by the formula $v=5\left(1+e^{-t}\right)$, where t is time in seconds.
(i) Find the initial velocity of the particle.
\qquad
(ii) Is the particle ever stationary? Justify your answer.
\qquad
(iii) Sketch the graph of the velocity.

(BR) $d=29,97(2 d, \rho)$
\qquad
Question 15 continued on the next page
b) The line $y=m x$ is a tangent to the curve $y=\ln (2 x-1)$ at a point P.
(i) Sketch the line and the curve on the same diagram, clearly indicating the point P.

$$
\begin{array}{cc}
y=\ln (2 x-1) & \\
2 x-1>0 & 2 x-1=1 \\
x>\frac{1}{2} & x=1 \\
y=m x \rightarrow \text { passing through }(0,0)
\end{array}
$$

Question 15 continued on the next page
(ii) Show that the coordinates of P are $\left(\frac{2+m}{2 m}, \frac{2+m}{2}\right)$.

$$
\begin{aligned}
& \text {... } \\
& y=\ln (2 x-1) \\
& \therefore y^{\prime}=\frac{2}{2 x-1} \\
& \text { 1- equates } y^{\prime}=m \\
& \text { and solves for } \\
& \text { if } y=m x \text { is a tangent to } y=\ln (2 x-1)
\end{aligned}
$$

$$
\begin{aligned}
& 2 x-1=\frac{2}{4} \\
& 2 \mathcal{M}=\frac{2}{m}+\cdots \cdot \frac{1}{m}+\frac{1}{2}=\frac{2+m}{2 m}
\end{aligned}
$$

sub. x cord....into $y=m x$

$$
\therefore y_{p}=x \times \frac{2 t m}{2}=\frac{2+m}{2}
$$

(iii) Hence show that $2+m=\ln \left(\frac{4}{m^{2}}\right)$.
$27 \quad \therefore 2+m=\ln \left(\frac{4}{m^{2}}\right): \operatorname{shown}$
c) Given the probability density function

$$
f(x)= \begin{cases}2 e^{-2 x} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(i) Find the cumulative distribution function $F(x)$.
\qquad
\qquad
(ii) Hence find the median.

End of question 15

Question 16 (14 marks)
$\$ 450000$
a) Michelle borrows $\$ 50-00$ to be repaid by regular monthly repayments of $\$ P$ over a period of 25 years at 6% per annum reducible monthly. Interest is calculated and charged just before each repayment.
Let A_{n} be the amount owing after n-repayments.
(i) Show that the expression for the amount owing after two repayments is

$$
A_{2}=450000(1.005)^{2}-P(1.005)-P
$$

Heorrect solus.

$$
\begin{aligned}
A_{1} & =450000\left(1+\frac{6 \div 12}{100}\right)-P \\
& =450000(1.005)-P \\
A_{1} & =A_{1}(1.005)-P \\
& =450000 \times 1.005^{2}-P(1.005)-P
\end{aligned}
$$

\therefore shown
(ii) Show that the amount owing after n-repayments is

$$
A_{n}=450000(1.005)^{n}-P \frac{(1.005)^{n}-1}{0.005}
$$

following pattern

Question 16 continued on the next page
(iii) Calculate the amount of each repayments P.
\qquad
Question 16 continued on the next page
b) An isosceles triangle $\triangle A B C$ is inscribed within a unit circle centred at O, as shown in the diagram below. Let M be the midpoint of $B C, \angle B A C=\theta$ and $\angle \mathrm{BOM}=\theta$.

(i) Show that the area of $\triangle A B C$ is $A=\sin \theta(1+\cos \theta)$.

$$
\begin{aligned}
& \therefore A=\sin \theta(1 y \cos \theta) \therefore \text { shown }
\end{aligned}
$$

(iii) Hence prove that the area of the isosceles triangle is maximum when it is equilateral.

$$
\begin{aligned}
& A=\sin \theta(1+\cos \theta)+\sin \theta(\theta-\sin \theta) \\
& A^{\prime}=\cos \theta(1+\cos \theta) \\
& \therefore=\cos \theta+\cos \theta-\sin \theta \\
& A=0 \\
& \theta=\cos \theta+\cos \theta-\sin \theta-\cos \theta-(1-\cos \theta) \\
& \theta=2 \cos ^{2} \theta+\cos \theta-1 \\
& \theta=(2 \cos \theta-1)(\cos \theta+1)
\end{aligned}
$$

$$
3+\text { correct sol. }
$$

finds stationary
points correctly
differentiates Area
formula correctly

$$
\Leftrightarrow \text { attempts to so lu }
$$

$$
A^{\prime}=0
$$

determines the nature of stint and concludes for Δ to be equilateral

$$
\begin{aligned}
& \cos \theta=\frac{1}{2} \quad \cos \theta=-1 \\
& \theta=\frac{\pi}{3},\left(\frac{5 \pi}{3}-1\right. \text { impossible in tangles } \\
& \theta-a \operatorname{cin}
\end{aligned}
$$

$$
\theta \text {-acute }
$$

$$
\therefore \theta=\frac{\pi}{3}(\text { me on /y solution }
$$

\qquad
\qquad
\qquad and.givena A. ©. C is isosceles..
c) The graph of $f(x)=x^{2} e^{k x}$ and $g(x)=-\frac{2 x e^{k x}}{k}$ and the line $x=2$ is drawn below. $f(x)=g(x)$ at only one point, that is at $(0,0)$.

Let A be the area of the region bounded by the curve $y=f(x), y=g(x)$ and the line $x=2$.
(i) Write down a definite integral that gives the value of A.

(ii) The function $f(x)$ from part (i) is given by $f(x)=x^{2} e^{k x}$ where k is a positive 1 constant. Show that $f^{\prime}(x)=x e^{k x}(k x+2)$

Question 16 continued on the next page

Question 16 continued on the next page
(iii) Using the results of part (i) and (ii), or otherwise, find the value of k such that 2

$$
A=\frac{16}{k}
$$

from (i) $A=\int_{0}^{2} x^{2} e^{\text {kr }}-\frac{-2 x e^{b x}}{k} d x$

$$
\begin{aligned}
& A=\int_{0}^{2} x^{2} e^{k x}+\frac{2 x^{2} e^{k} x_{2}}{k} d x \\
& =-\frac{1}{k} \int_{0}^{2} k x^{2} e^{k x}+2 x e^{k x} d x \\
& =\frac{1}{k} \int_{0} \frac{x e^{k x}(k x+2)}{\text { but }-f^{\prime}(x)} d x
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \frac{16}{k}=\frac{1}{k}\left[x^{2} e^{2} e_{c}\right]_{0}^{2} \quad 1+\quad \begin{array}{l}
\text { simpitites interne }
\end{array} \\
& 16=\left[2^{2} e^{2 k}-0\right] \\
& 16=4 e^{2 k} \\
& 4=e^{2 k} \\
& \ln 4=2 k \\
& K=\frac{1}{2} \ln 4 \\
& \text { or } k=\ln \sqrt{4}=\ln 2
\end{aligned}
$$

