

Blacktown Boys' High School

2018

HSC Trial Examination

Mathematics

- General Instructions
 • Reading time - 5 minutes

 • Working time - 3 hours
 • Working time - 3 hours

 • Write using black pen
 • NESA approved calculators may be used

 • All diagrams are not drawn to scale
 • In Questions 11 - 16, show relevant mathematical reasoning and/or calculations

 Total marks:
 Section I - 10 marks (pages 2 - 5)

 • Attempt Questions 1 - 10
 • Attempt Questions 1 - 10

 • Allow about 15 minutes for this section

 Section II - 90 marks (pages 6 - 13)
 - Attempt Questions 11 -16
 - Allow about 2 hours and 45 minutes for this section

Assessor: E.Efimova

Student Name:

Teacher Name:

Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 2018 Higher School Certificate Examination.

BBHS 2018 HSC Mathematics Trial Examination

Office Use Only

Question	Mark
Q1	/1
Q2	/1
Q3	/1
Q4	/1
Q5	/1
Q6	/1
Q7	/1
Q8	/1
Q9	/1
Q10	/1
Q11 a)	/2
Q11 b) (i)	/1
Q11 b) (ii)	/1
Q11 c)	/2
Q11 d)	/2
Q11 e)	/2
Q11 f)	/2
Q11 g) (i)	/2
Q11 g) (ii)	/1
Q12 a) (i)	/1
Q12 a) (ii)	/1
Q12 a) (iii)	/2
Q12 a) (iv)	/1
Q12 a) (v)	/2
Q12 b) (i)	/1
Q12 b) (ii)	/2
Q12 c)	/2
Q12 d) (i)	/2
Q12 d) (ii)	/1
Q13 a) (i)	/1
Q13 a) (ii)	/1
Q13 a) (111)	/2
Q13 b) (i)	/1
Q13 b) (11)	/2
Q13 b) (iii)	/1
Q13 c)	/3
Q13 d)	/2
Q13 e)	/2

Question	Mark
Q14 a) (i)	/2
Q14 a) (ii)	/1
Q14 a) (iii)	/2
Q14 a) (iv)	/1
Q14 a) (v)	/1
Q14 b) (i)	/1
Q14 b) (ii)	/1
Q14 b) (iii)	/1
Q14 b) (iv)	/1
Q14 c) (i)	/1
Q14 c) (ii)	/2
Q14 c) (iii)	/1
Q15 a)	/3
Q15 b)	/3
Q15 c)	/2
Q15 d) (i)	/1
Q15 d) (ii)	/1
Q15 d) (iii)	/1
Q15 e) (i)	/1
Q15 e) (ii)	/3
Q16 a)	/3
Q16 b) (i)	/1
Q16 b) (ii)	/2
Q16 b) (iii)	/3
Q16 c) (i)	/4
Q16 c) (ii)	/2
Total	/100

Section I:

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

Q1. Which of the following is equal to
$$\frac{1}{\sqrt{5}-1}$$
?

A)
$$\sqrt{5} - 1$$

(.

(

(B)
$$\frac{\sqrt{5}+1}{4}$$

(C)
$$\frac{\sqrt{5}-1}{4}$$

(D)
$$\frac{\sqrt{5}-1}{\sqrt{5}+1}$$

- The quadratic equation $x^2 + 2x 3 = 0$ has roots α and β . Q2. What is the value of $\alpha\beta + (\alpha + \beta)$?
 - (A) -1
 - (B) 5
 - (C) -5
 - (D) 3
- Which inequality defines the domain of the function $\frac{3}{\sqrt{x-4}}$? Q3.

-3-

- (A) x > 4
- (B) $x \ge 4$
- (C) *x* < 4
- (D) $x \le 4$

BBHS 2018 HSC Mathematics Trial Examination

Q4. What is the derivative of
$$\frac{x}{\sin x}$$
?

(A)
$$\frac{x\cos x - \sin x}{\sin^2 x}$$

(B)
$$\frac{\sin x + x \cos x}{\sin^2 x}$$

(C)
$$\frac{\cos x - x \sin x}{\sin^2 x}$$

(D)
$$\frac{\sin x - x \cos x}{\sin^2 x}$$

A parabola passes through the point (0, 2) and has its vertex at (-2, 0). The equation Q5. of the parabola is:

- What is the period of the function $f(x) = \tan\left(\frac{x}{2}\right)$? Q6
 - $\frac{\pi}{2}$ (A) (B) π 2π (C) (D) 4π

Q7. The diagram shows the graph y = f(x).

Which of the following statements is true for x = t?

- (A) f'(t) > 0 and f''(t) < 0
- (B) f'(t) < 0 and f''(t) < 0
- (C) f'(t) > 0 and f''(t) > 0
- (D) f'(t) < 0 and f''(t) > 0
- Q8. How many terms are in the series $27 + 40 + 53 + \dots + 209$?
 - (A) 4
 - (B) 15
 - (C) 14
 - (D) 13

BBHS 2018 HSC Mathematics Trial Examination

Q9. The graph shown below could be:

- Q10. A particle is moving along the *x*-axis. The displacement of the particle at time *t* seconds is *x* metres. At a certain time, $\dot{x} = -5 ms^{-1}$ and $\ddot{x} = 12 ms^{-1}$. Which statement describes the motion of the particle at that time?
 - (A) The particle is moving to the right with increasing speed.
 - (B) The particle is moving to the left with increasing speed.
 - (C) The particle is moving to the right with decreasing speed.
 - (D) The particle is moving to the left with decreasing speed.

Section II

90 Marks Attempt Questions 11–16 Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

a) Evaluate
$$\frac{3\pi(5-\sqrt{2})}{200}$$
 to three significant figures.

- b) Differentiate:
 - (i) $2e^{2x}$ 1

2

2

2

2

2

1

- (ii) $\log(5x-1)$ 1
- c) Find the exact value of $\log_6 4 + 2 \log_6 3$

d) Evaluate
$$\int_{0}^{\frac{\pi}{4}} \cos 2x \, dx$$

e) Find the equation of the tangent to the curve $y = \ln(2x^2 - 1)$ at the point **2** where x = 1

f) Shade the region denoted by $(x - 3)^2 + (y + 2)^2 \ge 4$

- g) In a geometric series the 9th term is 96 and the 13th term is 384.
 (i) What is the common ratio of the series?
 - (ii) What is the first term of the series?

End of Question 11

BBHS 2018 HSC Mathematics Trial Examination

Question 12 (15 marks) Use a SEPARATE writing booklet.

a) The diagram below shows the points A(-5,3), C(1,1) and D(-4,-4). *B* is a point on the *y*-axis.

		↓ y ● B	
		A(-5, 3)	
	-	•C(1, 1) 0 x	
		D(-4, -4)	
	(i)	Find the gradient of AC.	1
	(ii)	Find the midpoint <i>M</i> of <i>AC</i> .	1
	(iii)	Show that equation of <i>DM</i> is $3x - y + 8 = 0$	2
	(iv)	Find the coordinates of <i>B</i> , given that <i>B</i> lies on the line $3x - y + 8 = 0$	1
	(v)	Hence, show that <i>ABCD</i> is a rhombus.	2
b)	(i)	Express the discriminant of $x^2 + (3 + k)x + (2k + 6) = 0$ in terms of k.	1
	(ii)	Hence, find the values of k such that $x^2 - (3 + k)x + (2k + 6) > 0$ for all values of x.	2
c)	Find th	e primitive function of $\frac{4x}{1+5x^2}$.	2
d)	(i)	Show that $\frac{dy}{dx} = -\frac{x}{\sqrt{16 - x^2}}$, given $y = \sqrt{16 - x^2}$	2
	(ii)	Hence, or otherwise, $\int \frac{4x}{\sqrt{16-x^2}}$.	1

End of Question 12

- **Question 13** (15 marks) Use a SEPARATE writing booklet.
- a) O is the centre of a circle of radius 20 cm. $\angle MON = \frac{\pi}{5}$. *l* is the minor arc *MN* as shown in the diagram.

(i) Find the length of l in terms of π .

1

1

- (ii) Find the area of the minor sector *MON*.
- (iii) Find the shaded area of the segment correct to 2 decimal places. 2

Triangle $\triangle ABC$ has $\angle CAB = 90^\circ$. *D* lies on *BC* where $AD \perp BC$. Given that $\angle ACD = 34^\circ$,

(i)	Find the size of the angle \angle CAD. Give reasons.	1
(ii)	Prove that $\triangle DCA$ and $\triangle DAB$ are similar.	2
(iii)	Hence find the length of AD, if $CD = 27cm$ and $BD = 12cm$.	1

BBHS 2018 HSC Mathematics Trial Examination

Question 13 (continued)

- c) The region bounded by the graph $f(x) = e^x + 3$, the lines x = 0, 3 $x = \log_e 3$ and x-axis is rotated about the x-axis to form a solid of revolution. Find the volume generated.
- d) A ball is dropped from a height of 4 m and bounces back to a height of **2** 3.6 m. It continues to bounce, each time to a height $\frac{9}{10}$ of the previous height. How far will the ball travel before finally coming to rest.

e) Prove
$$\frac{1 + \tan \theta}{\sec \theta} - \frac{\csc \theta}{\cot \theta + \tan \theta} = \sin \theta$$
 2

End of Question 13

Question 13 continues on page 10

Question 14 (15 marks) Use a SEPARATE writing booklet.			
a)	Consi	der the curve $f(x) = x^3 - 12x + 5$.	
	(i)	Find any stationary points and determine their nature.	2
	(ii)	Find any points of inflexion.	1
	(iii)	Sketch this curve showing all key features.	2
	(iv)	For what values of x is $f'(x) \le 0$?	1
	(v)	Hence, find the maximum value for $f(x)$ for $-2 \le x \le 5$.	1
b)	The d $x = -$	isplacement of a particle moving along x-axis is given by $-3t^2 + 6t + 10$, where t is the time in seconds.	
	(i)	Find the initial displacement of this particle.	1
	(ii)	Find the velocity when $t = 1$.	1
	(iii)	Show that acceleration of this particle is a constant.	1
	(iv)	Describe the motion of this particle.	1
c)	A poo time t	ol is being drained and volume in litres of water, <i>L</i> , in the pool at t minutes is given by the equation: $V = 120(40 - t)^2$	
	(i)	Find the initial volume of water in the pool.	1
	(ii)	At what rate is the water draining out of the pool when $t = 8$ minutes?	2
	(iii)	How long will it take for the pool to be completely empty?	1

BBHS 2018 HSC Mathematics Trial Examination

Questio	on 15	(15 marks) Use a SEPARATE writing booklet.	
a)	Find all s	solutions of $2\cos^2 x + \sin x - 2 = 0$, where $0 \le x \le 2\pi$	3
b)	Use Simp value for	pson's rule, with five function values, to find an approximate $\int_{2}^{6} 2^{x} dx$ round to 2 decimal places.	3
c)	If $y = ta$ that	$\frac{dy}{dx} = 5tan^4x - 5tan^6x$	2
d)	A ball be whose terms given be T	earing with initial temperature of $32^{\circ}C$ is placed in a freezer mperature is $0^{\circ}C$. The temperature of the bearing after <i>t</i> minutes by the formula $T = Ae^{-kt}$ and its graph is shown in the diagram.	
	32 16 0	$T = Ae^{-kt}$	
	(i) Fi	ind the value of A.	1
	(ii) Fi	ind the value of k to 4 decimal places.	1
	(iii) W	Vhat is the bearing's temperature after 6 minutes?	1

Question 15 continues on page 13

Question 15 (continued)

The diagram shows the parabolas $y = 3x - x^2$ and $y = x^2 - 5x$. The e) parabolas intersect at the origin and the point B. The region between the two parabolas is shaded.

- Find the *x*-coordinate of the point *B*. (i)
- Find the area of the shaded region. (ii)

1

3

BBHS 2018 HSC Mathematics Trial Examination

Questi	on 16	(15 marks) Use a SEPARATE writing booklet.	
a)	Find t given	he sum of 10 terms of the series $\log_b 5 + \log_b 10 + \log_b 20 + \cdots$ that $\log_b 5 = 1.46$ and $\log_b 2 = 0.63$.	3
b)	Andre years. repayi month	w borrows \$650000 from a bank. The loan is to be repaid in 20 The interest rate is $6\% p. a.$ compounded monthly. There is no nents for the first three months. Let A_n be the amount owing after n is and M be the monthly repayments.	
	(i)	Find an expression for A_4 .	1
	(ii)	Show that $A_5 = 650000(1.005)^5 - M(1 + 1.005)$	2
	(iii)	Find the monthly repayments if the loan is to be repaid in 20 years.	3
c)	Two p Partic by v_A Partic by v_B	particles A and B start moving along the x-axis at time $t = 0$. le A is initially at $x = 6$ and its velocity at time t is given $= 3t^2 - 20t + 16$. le B is at $x = 25$ when $t = 2$ and its velocity at time t is given $= 3t^2 + 1$.	
	(i)	Find expressions for the positions of particles A and B at time t .	4
	(ii)	Show that these two particles never meet.	2

Student Number:

Multiple Choice Answer Sheet

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:	2 + 4 =	(A) 2	(B) 6	(C) 8	(D) 9
		AO	В 🔵	СО	DO

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word 'correct' and drawing an arrow as follows.

Start → Here	1.	АO	вО	сO	DO
	2.	АO	вО	СО	DO
	3.	АO	вО	СО	DO
	4.	АO	вО	СО	DO
	5.	АO	вО	СО	DO
	6.	ΛO	вО	СО	DO
	7.	АO	вО	сO	DO
	8.	АO	вО	СО	DO
	9.	АO	вО	сO	DO
	10.	АO	вО	сO	DO

2018 Mathematics Trial Solutions				
Section I	Multiple - Choice			
QI	$\frac{\underline{B}}{\frac{1}{V5-1}} = \frac{V5+1}{(V5-1)(V5+1)} = \frac{V5+1}{5-1} = \frac{V5+1}{4}$	1 mark		
Q2	$\frac{C}{2^{2}+2^{2}-3=0}$ $\frac{d\beta}{d\beta} = -3 \alpha + \beta = -2$ $= 2 - 2 - 2 - 5$	1 mark-		
Q3	$\frac{A}{f(x)} = \frac{3}{\sqrt{x-4}}$ $x - 4 = 70^{-1} + 2 = 74$	lmark		
Q4	$\frac{D}{(2)} = \frac{2^{\prime} \sin \alpha - 2(\sin 2\epsilon)^{\prime}}{2}$	1 mark		
Q5	$(\sin x) = \frac{\sin x - x \cos x}{\sin^2 x}$ $= \frac{\sin x - x \cos x}{\sin^2 x}$ $\frac{D}{parabola} (y-k)^2 = 4a/x - h)$ $y^2 = 4a(x + 2) a \neq (0,2)$ $4 = 4ax2 \therefore a = \frac{1}{2}$ $y^2 = -2(x + 2)$	lmark		
Q6	$f = 2(x + 2)$ C $H(x) = tan(\frac{x}{2})$ $period of f(x) = fax x is \pi$ $\frac{x}{2} = \pi \therefore x = 2\pi$	1 mark		

	2018 Mathematics Trial Solutions	
Section I	Multiple - Choice	
Q7	$\frac{B}{\alpha 4} + \frac{1}{2} point x = t$ $f'(t) < 0 f(z) \text{ is decreasing}$ $as \ z \text{ increases, gradient is negative}$	1 mark
Q8	$\frac{f''(f)}{he} = 27, d = 13$ $\frac{B}{T_{h}} = 209, T_{h} = a + (n-1)d$ $209 = 27 + 13(n-1)$	Imark
Q 9	$h = 15$ $\frac{C}{4} = \frac{1}{3} = 3$ exponential decay	1 mark
Q10	D Velocity is negative so particle is moving to the left Acceleration is positive and since particle is moving to the left it is slowing down	1 mark

	2018 Mathematics Trial Solutions	
Section I	Question 11	
a)	$\frac{3\pi (5 - \sqrt{2})}{200} = 0.168976 = 0.169$	Imark - correct decima 2 marks, -2
b)(1) (11)	$(2e^{2x})' = 4e^{2x}$ $(log(5x-1))' = \frac{5}{5x-1}$	i mark I mark I mark
c)	$lop_{6} 4 + 2/o_{f_{6}} 3 = /o_{f_{6}} 4 + /o_{f_{6}} 9 =$ = $/o_{f_{6}} (4 \times 6) = 1 o_{f_{6}} 36 = 2$	I mark to get log-(4×9) 2 marks-
d)	$ \frac{4}{f} \cos 2\pi d\pi = \left[\frac{1}{2} \sin 2\pi \right]^{\frac{4}{4}} = $ $ = \frac{1}{2} \left(\frac{\sin \pi}{2} - \frac{\pi}{4} \right) - \frac{1}{2} \sin 0 = $ $ = \frac{1}{2} \left(\frac{\sin \pi}{2} - 0 \right) = \frac{1}{2} $	Correct answer I mark- correct integration Z marks- correct solution
e)	$y = \ln(2x^2 - 1) \text{ at } x = 1$ $\frac{dy}{dx} = \frac{4x}{2x^2 - 1}$ $\frac{dy}{dx} = \frac{4x}{2x^2 - 1}$ The pradient	Imark - correct gradient
ſ J	$\begin{array}{c} y - 0 = 4(x - 1) \\ y = 4x - 4 \\ 4y - 0 = 4(x - 1) \\ y = 4x - 4 \\ 4y - 0 - y + 4 = 0 \\ y = 4x - 4 \\ -y + 4 = 0 \\ -y + $	I mark- correct praph correct praph of circle 2 marks - correct region
g)(i")	$GP: T_n = ar^{n-1}$ $T_q = qxr^d = 96$	Imark for correct expressions
(i i)	$\frac{T_{13}}{T_{9}} = r^{4} = 4 \therefore r = \pm \sqrt{2}$ $T_{h} = \alpha r^{n-1}$ $96 = \alpha(\sqrt{2})^{8} \text{ or } 96 = \alpha(\sqrt{2})^{8} = \alpha r^{1}$ $\therefore q = 6$	ror porn Tg and Tis 2 marks - Gorrect ratio 5 correct answer

	2018 Mathematics Trial Solutions	
Section I	Question 12	
ay(i)	Gradient of $AC = \frac{3-1}{-5-1} = -\frac{2}{6} = -\frac{1}{3}$	Imark
(ii)	Midpoint $M = \left(\frac{-5+1}{2}, \frac{3+1}{2}\right) = \left(-2, 2\right)$	Imark
(111)	Use $y - y_1 = m(x - x_1)$ $m = \frac{-4^{-2}}{-4^{-(-2)}} = \frac{-6}{-2} = 3^{-}, m = 3$ $\therefore y - 2 = 3(x + 2)$ y - 2 = 3x + 6 3x - 4 + 8 = 0	l mark - substitute correct coordinates and gradient 2 marks -
(ir)	Substitute $x = 0$ in equation 3x - y + 8 = 0 : $y = 8$	correct equation 1 marte correct 4-coordinate
(٢)	Midpoint of BD= $\left(\frac{0+(-4)}{2}, \frac{8+(-4)}{2}\right)$ = = $\left(-2, 2\right)$ Since B and D both lie on perpendicular bisector of AC and the midpoint of BD is equal to the midpoint of AC, then the diaponals AC and BD bisect each other at right amples. : ABCD is a rhombus	I mark 2 mærks for correct proof.

	2018 Mathematics Trial Solutions	
Section I	Question 12	
b)(i)	$z^{2} + (3+k)z + (2k+6) = 0$ $\Delta = b^{2} - 4ac$ $(3+k)^{2} - 4x / (2k+6) =$ $= 9^{2} + 6k + k^{2} - 8k - 24 =$	Imark for correct discriminaut
(11)	$ \begin{array}{l} $	I mark for correct factorising 2 marks - correct answer
C)	$f(x) = \frac{4x}{1+5x^2}$ $\int \frac{f'(x)}{f(x)} dx = \log f(x) + C$ $\int \frac{4x}{1+5x^2} = \frac{4}{10} - \log (4+5x^2) + C = -\frac{2}{10} \log (1+5x^2) + $	i mark for integration and getting log (1+52) 2 marks - correct so (ution
d)ci)	$y = \sqrt{16 - \chi^2} = (16 - \chi^2)^{\frac{1}{2}}$ $\frac{dy}{d\chi} = \frac{1}{2}(16 - \chi^2)^{-\frac{1}{2}}\chi(-2\chi) = \frac{\chi}{\sqrt{16 - \chi^2}}$	1 mark for correctly using the chain rule 2 marks - correct solution
(ii)	from (i) 5 42- 16-x2 16-x2+C	I maurk - Correct Solution

2018 Mathematics Trial Solutions		
Section I	Question 13	
a)(i) (ii)	$f_{TC} \ \ \ell = r\Theta = 20 \times \frac{T}{5} = 4\pi \ cm$ $f_{max} = \pm r^2 \Theta = \pm \mu \sigma x \overline{t} - \mu \sigma \overline{t} \sigma^2$	1 mark
(111)	$f_{sepment} = \frac{1}{2} \gamma^2 \Theta = \frac{1}{2} r^2 \delta $	I mark - correct expression for area of sepment 2 marks- Greect answer
6)'(i)	L CAD + L ACD + LADC = 180° (angle sum of a trianple) L CAD = 180° - 90° - 34° = 55°	l mark - correct answer
(ii)	In A DCA and A DAB < DAB + < CAD = 90° (complementary angles) < DAB = 90° - 56° = 34° < DAB = < ACD	I mark - to prove cDAB=cACD= = 34° 2 marks -
(:::)	CADC = CADB = 90° A DCA is similar to A DAB (equilangular) <u>CD</u> = <u>AD</u> (corresponding <u>AD</u> are integration of similar triangles proportion) <u>AD</u> ² = 27×12 = 324 : AD = 18 cm	correct proof and reasoning 1 mort - correct Unswer
	μ ² E neme	

2018 Mathematics Trial Solutions			
Section I	Question 13		
C)	$f(x) = e^{x} + 3, x = 0, x = loge3$		
	$\int T \left(e^{2} + 3\right)^{2} dx = \frac{1}{2} \int \left(e^{2x} + 6e^{2} + 9\right) dx = \frac{1}{2} \int \left(e^{2x} + 6e^{2} + 9\right) dx = \frac{1}{2} \int \left(e^{2x} + 6e^{2} + 9x\right) dx = \frac{1}{2} \int \frac{e^{2x}}{2} + 6e^{2} + 9x = \frac{1}{2} \int $	I mark fo correct formula/Intephal of volume Imarks for arrect	
	$= \pi \int \frac{e^{2/g_{c}^{2}}}{2} + 6e^{\log_{c}^{2}} + 9\log_{c}^{3} - \frac{1}{2} + 6\int_{c}^{2} + 9\log_{c}^{3} - \frac{1}{2} + 6\int_{c}^{2} + 6\chi_{c}^{3} + 9\log_{c}^{3} - \frac{1}{2}\pi = \frac{1}{2} + \frac{1}{2} +$	Integration Bimarks for Correct Solution	
d)	$= \pi \sum_{e=1}^{2} 16 + g \log_{e} 3 \right]$ $= \pi \sum_{e=1}^{2} 16 + g \log_{e} 3 \right]$ = 4.0 + 2(3.6 + 3.24 +) m	I mark for correct	
	$a = 3.6, r = 0.9$ $S = \frac{9}{1-r} = \frac{3.6}{0.1} = 36m$ $Total clistance = 4+2x36 = 76m$	limiting sum 2 mark - for correct solution	
9	$\frac{1+fan\theta}{sec\theta} = \frac{cosec\theta}{cof\theta + fan\theta} = sin\theta$ $\frac{LHs: 1+\frac{sin\theta}{cos\theta} - \frac{1}{sin\theta}}{\frac{1}{cos\theta} - \frac{sin\theta}{sin\theta} + \frac{sin\theta}{cos\theta}} = \frac{\frac{1}{cos\theta}}{\frac{cos\theta}{sin\theta} + \frac{sin\theta}{cos\theta}} = \frac{\frac{1}{cos\theta}}{\frac{1}{cos\theta} - \frac{1}{sin\theta}} = \frac{\frac{1}{cos\theta}}{\frac{1}{cos\theta} - \frac{1}{sin\theta}} = \frac{1}{\frac{1}{cos\theta} - \frac{1}{sin\theta}} = \frac{1}{\frac{1}{cos\theta} - \frac{1}{sin\theta}} = \frac{1}{\frac{1}{cos\theta} - \frac{1}{cos\theta} - \frac{1}{sin\theta}} = \frac{1}{\frac{1}{cos\theta} - \frac{1}{cos\theta} - \frac{1}{cos\theta}} = \frac{1}{\frac{1}{cos\theta} - \frac{1}{cos\theta}} = \frac{1}{cos\theta} = \frac{1}{cos\theta}$	I mark for substituting sin Q and cos 6 correctly 2mark for	
L	$= \cos \Theta + \sin \Theta - \frac{\sin \Theta \cos \Theta}{\sin \Theta} =$ $= \cos \Theta + \sin \Theta - \cos \Theta = \sin \Theta$ $= \cos \Theta + \sin \Theta - \cos \Theta = \sin \Theta$ $= \cos \Theta + \sin \Theta + \cos \Theta = \sin \Theta$	proof	

2018 Mathematics Trial Solutions			
Section I	Question 14		
a)(i)	Stationary points $f'(x) = 0 x^3 - 12x + 5 = 0$ $f'(x) = 3x^2 - 12$ $3x^2 - 12 = 0 3(x^2 - 4) = 0$	1 mark for stat.points (-2,21) (2,-11)	
	$\begin{array}{c} \chi = -2, 2\\ f(-2) = (-2)^3 - 12(-2) + 5 = 21\\ f(2) = 2^3 - 12x2 + 5 = -11\\ \hline f(2) = 2^3 - 12x2 + 5 = -11\\ \hline f(2) = 2^3 - 2 - 1 - 2 - 3\\ \hline f(2) - 3 - 2 - 1 - 2 - 3\\ \hline f(2) - 3 - 2 - 1 - 2 - 3\\ \hline f(2) - 3 - 2 - 1 - 2 - 3\\ \hline f(2) - 3 - 2 - 1 - 2 - 3\\ \hline f(2) - 3 - 2 - 1 - 2 - 3\\ \hline f(2) - 3 - 2 - 1 - 2 - 3\\ \hline f(2) - 3 - 2 - 1 - 2 - 3\\ \hline f(2) - 3 - 2 - 1 - 2\\ \hline f(2) - 3 - 2 - 1 - 2\\ \hline f(2) - 3 - 2 - 1 - 2\\ \hline f(2) - 3 - 2 - 1 - 2\\ \hline f(2) - 3 - 2 - 1 - 2\\ \hline f(2) - 3 - 2 - 1\\ \hline f(2) - 3 - 2 - 1\\ \hline f(2) - 3 - 2\\ \hline f(2) - 3 -$	2 marks for iclentity i ap they nature correctly	
(1:)	$f''(x) = 0 anol f''(x) chaupes signf''(x) = 6x6x = 0:. x = 0\frac{x - 1}{1 + 1} = 0 1f''(x) = -6 0 f = 6\begin{array}{c} coucave \\ coucave \\ down \\ hp \\ \hline f(o) = 5 \end{array}$	I mark fer correct point of inflexion	
(111)	So $(0,5)$ is a point of inflexion $\frac{1}{2}$	1 mark - covrect + èatures 2 mark - Correct sketch	

	2018 Mathematics Trial Solutions	
Section I	Question 14	
a)(iv)	$f'(x) < 0 - curve is decreasing(from graph)\ddagger -2 \le x \le 2$	Imark
(7)	when $-2 \le x \le 5$ $f(5) = 5^3 - 12x5 + 5 = 70$ f(-2) = 21 f(5) > f(-2) So f(5) - is a max. value	1 mark
b) (i)	$t=0$ $\chi=10$	Imark
(1)	$\mathcal{R} = -6t + 6 t = 1 \mathcal{R} = 0$	1 mark
(iii)	2c = -6 - is a constant	1 mark
	a position 10m to the right of O(origin) and travelling to the right. It's slowing clown and comes to test after Isec. It then moves back to the left.	Imarie
c) (i)	$V = 120 (40 - t)^{2}$ at t = 0 V = 120 × 40^{2} = 192000L	1 mark
(ii)	$\frac{dV}{dt} = 120 \times 2(40 - t) \times (-1) = 240 t - 9600$ $t = 8 \frac{dV}{dt} = 240 \times 8 - 9600 = -7680 \frac{4}{min}$	I mark - Correct rate of chau formula 2 marks -
(111)	240 + - 9600 = 0 240 += 9600 += 40 min	correct rate 1 mark correct fim

2018 Mathematics Trial Solutions			
Section I	Question 15		
a)	$2\cos^{2} x + \sin x - 2 = 0$ $2(1 - \sin^{2} x) + \sin x - 2 = 0$ $2 - 2\sin^{2} x + \sin x - 2 = 0$ $2\sin^{2} x - \sin x = 0$ $s^{2} n x (2\sin x - 1) = 0$ $\sin x = 0 : x = 0, \pi, 2\pi$ $\sin x = \frac{1}{2} : x = \frac{\pi}{6}, \frac{5\pi}{6}$	I mark - correct equations of sin 2: sin x = D sin x = ± 2 marks - one correct solution. 3 marks - all solutions orvided.	
6)	$\int_{2}^{6} 2^{2} dx = \int_{2}^{2} 2^{2} dx + \int_{2}^{2} 2^{2} dx =$ $= \frac{4-2}{6} \int_{2}^{2} 2^{2} + 4 \int_{2}^{3} + 2^{4} \int_{1}^{4} + \frac{6-9}{6} \int_{2}^{2} 2^{4} + 4 \int_{2}^{5} + 2^{6} \int_{1}^{2} \frac{260}{3}$ $= 36.67 (2 d. p.)$	Imark-correct function valu Zmarks - Correct Use of Simpson's rule with correct values 3 marks - covrect solution	
c)	$y = tan^{5} 2e$ $\frac{dy}{dx} = \frac{5 tan^{4} \dot{x}}{1} \times sec^{2} x$ $= 5 tan^{4} x (1 + tan^{2} x) =$ $= 5 tan^{4} x + 5 tan^{6} 2c$	i mark - for applying the chain rule correctly 2 marks - correct solution	
d)(i)	When $f=0$, $T = Ae^{\circ} = A$, i.e. initial temperature is A degrees From the proph, $A = 32^{\circ}C$	1 mark	
(ii) (iii)	$T = 32e^{-kT}$ When $t = 2$, $T = 16$ $16 = 32e^{-2k}$ $0.5 = e^{-2k}$ $\ln 0.5 = -2k$; $k = -\frac{1}{2}\ln 0.5$ $T = 32e^{-kx6} = 4^{\circ}C$	I mark (correct answer) I mark	
L`			

	2018 Mathematics Trial Solutions	
Section I	Question 15	2 위기원의 · · · · · · · · · · · · · · · · · · ·
e)(i)	$3x - x^{2} = x^{2} - 5x$ $2x^{2} - 8x = 0$ $2x (x - 4) = 0$ $x = 0, x = 4$ $x = 0 \text{ is Origin, so } x = 4 \text{ is }$	I mark for correct answer
(11)	$Areq = \iint_{(3x - x^2) - (x^2 - 5x)} dx$ $= \iint_{(-2x + 8x)} dx =$ $= \iint_{-\frac{2}{3}x^3 + 4xe^2 \int_{-\frac{1}{3}}^{\frac{1}{3}} dx = \frac{64}{3}$ $= -\frac{2}{3} \times 64 + 64 = 64 - \frac{128}{3} = \frac{64}{3}$	1 mark for correct formula 2 marks for correct intepration 3 marks - correct solution

2018 Mathematics Trial Solutions		
Section I	Question 16	
a)	$\begin{aligned} \log_{10} 5 + \log_{10} 10 + \log_{10} 20 + \\ AP: & \alpha = \log_{10} 5, \\ ol &= \log_{10} 10 - \log_{10} 5 = \log_{10} 2 \\ S_n &= \frac{m}{2} \left(2a + (n-1)d \right) \\ S_{10} &= \frac{10}{2} \left(2\log_{10} 5 + (10-1)\log_{10} 2 \right) \\ &= 5 \left(2 \times 1.46 + 9 \times 0.63 \right) = 42.95 \end{aligned}$	1 mark - correct 1st ferm aud cowmon difference. 2 marks - substituting all values correctly 3 porrect- solution
b)(i) (i:)	$\begin{array}{l} A_{1} = 650000 \left(1.005 \right) \\ A_{2} = 650000 \left(1.005 \right)^{2} \\ A_{3} = 650000 \left(1.005 \right)^{3} \\ A_{4} = 650000 \left(1.005 \right)^{4} - M \\ A_{4} = 650000 \left(1.005 \right)^{4} - M \end{array}$	Imark
(15)	$\begin{split} \dot{H}_{5} &= \left[650000 \left(1.005 \right)^{4} - M_{1} \left[x 1.005 - M \right] \right. \\ &= 650000 \left(1.005 \right)^{5} - M \left(1.005 - M \right) \\ &= 650000 \left(1.005 \right)^{5} - M \left(1+1.005 \right) \\ \dot{H}_{240} &= 0 = 650000 \left(1.005 \right)^{240} - \\ &- M \left(1+1.005 + + 1.005^{-236} \right) \end{split}$	Imark 2 marks Imark - show; 'mp geometry c
	$0 = 650000 (1.005)^{240} - M \left[\frac{1.005^{237} - 1}{1.005 - 1} \right]$ $M \left[\frac{1.005^{237} - 1}{0.005} \right] = 650000 (1.005)^{240}$ $M = \frac{650000 (1.005)^{240} \times 0.005}{1.005^{237} - 1}$ $= \frac{44758.05}{4758.05}$	2 marks - correct use of sum to n terms of GP formula 3 marks - correct solution
	p 7120.00	

	2018 Mathematics Trial Solutions	
Section I	Question 16	
c) (i)	$x_A = \int (3t^2 - 20t + 16) dt =$	
	$= t^{3} - 10t^{2} + 16t + C_{1}$ When $t \ge 0$ $\chi = 6$: $6 = 0 - 0 + 0 + C_{1}$.: $C_{1} = 6$	correct integration to find a position for particle A
	$\chi_{A} = t^{3} - 10t^{2} + 16t + 6$ $\chi_{B} = \int (3t^{2} + 1) dt = t^{3} + t + C_{2}$ when $t = 2$ $\chi = 25$	2 marks - ter correct points of one particle 3 marks - Correct substitution of t and 20
(n)	$25 = 8 + 2 + C_2 \therefore C_2 = 15$ $\mathcal{X}_{\mathcal{B}} = t^3 + t + 15$	4 marks for correct expressions for both particles
	$\chi_{+} = \chi_{B}$ $+^{3} - 10 +^{2} + 16 + \#6 = +^{3} + + +15$ $- 10 +^{2} + 15 + -9 = 0$ $10 +^{2} - 15 + +9 = 0$ $\Delta = b^{2} - 4ac$ $A = 225 - 4x 10x 9 = -135$ $A < 0$ $Since 10 +^{2} - 15 + +9 = 0$ $Since 10 +^{2} - 15 + +9 = 0$ $Since 10 +^{2} - 15 + +9 = 0$ $Since 10 + 2 - 15 + +9 = 0$ $K = 10 + 2 - 15 + 40 = 0$ $K = 10 + 2 - 15 + 40 = 0$ $K = 10 + 2 - 15 + 40 = 0$ $K = 10 + 2 - 15 + 40 = 0$ $K = 10 + 2 - 15 + 40 = 0$ $K = 10 + 2 - 15 + 40 = 0$ $K = 10 + 2 - 15 + 10 = 0$ $K = 10 + 2 - 15 + 10 = 0$ $K = 10 + 2 - 15 + 10 = 0$ $K = 10 + 2 - 15 + 10 = 0$ $K = 10 + 2 - 15 + 10 = 0$ $K = 10 + 2 - 15 + 10 = 0$ $K = 10 + 2 - 15 + 10 = 0$ $K = 10 + 2 - 15 + 10 = 0$ $K = 10 + 2 - 15 + 10 = 0$ $K = 10 + 2 - 15 + 10 = 0$ $K = 10 + 2 - 15 + 10 = 0$ $K = 10 + 2 - 10 = 0$ $K = 10 + 2 - 15 + 10 = 0$ $K = 10 + 2 - 15 + 10 = 0$ $K = 10 + 2 - 15 + 10 = 0$ $K = 10 + 2 - 15 + 10 = 0$ $K = 10 + 2 - 15 + 10 = 0$ $K = 10 + 10 + 10 = 0$ $K = 10 + 10 + 10 = 0$ $K = 10 + 10 + 10 = 0$ $K = 10 + 10 + 10 = 0$ $K = 10 + 10 + 10 = 0$ $K = 10 + 10 + 10 = 0$ $K = 10 + 10 + 10 = 0$ $K = 10 + 10 + 10 = 0$ $K = 10 + 10 + 10 = 0$ $K = 10 + 10 + 10 = 0$ $K = 10 + 10 + 10 = 0$ $K = 10 + 10 + 10 = 0$ $K = 10 + 10 + 10 = 0$ $K = 10 + 10 + 10 = 0$ $K = 10 + 10 + 10 = 0$ $K = 10 + 10$	I mark - Correct guadratic equation 2 marks - negative oliseriminaat and correct reasoning.