Blacktown Boys' High School
2018

HSC Trial Examination

Mathematics

General

Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black pen
- NESA approved calculators may be used
- All diagrams are not drawn to scale

In Questions $11-16$, show relevant mathematical reasoning and/or calculations

| Total marks: | Section I $-\mathbf{1 0}$ marks (pages $2-5$) |
| :--- | ---: | :--- |
| $\mathbf{1 0 0}$ | \bullet Attempt Questions $1-10$ |
| | \bullet Allow about 15 minutes for this section |
| | Section II $-\mathbf{9 0}$ marks (pages $6-13$) |
| | \bullet Attempt Questions $11-16$ |
| | \bullet Allow about 2 hours and 45 minutes for this section |

Assessor: E.Efimova

Student Name: \qquad
Teacher Name: \qquad

Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 2018 Higher School Certificate Examination.

BBHS 2018 HSC Mathematics Trial Examination
Office Use Only

Question	Mark
Q1	/1
Q2	/1
Q3	/1
Q4	/1
Q5	/1
Q6	/1
Q7	/1
Q8	/1
Q9	/1
Q10	/1
Q11 a)	12
Q11 b) (i)	/1
Q11 b) (ii)	/1
Q11 c)	12
Q11 d)	12
Q11 e)	12
Q11 f)	12
Q11 g) (i)	12
Q11 g) (ii)	/1
Q12 a) (i)	/1
Q12 a) (ii)	/1
Q12 a) (iii)	12
Q12 a) (iv)	1
Q12 a) (v)	12
Q12 b) (i)	1
Q12 b) (ii)	12
Q12 c)	12
Q12 d) (i)	12
Q12 d) (ii)	/1
Q13 a) (i)	$/ 1$
Q13 a) (ii)	$/ 1$
Q13 a) (iii)	12
Q13 b) (i)	1
Q13 b) (ii)	12
Q13 b) (iii)	/1
Q13 c)	13
Q13 d)	12
Q13 e)	12

Question	Mark
Q14 a) (i)	$/ \mathbf{2}$
Q14 a) (ii)	$/ \mathbf{1}$
Q14 a) (iii)	$/ \mathbf{2}$
Q14 a) (iv)	$/ \mathbf{1}$
Q14 a) (v)	$/ \mathbf{1}$
Q14 b) (i)	$/ \mathbf{1}$
Q14 b) (ii)	$/ \mathbf{1}$
Q14 b) (iii)	$/ \mathbf{1}$
Q14 b) (iv)	$/ \mathbf{1}$
Q14 c) (i)	$/ \mathbf{1}$
Q14 c) (ii)	$/ \mathbf{2}$
Q14 c) (iii)	$/ \mathbf{1}$
Q15 a)	$/ \mathbf{3}$
Q15 b)	$\mathbf{/ 3}$
Q15 c)	$/ \mathbf{2}$
Q15 d) (i)	$/ \mathbf{1}$
Q15 d) (ii)	$/ \mathbf{1}$
Q15 d) (iii)	$/ \mathbf{1}$
Q15 e) (i)	$/ \mathbf{1}$
Q15 e) (ii)	$/ \mathbf{3}$
Q16 a)	$/ \mathbf{3}$
Q16 b) (i)	$/ \mathbf{1}$
Q16 b) (ii)	$/ \mathbf{2}$
Q16 b) (iii)	$/ \mathbf{3}$
Q16 c) (i)	$/ \mathbf{4}$
Q16 c) (ii)	$/ \mathbf{2}$

Section I:

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

Q1. Which of the following is equal to $\frac{1}{\sqrt{5}-1}$?
(A) $\sqrt{5}-1$
(B) $\frac{\sqrt{5}+1}{4}$
(C) $\frac{\sqrt{5}-1}{4}$
(D) $\frac{\sqrt{5}-1}{\sqrt{5}+1}$

Q2. The quadratic equation $x^{2}+2 x-3=0$ has roots α and β. What is the value of $\alpha \beta+(\alpha+\beta)$?
(A) -1
(B) 5
(C) -5
(D) 3

Q3. Which inequality defines the domain of the function $\frac{3}{\sqrt{x-4}}$?
(A) $\quad x>4$
(B) $x \geq 4$
(C) $x<4$
(D) $x \leq 4$

Q4. What is the derivative of $\frac{x}{\sin x}$?
(A) $\frac{x \cos x-\sin x}{\sin ^{2} x}$
(B) $\frac{\sin x+x \cos x}{\sin ^{2} x}$
(C) $\frac{\cos x-x \sin x}{\sin ^{2} x}$
(D) $\frac{\sin x-x \cos x}{\sin ^{2} x}$

Q5. A parabola passes through the point $(0,2)$ and has its vertex at $(-2,0)$. The equation of the parabola is:
(A) $y^{2}=-2(x+2)$
(B) $x^{2}=2(x-2)$
(C) $x^{2}=-2(x+2)$
(D) $y^{2}=2(x+2)$

Q6 What is the period of the function $f(x)=\tan \left(\frac{x}{2}\right)$?
(A) $\frac{\pi}{2}$
(B) π
(C) 2π
(D) 4π

Q7. The diagram shows the graph $y=f(x)$.

Which of the following statements is true for $x=t$?
(A) $\quad f^{\prime}(t)>0$ and $f^{\prime \prime}(t)<0$
(B) $\quad f^{\prime}(t)<0$ and $f^{\prime \prime}(t)<0$
(C) $\quad f^{\prime}(t)>0$ and $f^{\prime \prime}(t)>0$
(D) $\quad f^{\prime}(t)<0$ and $f^{\prime \prime}(t)>0$

Q8. How many terms are in the series $27+40+53+\cdots+209$?
(A) 4
(B) 15
(C) 14
(D) 13

Q9. The graph shown below could be:

(A) $y=3^{x}$
(B) $y=(-3)^{x}$
(C) $y=\left(\frac{1}{3}\right)^{x}$
(D) $y=\left(-\frac{1}{3}\right)^{x}$

Q10. A particle is moving along the x-axis. The displacement of the particle at time t seconds is x metres.
At a certain time, $\dot{x}=-5 \mathrm{~ms}^{-1}$ and $\ddot{x}=12 \mathrm{~ms}^{-1}$
Which statement describes the motion of the particle at that time?
(A) The particle is moving to the right with increasing speed.
(B) The particle is moving to the left with increasing speed.
(C) The particle is moving to the right with decreasing speed.
(D) The particle is moving to the left with decreasing speed.

Section II

90 Marks

Attempt Questions 11-16

Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE booklet. Extra writing booklets are available
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

a) Evaluate $\frac{3 \pi(5-\sqrt{2})}{200}$ to three significant figures.
b) Differentiate:
(i) $2 e^{2 x}$
(ii) $\log (5 x-1) \quad$
c) Find the exact value of $\log _{6} 4+2 \log _{6} 3$
d) Evaluate $\int_{0}^{\frac{\pi}{4}} \cos 2 x d x$
e) Find the equation of the tangent to the curve $y=\ln \left(2 x^{2}-1\right)$ at the point where $x=1$
f) Shade the region denoted by $(x-3)^{2}+(y+2)^{2} \geq 4$
g) In a geometric series the $9^{\text {th }}$ term is 96 and the $13^{\text {th }}$ term is 384 .
(i) What is the common ratio of the series? $\mathbf{2}$
(ii) What is the first term of the series?

BBHS 2018 HSC Mathematics Trial Examination

Question 12

(15 marks) Use a SEPARATE writing booklet
a) The diagram below shows the points $A(-5,3), C(1,1)$ and $D(-4,-4)$. B is a point on the y-axis

(i) Find the gradient of $A C$.
(ii) Find the midpoint M of $A C$. $\mathbf{1}$
(iii) Show that equation of $D M$ is $3 x-y+8=0 \quad 2$
(iv) Find the coordinates of B, given that B lies on the line $\mathbf{1}$ $3 x-y+8=0$
(v) Hence, show that $A B C D$ is a rhombus.
b) (i) Express the discriminant of $x^{2}+(3+k) x+(2 k+6)=0$ in $\quad \mathbf{1}$ terms of k.
(ii) Hence, find the values of k such that $x^{2}-(3+k) x+(2 k+6)>0$ for all values of x
c) Find the primitive function of $\frac{4 x}{1+5 x^{2}}$
d) (i) $\begin{aligned} & \text { Show } \\ & \text { that }\end{aligned} \frac{d y}{d x}=-\frac{x}{\sqrt{16-x^{2}}}$, given $y=\sqrt{16-x^{2}} \quad$ 2
(ii) $\begin{aligned} & \text { Hence, or otherwise, } \int \frac{4 x}{\text { find }} \sqrt{16-x^{2}}\end{aligned}$

Question 13

(15 marks) Use a SEPARATE writing booklet.

a) $\quad \mathrm{O}$ is the centre of a circle of radius $20 \mathrm{~cm} . \angle \mathrm{MON}=\frac{\pi}{5}$.
l is the minor arc $M N$ as shown in the diagram.

(i) Find the length of l in terms of π.
(ii) Find the area of the minor sector MON.
(iii) Find the shaded area of the segment correct to 2 decimal places.

Question 13 (continued)
c) The region bounded by the graph $f(x)=e^{x}+3$, the lines $x=0$, $x=\log _{e} 3$ and x-axis is rotated about the x-axis to form a solid of revolution. Find the volume generated.
d) A ball is dropped from a height of 4 m and bounces back to a height of 3.6 m . It continues to bounce, each time to a height $\frac{9}{10}$ of the previous height. How far will the ball travel before finally coming to rest.
e) Prove $\frac{1+\tan \theta}{\sec \theta}-\frac{\operatorname{cosec} \theta}{\cot \theta+\tan \theta}=\sin \theta$
b)

Triangle $\triangle A B C$ has $\angle C A B=90^{\circ} . D$ lies on $B C$ where $A D \perp B C$ Given that $\angle A C D=34^{\circ}$,
(i) Find the size of the angle $\angle \mathrm{CAD}$. Give reasons.
(ii) Prove that $\triangle D C A$ and $\triangle D A B$ are similar.
(iii) Hence find the length of $A D$, if $C D=27 \mathrm{~cm}$ and $B D=12 \mathrm{~cm}$.

BBHS 2018 HSC Mathematics Trial Examination

Question 14 (15 marks) Use a SEPARATE writing booklet.

a) Consider the curve $f(x)=x^{3}-12 x+5$
(i) Find any stationary points and determine their nature. $\mathbf{2}$
(ii) Find any points of inflexion.
(iii) Sketch this curve showing all key features. 2
(iv) For what values of x is $f^{\prime}(x) \leq 0$?
(v) Hence, find the maximum value for $f(x)$ for $-2 \leq x \leq 5$.
b) The displacement of a particle moving along x-axis is given by $x=-3 t^{2}+6 t+10$, where t is the time in seconds.
(i) Find the initial displacement of this particle.
(ii) Find the velocity when $t=1$. 1
(iii) Show that acceleration of this particle is a constant. $\mathbf{1}$
(iv) Describe the motion of this particle.
c) A pool is being drained and volume in litres of water, L, in the pool at time t minutes is given by the equation: $V=120(40-t)^{2}$
(i) Find the initial volume of water in the pool
(ii) At what rate is the water draining out of the pool when $t=8 \quad \mathbf{2}$ minutes?
(iii) How long will it take for the pool to be completely empty?

BBHS 2018 HSC Mathematics Trial Examination

Question 15
(15 marks) Use a SEPARATE writing booklet.
a) Find all solutions of $2 \cos ^{2} x+\sin x-2=0$, where $0 \leq x \leq 2 \pi$
b) Use Simpson's rule, with five function values, to find an approximate 3 value for $\int_{2}^{6} 2^{x} d x$ round to 2 decimal places.

$$
\text { c) } \quad \begin{aligned}
& \text { If } y=\tan ^{5} x \text { show } \\
& \text { that }
\end{aligned} \quad \frac{d y}{d x}=5 \tan ^{4} x-5 \tan ^{6} x
$$

d) A ball bearing with initial temperature of $32^{\circ} \mathrm{C}$ is placed in a freezer whose temperature is $0^{\circ} \mathrm{C}$. The temperature of the bearing after t minutes is given by the formula $T=A e^{-k t}$ and its graph is shown in the diagram

$\begin{array}{lll}\text { (i) Find the value of } A . & \mathbf{1} \\ \text { (ii) } & \text { Find the value of } k \text { to } 4 \text { decimal places. } & \mathbf{1}\end{array}$
(iii) What is the bearing's temperature after 6 minutes? $\mathbf{1}$

Question 15 (continued)

e) The diagram shows the parabolas $y=3 x-x^{2}$ and $y=x^{2}-5 x$. The parabolas intersect at the origin and the point B. The region between the two parabolas is shaded.

(i) Find the x-coordinate of the point B.

1
(ii) Find the area of the shaded region.

BBHS 2018 HSC Mathematics Trial Examination

Question 16 (15 marks) Use a SEPARATE writing booklet.
a) Find the sum of 10 terms of the series $\log _{b} 5+\log _{b} 10+\log _{b} 20+\cdots$ given that $\log _{b} 5=1.46$ and $\log _{b} 2=0.63$.
b) Andrew borrows $\$ 650000$ from a bank. The loan is to be repaid in 20 years. The interest rate is 6% p.a. compounded monthly. There is no repayments for the first three months. Let A_{n} be the amount owing after n months and M be the monthly repayments.
(i) Find an expression for A_{4}
(ii) Show that $A_{5}=650000(1.005)^{5}-M(1+1.005)$
(iii) Find the monthly repayments if the loan is to be repaid in 20 years.
c) Two particles A and B start moving along the x-axis at time $t=0$. Particle A is initially at $x=6$ and its velocity at time t is given by $v_{A}=3 t^{2}-20 t+16$.
Particle B is at $x=25$ when $t=2$ and its velocity at time t is given by $v_{B}=3 t^{2}+1$.
(i) Find expressions for the positions of particles A and B at time t.
(ii) Show that these two particles never meet. 2

Student Number:

\qquad

Multiple Choice Answer Sheet

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample: $\quad 2+4=$
(A) 2
(B) 6
(C) 8
(D) 9

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word 'correct' and drawing an arrow as follows.

2018 Mathematics Trial Solutions		
Section I	Multiple - Choice	
Q 7	B at the point $x=t$ $f^{\prime}(t)<0 \quad f(x)$ is decreasing as x increases, gradientis negative $f^{\prime \prime}(t)<0$ graph is concare down, the gradient of the function is decreasing $\begin{aligned} & \frac{B}{A P}: a=27, d=13 \\ & T_{n}=209, T_{n}=a+(n-1) d \\ & 209=27+13(n-1) \\ & n=15 \end{aligned}$	1 mark I mark
Q9	C $\bar{y}=\left(\frac{1}{3}\right)^{x}=3^{-x}$ exponential decay D velodty is neyative so particle is moving to the lett Hccelemation is positive and since particle is moring to the lete it is slowing down	1 mark 1 mark

2018 Mathematics Trial Solutions		
Section 1	Question 12	
a) (i) (ii) (iii) (iv) (i)	Gradient of $A C=\frac{3-1}{-5-1}=-\frac{2}{6}=-\frac{1}{3}$ Midpoint $M=\left(\frac{-5+1}{2}, \frac{3+1}{2}\right)=(-2,2)$ Use, $y-y_{1}=m\left(x-x_{1}\right)$. $\begin{aligned} & m=\frac{-4-2}{-4-(-2)}=\frac{-6}{-2}=3, m=3 \\ & \therefore y-2=3(x+2) \\ & y-2=3 x+6 \\ & 3 x-y+8=0 \end{aligned}$ Substitute $x=0$ in equation $3 x-y+8=0$ $B(0,8)$ Midpoint of $B D=\left(\frac{0+(-4)}{2}, \frac{8+(-4)}{2}\right)=$ $=(-2,2)$ Since B and D both lie on perpenalicular bisector of $A C$ awd the midpoint of $B D$ is equal to the midpoint of $A C$, then the diagonals $A C$ and BD bisect each other at ripht augles. $\therefore A B C D$ is a rhombus	Imark 1 mark 1 mouk substitute correct coordinates and gradient 2 marks correct equation 1 marte correct y-coordihate I mark 2 marks for correct proof.

2018 Mathematics Trial Solutions		
Section 1	Question 12	
b) (i)	$\begin{aligned} & x^{2}+(3+k) x+(2 k+6)=0 \\ & \Delta=b^{2}-4 a c \\ & (3+k)^{2}-4 \times 1(2 k+6)= \\ & =9^{2}+6 k+k^{2}-8 k-24= \\ & =k^{2}-2 k-15 . \end{aligned}$	fomark for correct discriminaut
(ii)	$\begin{gathered} A<0 \\ k^{2}-2 k-15<0 \\ (k-5)(k+3)<0 \\ k=-3, k=5 \\ -3<k<5 \end{gathered}$	1 mark for correct facforising 2 marks correct answer
c)	$\begin{aligned} & f(x)=\frac{4 x}{1+5 x^{2}} \\ & \int \frac{f^{\prime}(x)}{f(x)} d x=\log f(x)+C \\ & \int \frac{4 x}{1+5 x^{2}}=\frac{4}{10}-\log \left(1+5 x^{2}\right)+C= \\ & =\frac{2}{5} \log \left(1+5 x^{2}\right)+C \end{aligned}$	imarlh for integration and getting $\log \left(1+5 x^{2}\right)$ 2 marks corvect solution
d) (i) (ii)	$\begin{aligned} y & =\sqrt{16-x^{2}}=\left(16-x^{2}\right)^{\frac{1}{2}} \\ \frac{d y}{d x} & =\frac{1}{2}\left(16-x^{2}\right)^{-\frac{1}{2}} \times(-2 x)= \\ & =-\frac{x}{\sqrt{16-x^{2}}} \end{aligned}$ from (i) $\int \frac{4 x}{\sqrt{16-x^{2}}} d x=-4 \sqrt{16-x^{2}}+c$	1 mark for correctly using thein rule 2 marks correct solution 1 mark correct solution

2018 Mathematics Trial Solutions		
Section 1	Question 13	
c)	$\begin{aligned} & f(x)=e^{x}+3, x=0, x=\log _{c} 3 \\ & \int_{0}^{\log 3} \pi\left(e^{x}+3\right)^{2} d x= \\ & =\pi \int_{0}^{\log 3}\left(e^{2 x}+6 e^{x}+9\right) d x= \\ & =\pi\left[\frac{e^{2 x}}{2}+6 e^{x}+9 x\right]_{0}^{\log 3}= \\ & =\pi\left[\frac{e^{2 \log } 3}{2}+6 e^{\log _{c} 3}+9 \log 3\right]- \\ & -\pi\left[\frac{1}{2}+6\right]= \\ & =\pi\left[\frac{9}{2}+6 \times 3+9 \log 3\right]-\frac{13}{2} \pi= \\ & =\pi\left[\frac{9}{2}+18-\frac{13}{2}+9 \log 3\right]= \\ & =\pi[16+9 \log 3] \end{aligned}$	1 mark fo correct tormulal (utegral) of rolume 2 markstor correct integration 3maiks for correct Solution
d)	Total distance $=$ $=4.0+2(3.6+3.24+\ldots) \mathrm{m}$ Infinite geometric series $\begin{aligned} & a=3.6, r=0.9 \\ & S=\frac{9}{1-r}=\frac{3.6}{0.1}=36 \mathrm{~m} \end{aligned}$ Total clistance $=4+2 \times 36=76$	I mark for correct limiting sum 2 mark for correct solution
e)	$\begin{aligned} & \frac{1+\tan \theta}{\sec \theta}-\frac{\operatorname{cosec} \theta}{\cot \theta+\tan \theta}=\sin \theta \\ & \text { LHS }: \frac{1+\frac{\sin \theta}{\cos \theta}}{\cos \theta}-\frac{\frac{1}{\sin \theta}}{\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}}= \\ & =\frac{\frac{\cos \theta+\sin \theta}{\cos \theta}}{\frac{1}{\cos \theta}}-\frac{\frac{1 \sin \theta}{\frac{\cos 2}{2} \theta+\sin ^{2} \theta}}{\sin \theta \cos \theta} \end{aligned}=$	1 mark for substituting $\sin \theta$ and $\cos \theta$ correctly 2mark for correct proot

2018 Miathematics Trial Solutions		
Section 1	Question 14	
a)(iv) (v)	$f^{\prime}(x)<0$ - curve is decreasing (frome graph) F $-2 \leqslant x \leqslant 2$ when $-2 \leqslant x \leqslant 5$ $f(5)=5^{3}-12 \times 5+5=70$ $f(-2)=21$ $f(5)>f(-2)$ So $f(5)$ - is a max. value	1 mart 1 mark
b) (i)	$t=0 \quad x=10$	1 mark
(ii)	$\dot{x}=-6 t+6 \quad t=1 \quad \dot{x}=0$	1 mark
(iii)	$\dot{x}=-6-$ is a constant	1 mark
(iv)	The particle is initially at a position 10 m to the right of O (origin) and trarelling to the right. It's slowing down and comes to fest after 1 sec . It then moves back to the lett.	Imark
c) (i)	$\begin{aligned} & V=120(40-t)^{2} \\ & \text { at } t=0 \quad V=120 \times 40^{2}=192000 \mathrm{~L} \end{aligned}$	1 mark
(ii)	$\begin{aligned} & \frac{d V}{d t}=120 \times 2(40-t) \times(-1)=240 t-9600 \\ & t=8 \quad \frac{d V}{d t}=240 \times 8-9600=-76804 \end{aligned}$	Imark - correet rate of chang formula 2 mavies correct rate
(iii)	$240+-9600=0$ $2 \mu 0 t=9600 \quad t=40 \mathrm{~min}$	1 mark correct time

2018 Mathematics Trial Solutions		
Section 1	Question 15	
a)	$2 \cos ^{2} x+\sin x-2=0$ $2\left(1-\sin ^{2} x\right)+\sin x-2=0$ $2-2 \sin ^{2} x+\sin x-2=0$ $2 \sin ^{2} x-\sin x=0$ $\sin x(2 \sin x-1)=0$ $\sin x=0 \therefore x=0, \pi, 2 \pi\}$ $\left.\sin x=\frac{1}{2} \therefore x=\frac{\pi}{6}, \frac{5 \pi}{6}\right\}$	I mark- correct equations $\sin x=0$ $\sin x=\frac{1}{2}$ 2 marks - one correcton 3 martsallsolutions
b)	$\int_{2} 2^{x} d x=\int_{2} 2^{x} d x+\int_{4} 2^{x} d x=$	Imark-correct function value
	$\begin{aligned} & =\frac{4-2}{6}\left[2^{2}+4\left(2^{3}\right)+2^{4}\right]+ \\ & +\frac{6-4}{6}\left[2^{4}+4\left(2^{5}\right)+2^{6}\right]=\frac{260}{3} \\ & =86.67(2 \text { d.p. }) \end{aligned}$	zmarks - Correct use of Simpson's rule with correc values 3 marks-correct solution solution
c)	$\begin{aligned} & y=\tan ^{5} x \\ & \frac{d y}{d x}=\frac{5 \tan ^{4} x}{1} \times \sec ^{2} x \\ &=5 \tan ^{4} x+\left(1+\tan ^{2} x\right)= \end{aligned}$ $=5 \tan ^{4} x+5 \tan ^{6} x$	imarkfor applying rule correctly 2 marks correct solution
d) (i)	When $t=0, T=A e^{\circ}=A$, i.e. initial temperature is A degress From the graph, $A=32^{\circ} \mathrm{C}$	1 mark
(ii)	$\begin{aligned} & T=32 e^{-k t} \\ & \text { When } t=2, T=16 \\ & 16=32 e^{-2 k} \\ & 0.5=e^{-2 k} \end{aligned}$	1 mark (correct answer)
(iii)	$\begin{aligned} & \ln 0.5=-2 k \quad \therefore k=-\frac{1}{2} \ln 0.5 \\ & T=32 e^{-k+6}=4^{\circ} \mathrm{C}=0.3466 \end{aligned}$	1 mark

2018 Mathematics Trial Solutions		
Section 1	Question 15	
e)(i)	$\begin{aligned} & 3 x-x^{2}=x^{2}-5 x \\ & 2 x^{2}-8 x=0 \\ & 2 x(x-4)=0 \\ & x=0, x=4 \end{aligned}$ $x=0$ is Origin, so $x=4$ is $\begin{aligned} & \text { Ares }=\int_{0}^{4}\left(\left(3 x-x^{2}\right)-\left(x^{2}-5 x\right) d x\right. \\ & =\int_{0}^{4}(-2 x+8 x) d x= \\ & =\left[-\frac{2}{3} x^{3}+4 x^{2}\right]_{0}^{4}= \\ & =-\frac{2}{3} * 64+64=64-\frac{128}{3}=\frac{64}{3} \end{aligned}$	1 mark for correct answer 1 mark fer correct formula 2 marks for correct integration 3 marki- correct solution

2018 Mathematics Trial Solutions		
Section!	Question 16	
a)	$\begin{aligned} & \log _{b} 5+\log _{b} 10+\log _{b} 20+\cdots \\ & A P: a=\log _{b} 5, \\ & d=\log _{b} 10-\log _{b} 5=\log _{b} 2 \\ & S_{n}=\frac{n}{2}(2 a+(n-1) d) \\ & S_{10}=\frac{10}{2}\left(2 \log _{b} 5+(10-1) \log _{b} 2\right)= \\ & =5(2 \times 1.46+9 \times 0.63)=42.95 \end{aligned}$	1 mark correct $1^{\text {st }}$ term and cowmon differeuce. 2 maries substituting all values correctly 3 markes kor chsolution
b) (i)	$\begin{aligned} & A_{1}=650000(1.005) \\ & A_{2}=650000(1.005)^{2} \\ & A_{3}=650000(1.005)^{3} \\ & A_{4}=650000(1.005)^{4}-M \end{aligned}$	1 mark
	$\begin{aligned} & A_{4}=650000(1.005)-M \\ & A_{5}=\left[650000(1.005)^{4}-M\right] \times 1.005-M= \\ & =650000(1.005)^{5}-M \times 1.005-M= \\ & =650000(1.005)^{5}-M(1+1.005) \end{aligned}$	/mark $2 \text { marks }$
(iii)	$\begin{aligned} & A_{240}=0=650000(1.005)^{240}- \\ & -M\left(1+1.005+\ldots+1.005^{-236}\right) \\ & 0=650000(1.005)^{240} \\ & M\left[\frac{1.005^{237}-1}{1.005-1}\right] \\ & M E\left[\frac{1.005}{0,005}-1\right]=650000(1.005)^{240} \\ & M=\frac{650000(1.005)^{240} \times 0.005}{1.005^{237}-1}= \\ & = \end{aligned}$	1 mark showing geometries series zmarks. correct use ot sum to n formula 3 markscorrect solution

2018 Mathematics Trial Solutions		
Section 1	Question 16	
c) (i)	$\begin{aligned} & x_{A}=\int\left(3 t^{2}-20 t+16\right) d t= \\ & =t^{3}-10 t^{2}+16 t+c_{1} \end{aligned}$ When $t=0 \quad x=6$: $\begin{aligned} & 6=0-0+0 t-C_{1} \quad \therefore C_{1}=6 \\ & x_{A}=t^{3}-10 t^{2}+16 t+6 \\ & x_{B}=\int\left(3 t^{2}+1\right) d t=t^{3}+t+C_{2} \end{aligned}$ when $t=2 \quad x=25$ $\begin{aligned} & 25=8+2+c_{2} \quad \therefore c_{2}=15 \\ & x_{B}=t^{3}+t+15 \end{aligned}$ $\begin{aligned} & x_{A}=x_{B} \\ & t^{3}-10 t^{2}+16+46=t^{3}+t+15 \\ & -10 t^{2}+15 t-9=0 \\ & 10 t^{2}-15 t+9=0 \\ & \Delta=b^{2}-4 a c \\ & A=225-4 \times 10 \times 9=-135 \\ & \Delta<0 \end{aligned}$ Since $10 t^{2}-15 t+9=0$ Gas $\Delta<0$, it has no real reots, i.e. $x_{A} \neq x_{B}$ (the particler never meet)	imartcorrect integration position fer particle A 2 marks for correct posithon 3 martes corpect. substitution of t and x 4 mares for correct expresstions for both particl-es 1 mavik - correct quadratic equation 2 marks nepative discriminant and correct reasoning.

