Section 1: Objective Response Questions.

2014
HIGHER SCHOOL CERTIFICATE
TRIAL EXAMINATION

Mathematics

General Instructions

- Reading time -5 minutes
- Working time -3 hours
- Write using blue or black pen
- Board-approved calculators and templates may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 100

Section 1 Pages 2-4

- 10 marks
- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section 11 Pages 5-10

- 90 marks
- Attempt Questions 11-16
- Allow about 2 hours 45 minutes for this section

Answer on the answer sheet provided.
1 What are the coordinates of the focus of the parabola $(x-4)^{2}=8(y+3)$?
(A) $(4,-1)$
(B) $(-4,1)$
(C) $(-3,-1)$
(D) $(-3,-4)$

2 What is the equation of the tangent to the curve $y=x^{2}-5 x$ at the point $(1,-4)$?
(A) $y=-3 x-1$
(B) $y=-3 x-7$
(C) $y=3 x+7$
(D) $y=3 x-7$

3 For what values of k does the equation $x^{2}-6 x-3 k=0$ have real roots
(A) $k \geq-3$
(B) $k \leq-34$
(C) $k \geq 3$
(D) $k \leq 3$

4 The fourth term of an arithmetic series is 27 and the seventh term is 12 . What is the common difference?
(A) -5
(B) 5
(C) 13
(D) 42

5 What is the area enclosed between the curves $y=x^{2}+1$ and $y=3 x+1 \quad ?$
(A) $\frac{3}{2}$ square units
(B) $\frac{9}{2}$ square units
(C) $\frac{27}{2}$ square units
(D) $\frac{45}{2}$ square units

6 The graph $y=f(x)$ passes through the point $(1,4)$ and $f^{\prime}(x)=3 x^{2}-2$. Which of the following expressions is $f(x)$?
(A) $x^{3}-2 x$
(B) $2 x-1$
(C) $x^{3}-2 x+3$
(D) $x^{3}-2 x+5$

7 What is the value of $\sum_{r=1}^{10}(5 x+2)$?
(A) 59
(B) 295
(C) 590
(D) 795

8 A car windscreen wiper traces out the area $A B C D$ where $A B$ and $C D$ are arcs of circles with a centre O and radii 40 cm and 20 cm respectively. Angle $A O B$ measures 120°.

Not to scale

What is the area of $A B C D$?
(A) $419 \mathrm{~cm}^{2}$
(B) $1257 \mathrm{~cm}^{2}$
(C) $1676 \mathrm{~cm}^{2}$
(D) $2095 \mathrm{~cm}^{2}$

9 If $\mathrm{AB}=6, \mathrm{AC}=4$ and $\triangle \mathrm{APQ}\|\| \Delta \mathrm{ACB}$, find the length of PQ if $\mathrm{BC}=5$.
(A) 2.25
(B) 3.375
(C) 1.44
(D) 2.4

10 On the Gill family holiday at Perisher snow fields 4 cm of snow falls on the first day. In each following days the snowfalls increase by 1.5 cm , so on the second day there is 5.5 cm , on the third day there is 7 cm . How much snow falls on the 10th day?
(A) 15 cm
(B) 17.5 cm
(C) 19 cm
(D) 107.5 cm

Start a new Booklet

Question 12:
(a) Find $\int \frac{4}{x^{2}} d x$
(b) Show that the value of the definite integral $\int_{0}^{2} \frac{3 x^{2}}{x^{3}+1} d x$ is $2 \ln 3$
(c) Find the first derivative of
(i) $y=\frac{x^{3}+3}{x}$
(ii) $y=e^{x} \ln 2 x$
(d) A series is $\log \left(x^{-1}\right)+\log x+\log \left(x^{3}\right)+\log \left(x^{5}\right)+\ldots$

Is this series arithmetic or geometric? Fully justify your answer.
(e) If $f(x)=\log _{e} 2 x$ evaluate $f^{\prime}(2)+f^{\prime \prime}(2)$
(f) The first two terms of a geometric series are 15 and 12 .
(i) Calculate the next term in the series.
(2)
(ii) Determine the limiting sum.
(a) For the parabola with equation $x^{2}=-8 y$.
(i). Find the coordinates of the focus (S) of the parabola.
(ii).Find the equation of the directrix of the parabola.
(iii). Show that the point $\mathrm{A}(-8,-8)$ lies on the parabola.
(iv). Find the equation of the focal chord of the parabola (2) which passes through A.
(v). Find the equation of the tangent to the parabola at A . (1)
(b) Given ABCD is a rectangle, $\left\langle\mathrm{ADL}\right.$ is $59^{\circ} . \mathrm{AL} \perp \mathrm{BD}$ and $\mathrm{CM} \perp \mathrm{BD}$.

(i) Find the size of $\langle\mathrm{MBC}$, give reason.
(ii) Prove that $\triangle \mathrm{ADL}$ is congruent to $\triangle \mathrm{CBM}$, give reasons. (2)
(iii) Hence show that $\mathrm{AL}=\mathrm{MC}$, give reasons.
(c) If α and β are solutions to the equation $4 x^{2}+5 x-1=0$, without solving the equation, find the value of:
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\frac{1}{\alpha}+\frac{1}{\beta}$
(d) Find $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x-1}$.

Start a new Booklet

(a) A woman walks 120 metres on a bearing of 312°, then turns and walks for a further 96 metres on a bearing of 056°.
(i) Draw a diagram in your answer booklet, labeling all given information. (2)
(ii) Determine how far the woman is from her starting point to the nearest kilometre?
(iii) Hence find the bearing of the woman from her starting point?
(b) For the function $y=2 x^{3}-\frac{x^{4}}{2}$ find:
(i) the first and second derivative.
(ii) the two stationary points and determine their nature.
(iii) Sketch the function showing all intercepts on the axes, over the domain $\quad-5 \leq x \leq 5$.
(c) Prove that $\frac{\sin ^{2} x}{1-\cos x}+\frac{\sin ^{2} x}{1+\cos x}=2$

Callaghan College Jesmond Campus 2014 HSC Mathematics - Trial HSC examination

Start a new Booklet

(a) The diagram below represents a conical water container. The sum of its base diameter and its height is 60 metres.

(i) Write an expression for the height in terms of the radius (r)
(ii) Show that the volume is given by : $V=20 \pi r^{2}-\frac{2}{3} \pi r^{3}$
(iii) Find the radius which makes the volume a maximum.
(b) (i) Sketch the graph of $y=e^{-x}$ showing the y-intercept.
(ii) Find the exact area of the region bounded by the curve $y=e^{-x}$, the x-axis and the lines $x=1$ and $x=-\ln 3$.
(c) Given $\log _{m} p=1.75$ and $\log _{m} q=2.25$. Find
(i) $\log _{m} p q$
(ii) $\log _{m} \frac{q}{p}$
(iii) $\sqrt[5]{p q^{2}}$ in terms of m

Use the table

x	3	3.25	3.5	3.75	4	4.25	4.5
$f x$	1.0	0.8	0.65	0.55	0.5	0.48	0.45

to find an approximation to the value of the definite integral

$$
\int_{3}^{4 \cdot 5} f(x) d x
$$

using Simpson's Rule. Give your answer correct to 3 significant figures
(b)

Con and Angela want to buy an investment property on the Gold Coast. They decide to borrow $\$ 250000$ to buy an apartment. Interest is calculated monthly on the balance still owing, at a rate of 6% per annum. The loan is to be repaid in full at the end of 15 years with equal monthly repayments of $\$ M$.

Let $\$ A_{n}$ be the amount owing after the nth repayment.
(i) Derive an expression for A_{3}.
(ii) Find the value of M.
(iii) Hence, calculate the amount still owing after 5 years of payments at this rate.
(iv) At the end of 5 years, the interest rate is increased to 7.2% per annum and Con and Angela decide to increase their repayments to $\$ 2400$ per month. How many more months are required to pay off the remainder of the loan?
(c) The area bounded by the curve $y=\frac{1}{x}$, the x -axis and the ordinates $x=a$ and $x=4$ is rotated about the x-axis. If the volume generated

[^0]MATHEMATICS - MSC TRINR, 2014.
Secion 1: Multiple Choico

1. focus of parabola $(x-4)^{2}=8(y+3)$

$$
\text { paratiole writter a form } \left.(x-4)^{2}=\text { kal } y-4\right)
$$

$$
\therefore \text { Kerter }=(4,-3)
$$

abo

$$
4 a=8
$$

Focus at $(4,-3 \times 2)=(4,-1)$

$$
\therefore a=2 \text {. }
$$

Disitance from Focus to VEerct is alsoays equal \& Distance from VERTAX t Dinectant $=a$.

1 Tangent to
2. $y=x^{2}-5 x$ at $(1,-4)$

$$
\begin{aligned}
\therefore y^{\prime} \cdot 2 x-5 \Rightarrow m_{1} & =2 \times 1-5 \\
& =-3
\end{aligned}
$$

$$
\begin{gathered}
y--4=-3(x-1) \\
y+4=-3 x+3
\end{gathered}
$$

$$
y=-3 x-1 \quad A
$$

$$
\begin{array}{cc}
\begin{array}{c}
3 .
\end{array} & x^{2}-6 x-3 k=0 \\
a=1 & b^{2}-4 a c \geqslant 0 \\
b-6 & (-6)^{2}-4 x 1 \times(-3 k) \geqslant 0 \\
c=-3 k &
\end{array}
$$

$$
\begin{array}{r}
36+12 k \geqslant 0 \\
12 k \geqslant-36 \\
\therefore k \geqslant-3 \tag{17.}
\end{array}
$$

real roots
this means $\Delta \geqslant 0$

$$
b^{2}-4 a c \geqslant 0
$$

* Brly charge sigi
whes dividing/multipligy
by negative.

4. arithmetic Sere.

$$
\begin{aligned}
& \therefore \quad T_{x}=a+3 d=27 \\
& T_{y}=\frac{a+6 d}{}=12 \\
& \text { Subtrect } \quad 3 d=-15 \\
& \quad \alpha=-5
\end{aligned}
$$

5. Arra eviloned betwreen

* find interrection

$$
\begin{gathered}
\therefore x^{2}+1=3 x+1 \\
x^{2}-3 x=0 \\
x(x-3)=0 \\
x=0,3
\end{gathered}
$$

$$
\text { Q5 etd. } \begin{aligned}
& =\left[\frac{x^{3}}{3}-\frac{3 x^{2}}{2}\right]_{0}^{3} \\
& =\frac{27}{3}-\frac{3 \times 9}{2} \\
& =\frac{27}{3}-\frac{27}{2} \\
& =\frac{54-81}{6} \\
& =\frac{-27}{6}=-\frac{42^{\frac{1}{2}} 2 m i t_{0}^{2}}{1}
\end{aligned}
$$

1 Why NeGative?
Ale got a negative became we subtracted the line from the parabola - it should have been parabola from Line. As lory as we are aware of this - then wo ca say $A=4 \frac{1}{2} x^{2}$
B.
6. finding $f(x)$.
$f^{\prime}(x)=3 x^{2}-2 \rightarrow$ find indefinite integral

$$
\therefore \int\left(3 x^{2}-2\right) d x=\frac{3 x^{3}}{3}-2 x+C .
$$

$$
\therefore f(x)=x^{3}-2 x+C
$$

passes throw' $(1,4)$

$$
\begin{gathered}
\quad 4=(1)^{3}-2(1)+C \\
\therefore C=5
\end{gathered} \quad S_{0,} f(x)=x^{3}-2 x+5
$$

$$
\text { 7. } \sum_{r=1}^{10}(5 x \times 2)=7+12 \times 17 \ldots . .52
$$

Moving $S_{n}=\frac{n}{2}(a+l)$

$$
\begin{align*}
S_{10} & =\frac{10}{2}(7+52) \\
& =5 \times 59 \\
& =295
\end{align*}
$$

8. The windscreen wigs follows the path of ar AnNutios

$$
\begin{align*}
\therefore A & =\left(\frac{120}{360}\right) \times\left(\pi 40^{2}-\pi 20^{2}\right) \\
& =\frac{1}{3} \times \pi \times(1600-400) \\
& =\frac{\pi \times 1200}{3} \\
& =1256.63 \\
& =1257 \mathrm{~cm}^{2} \quad B
\end{align*}
$$

9. The 2 triangles are Congruent - so determine

Q9 etd.

$$
\begin{gathered}
5 \rightarrow x \\
6 \rightarrow 2 \cdot 7
\end{gathered}
$$

$$
\begin{aligned}
& \frac{5}{6}=\frac{x}{x} \frac{2 \cdot 7}{} \\
& x=\frac{5 \times 2 \cdot 7}{6} \\
& =\frac{13.5}{6}=2 \cdot 25
\end{aligned}
$$

10.

$$
\begin{aligned}
& T_{1}=a=4 \\
& d=1.5 \\
& T_{2}=a+d=4+1.5=5.5 \quad \text { etc. } \\
& \begin{aligned}
10 & =a+9 d
\end{aligned}=4+(9 \times 1.5) \\
&=4+13.5 \\
&=17.5 \mathrm{~cm}
\end{aligned}
$$

SECTION 2.
Question 11.
a)

$$
\begin{aligned}
\left(\frac{1}{e^{2.5}}-1\right)^{2} & =0.8425 \ldots \\
& =0.843 \text { t } 3 \mathrm{sf} .
\end{aligned}
$$

b) Factorise fully

$$
\begin{aligned}
36 x^{2}-16 y^{2} & =4\left(9 x^{2}-4 y^{2}\right) \\
& =4(3 x-2 y)(3 x+2 y)
\end{aligned}
$$

c)

$$
\begin{aligned}
(\sqrt{2}+1)(5 \sqrt{2}-3) & =a \sqrt{2}+b \\
5 \times(\sqrt{2})^{2}-3 \sqrt{2}+5 \sqrt{2}-3 & =a \sqrt{2}+b \\
10+2 \sqrt{2}-3 & =a \sqrt{2}+b \\
7+2 \sqrt{2} & =a \sqrt{2}+b \\
a & =2, b=7
\end{aligned}
$$

a)

1) equation of line joining B t C.

$$
\begin{aligned}
m_{B C}=\frac{-7--1}{-3-5} & =\frac{-6}{-8} \\
& =\frac{3}{4}
\end{aligned}
$$

$$
\begin{array}{lr}
y-y_{1}=m\left(x-x_{1}\right) & \text { using } m=\frac{3}{x} \\
y--1=\frac{3}{4}(x-5) & \left(x, y_{1}\right)=(5,-1) \\
y+1=\frac{3}{4}(x-5) & \\
4 y+4=3 x-15 & \text { (General Form). } \\
3 x-4 y-19=0 &
\end{array}
$$

i) Aritucde from A to $B C$.
C. Rexperdicular Distance.
\therefore Pexperdicular Ristanco from $(2,8)$

$$
\text { of } 3 x-4 y-19=0
$$

$$
\begin{aligned}
\therefore a & =\left|\frac{a x_{1} \times b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right| \\
& =\left|\frac{-4 \times 2 \times 3 \times 8-19}{\sqrt{3^{2} \times 4^{2}}}\right| \\
& =\left|-\frac{8 \times 24-19}{\sqrt{25}}\right| \\
& =\frac{3}{5} .
\end{aligned}
$$

$$
\begin{aligned}
& a=3 \\
& b=-4
\end{aligned}
$$

$$
c=-19
$$

$$
\left.=/ \frac{-4 \times 2 \times 3 \times 8-19}{\sqrt{3^{2}+4^{2}}} / \begin{array}{l}
x_{1}=2 \\
y_{1}=8
\end{array}\right\} \text { point }
$$

(ir)

$$
\begin{aligned}
\alpha_{B C} & =\sqrt{(-1--7)^{2}+(5--3)^{2}} \\
& =\sqrt{6^{2}+8^{2}} \\
& =\sqrt{100}=10 \text { unis }
\end{aligned}
$$

e) \quad et $x=0.47^{\circ}$

$$
\begin{aligned}
\text { ce: } x & =0.477777 . \\
10 x & =4.77777 \\
100 x & =47.7777 \\
99 x & =43 \\
x & =\frac{43}{90}
\end{aligned}
$$

f)

$$
\begin{array}{lr}
|4 x+1|<5 & \\
4 x+1<5 & -(4 x+1)<5 \\
4 x<4 & -4 x-1<5 \\
x<1 & -4 x<6
\end{array}
$$

$$
-\frac{3}{2}<x<1
$$

Quertion 12.
a)

$$
\begin{align*}
\int \frac{4}{x^{2}} d x & =4 \int x^{-2} d x \\
& =\frac{4 \times x^{-1}+C}{-1} \\
& =\frac{-4}{x}+C \tag{2}
\end{align*}
$$

b) SHow $\int_{0}^{2} \frac{3 x^{2}}{x^{3}+1} d x=2 \ln 3$ \therefore L.H.S. $\int_{0}^{2} \frac{3 x^{2}}{x^{3}+1} d x \longleftarrow \begin{gathered}\text { Topline is } \\ \text { axiforential } \\ \text { of bottom }\end{gathered}$ of bottom.
\therefore loge faxct.
c) *Must know Prodvet Rule Quotient Rule CHBIN RuLE

* Must he able 1o ldentity wher fo use them.

") $y=e^{x} \operatorname{la} 2 x \quad$ multipying, so Reover

$$
\begin{aligned}
\frac{d y}{d x} & =e^{x} \times \frac{1}{x}+\ln ^{2} x \times e^{x} \\
& =\frac{e^{x}\left[\frac{1}{x}+\ln 2 x\right]}{2}
\end{aligned}
$$

$$
\begin{aligned}
& u=e^{x} \quad \quad=\ln 2 x \\
& x^{\prime}=e^{x} \quad v^{\prime}=\frac{1}{2 x} \times 2 \\
&=\frac{1}{x} \\
& \begin{aligned}
\frac{d y}{d x} & =u v^{\prime}+v x^{\prime}
\end{aligned}
\end{aligned}
$$

d)

$$
\log x^{-1}+\log x^{\prime}+\log x^{3}+\log x^{5}+\ldots \ldots
$$

Cso your log laws.

$$
\begin{aligned}
\therefore \quad & -1 \times \log x+1 \times \log x+3 \times \log x+5 x \log x+\ldots \\
\text { So, } T_{1} & =-\log x \\
T_{2} & =\log x \\
T_{3} & =3 \log x
\end{aligned}
$$

For an ARITMMETIC SExies, $T_{3}-T_{2}=\pi-T$,
(1) GEOMETRIC

Rey A.S.

$$
\frac{T_{3}}{T_{2}}=\frac{T_{2}}{T_{1}}
$$

$$
\begin{aligned}
\frac{T}{3}-\frac{T}{2} & =3 \log x-\log x \\
& =2 \log x \\
T_{2}-T & =\log x-i \log x \\
& =2 \log x
\end{aligned}
$$

\therefore Pround thii in an ARITAMEILC SERIES
a) $f(x)=\ln 2 x$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{2 x} \times 2=\frac{1}{x} \quad\left(x^{-1}\right) \\
& f^{\prime \prime}(x)=-x^{-2}=\frac{-1}{x^{2}}
\end{aligned}
$$

$$
\text { S, } \begin{align*}
f^{\prime}(2)+f(2) & =\frac{1}{2} \frac{-1}{2^{2}} \\
& =\frac{1}{2} \frac{-1}{4} \\
& =\frac{1}{4} \tag{2}
\end{align*}
$$

f) Told is a Ceometice Serien

$$
\text {) } T_{3} \text { (next berm) }=a r^{2}
$$

$$
\begin{aligned}
& \therefore T_{1}=a=15 \\
& T_{2}=a r=12 \\
& \begin{aligned}
\frac{T_{2}}{T_{1}} & =\frac{d r}{\alpha /}=r=\frac{12}{15}=\frac{4}{5}(0.8) \\
\text { arm) } & =a r^{2} \\
& =15 \times\left(\frac{x}{5}\right)^{2} \\
& =\frac{48}{5}(9.6)
\end{aligned}
\end{aligned}
$$

i) Livititiy $S_{n}=S_{\infty}=\frac{e}{i-r}=\frac{15}{1-\frac{4}{5}}$

$$
\begin{aligned}
& \overline{\frac{-4}{5}} \\
& =\frac{\frac{15}{5}}{5}=75
\end{aligned}
$$

13.

$$
\begin{aligned}
& x^{2}=-8 y \text { siot form } x^{2}=4 \text { ay } \\
& \text { but whet about tho }
\end{aligned}
$$

Kertex $=(0,0)$ negatiui?

$$
\begin{gathered}
4 a=-8 \\
\therefore a=\frac{-8}{4}=-2
\end{gathered}
$$

\therefore Focus at

$$
\begin{aligned}
& (0,0-2) \\
= & (0,-2)
\end{aligned}
$$

11) Syuation of Dinectrix is $y=-a$

$$
\begin{aligned}
& \because y=-(-2) \\
& \text { 6. } y=2
\end{aligned}
$$

(II) for $A(-8,-8)$ to lis on parabole it must setsity equatioi

$$
\begin{aligned}
\therefore \quad \text { R.W.S. } & =x^{2} \\
& =(-8)^{2} \\
& =64 \\
\text { R.W.S. } & =-8 \times-8 \\
& =64
\end{aligned}
$$

$$
\begin{aligned}
& =64 \\
& =L .4 . S . \quad \therefore \text { hes } .
\end{aligned}
$$

iv) equation of focal chord passing then'A.

$$
F=(0,-2)
$$

$$
A=(-8,-8)
$$

$$
\begin{aligned}
\therefore m & =\frac{-8--2}{-8-0} & & y--2=\frac{3}{4}(x-0) \\
& =\frac{-6}{-8} & & 4 y+8=3 x \\
& =\frac{3}{4} & & 3 x-4 y-8=0
\end{aligned}
$$

v) equation of tangent o parabola at A.

$$
x^{2}=-8 y
$$

$$
\therefore y=-\frac{1}{8} x^{2}
$$

$$
\frac{d y}{d x}=\frac{-1}{8} \times 2 x
$$

$$
=-\frac{x}{4}
$$

$$
\text { at }(-8,-8) \quad m_{\Gamma}=-\frac{88}{4}=\underline{2}
$$

$$
\begin{gathered}
y--8=2(x--8) \\
y+8=2 x+16 \\
2 x-y+8=0
\end{gathered}
$$

b)

A

$$
\begin{aligned}
& \angle A D L=59^{\circ} \\
& A \angle \perp B D \\
& C M \angle B D
\end{aligned}
$$

D
,

$$
M B^{\top} C=A D^{Y} L
$$

$=57^{\circ}$, alternate angles of transhenal $B D$ are equal, and apposite sides of a rectangle are parallel.
")

$$
\text { .) } M \widehat{B C}=A \hat{D C}
$$

$$
=59^{\circ}
$$

(from above)
2)

$$
\begin{aligned}
A \angle B & =B \hat{M} C \\
& =90^{\circ}
\end{aligned}
$$

(given)
3) $A D=B C$
(opposite sides of rectangle are Equal)

$$
\begin{align*}
& \therefore B y \text { ASS } \\
& \triangle A O L \equiv \triangle C M B \tag{2}
\end{align*}
$$

iii) Corresponding sides of congruent trains

$$
\therefore \quad A \angle=M C \text { (1) } \quad(\text { also } D \angle=M B)
$$

c)

")

$$
\begin{aligned}
\alpha \beta & =\frac{c}{a} \pi \text { Product of } \\
& =\frac{-1}{4} \text { Moors } \\
& =(-0.25)
\end{aligned}
$$

(II)

$$
\begin{aligned}
\frac{1}{\alpha}+\frac{1}{\beta} & =\frac{\beta+\alpha}{\alpha \beta} \\
& =\frac{\text { sum of Roots }}{\text { provide of Roots }} \\
& =\frac{\frac{-5}{4}}{\frac{-1}{4}} \\
& =5
\end{aligned}
$$

a)

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x-1} & =\lim _{x+1} \frac{(x+2)(x-1)}{(x-1)} \\
& =\lim _{x \rightarrow 1} x+2 \\
& =3
\end{aligned}
$$

vang Cosine Rule

$$
\begin{align*}
& x^{2}=120^{2} \times 96^{2}-2 \times 120 \times 96 \times \cos 76 \\
& x=134.32 \mathrm{~m} \\
& x=134 \mathrm{~m} \tag{2}
\end{align*}
$$

iii) Bearing from Starting Point is found by calculating $B A C$ and adding thin ont 312.

$$
\begin{array}{ll}
\frac{\sin \theta}{96}=\frac{\sin 76}{134} & \therefore: A=44^{\circ} \\
\sin \theta=\frac{96 \times \sin 76}{134} & \text { Beery }=44 \times 312=356
\end{array}
$$

(46)

$$
\text { 1) } \begin{aligned}
y & =2 x^{3}-\frac{x^{4}}{2} \\
y^{\prime} & =6 x^{2}-\frac{4 x^{3}}{2} \\
& =6 x^{2}-2 x^{3}=2 x^{2}(3-x) \\
y^{\prime \prime} & =12 x-6 x^{2}=6 x(2-x)
\end{aligned}
$$

") S.P. and NaTONE

$$
\therefore \text { Passibce S.Point at } \overline{\bar{x}=0}, y=0
$$

$$
x=3, y=2 \times 3^{3}-\frac{3^{4}}{2}
$$

$$
=54-40.5
$$

S. Points at $(0,0),(3,13.5)$

$$
=13.5
$$

Brt need to TEST

$$
\begin{aligned}
& \therefore \text { Put } y^{\prime} \text { or } y^{\prime \prime}=0 \text {. } \\
& y^{\prime}=0 \quad \therefore \quad 6 x^{2}-2 x^{3}=0 \\
& 2 x^{2}(3-x)=0 \\
& \therefore x=0,3
\end{aligned}
$$

what happers at $(0,0)$
\therefore Put $y^{\prime \prime}=0$

$$
12 x-6 x^{2}=6 x(2-x)=0
$$

c. $x=0,2$
we know when $\begin{aligned} & x=0 \\ & y=0\end{aligned} \left\lvert\, \begin{aligned} & x=2 \\ & y=2 \times 2^{3}-\frac{2^{4}}{2}\end{aligned}\right.$
Test
$(0,0)$ $=16 \cdot 8=8$
$(2,8)$

$$
\begin{array}{cc|c}
\text { at } x=0 \\
\text { Sub.a } & -1 & 0 \\
\frac{12 x-6 x^{2}}{6 x(2-x)} & <0 & 0
\end{array}
$$

\because Chargen Coxcavity
\therefore Point af wx<ExxiON
But not gist inferxion we have Mropirontra NXLCXION
at $x=2$

$$
\frac{1}{30} / 0 / 0<0
$$

\therefore Change © Concavity \therefore Iflexion

So what do we have:

1) $(3,13.5)$ MAximA
$(0,0) \quad$ Hokizowtal wr
$(2,8) \quad$ WFEXION
$(2,8 X I O N$

14 (ic)
function ours

$$
-5 \leqslant x \leqslant 5
$$

$$
\begin{aligned}
& \text { C) Prove } \\
& \frac{\sin ^{2} x}{1-\cos x}+\frac{\sin ^{2} x}{1+\cos x}=2 \\
& \therefore \text { h.K.S. }=\frac{\sin ^{2} x}{1-\cos x}+\frac{\sin ^{2} x}{1+\cos x} \\
& \operatorname{cis}^{2} x+\cos ^{2} x=1 \\
& \therefore \sin ^{2} x=1-\cos ^{2} x \\
& =\frac{1-\cos ^{2} x}{1-\cos x}+\frac{1-\cos ^{2} x}{1+\cos x} \\
& =\frac{(1-\cos x)(1+\cos x)}{1-\cos x}+\frac{(1-\cos x)(1+\cos x)}{1+\cos x} \\
& =1+\cos x+1-\cos x \\
& =2 \\
& =\text { P.CR.S }
\end{aligned}
$$

15 a)

1) Wine told $h+d=60$
put $d=2 r$

$$
\begin{aligned}
\therefore h+2 r & =60 \\
h & =60-2 r .
\end{aligned}
$$

")

$$
\left.\begin{array}{rl}
V & =A \times k \\
& =\pi r^{2} \times k
\end{array}\right\} \begin{aligned}
& \text { this io to a CYRINDER } \\
& \text { what hoppers to e C. }
\end{aligned}
$$

what Mappers to e Cont?

$$
\begin{aligned}
V & =\frac{1}{3} \times A \times h \\
& =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi r^{2}(6 \sigma-2 r) \\
& =20 \pi r^{2}-\frac{2}{3} \pi r^{3}
\end{aligned}
$$

iii) As soon as they talk about MAXIMA, we find $\frac{d r}{d r}=0$.

$$
\begin{aligned}
\frac{d r}{d r} & =40 \pi r-3 \times \frac{2}{3} \pi r^{2} \\
& =40 \pi r-2 \pi r^{2} \\
& =0
\end{aligned}
$$

then $40 \pi r-2 \pi r^{2}=0$

$$
2 \pi r(20-x)=0
$$

$$
\begin{aligned}
& 2 \pi r(20-r)=0 \\
& \therefore \quad r-f \text { or } r=20
\end{aligned}
$$

$\frac{\text { Test }}{r-20}$

\therefore Maximum Volume where
b)

$$
\text { ") } \begin{array}{rlr}
\int_{-\ln 3}^{1} e^{-x} d x & \left.=-e^{-x}\right]_{-\ln 3}^{1} \\
& =-e^{-1}--e^{-e 3} \\
& =-\frac{1}{e}+e^{e 3} & \text { By definition } \\
& =\left(3-\frac{1}{e}\right) \text { unis } & e^{e \ln 3}=3
\end{array}
$$

$$
\text { c) } \begin{aligned}
& \log _{m} p=1.75 \\
& \log _{m} q=2.25 \\
& \text { 1) } \begin{aligned}
\log _{m} p q & =\log _{m} p+\log _{m} 2 \\
& =1.75 \times 2.25 \\
& =4
\end{aligned} \$ \text { Need }
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[5]{p q^{2}} \\
= & \left(p q^{2}\right)^{\frac{1}{5}} \\
= & \left(m^{1.75} \times\left(m^{2.25}\right)^{2}\right)^{\frac{1}{5}} \\
= & \left(m^{1.75} \times m^{4.5}\right)^{\frac{1}{5}} \\
= & m^{\frac{6.25}{5}} \\
= & m^{\frac{27}{20}}
\end{aligned}
$$

$$
\text { (1) } \begin{aligned}
\log _{m} \frac{q}{p} & =\log _{m} q-\log _{m} p_{-} \\
& =2.25-1.75 \\
& =0.5
\end{aligned}
$$

(iI)

$$
\therefore p=m^{1.75}
$$

$$
2=m^{2.25}
$$

(ba)

$$
\begin{align*}
\int_{3}^{4.5} f(x) d x & =\frac{0.25}{3}[1+0.45+4 \times[0.8+0.55+0.48] \\
& =\frac{0.25}{3}[1.45+7.32+2.3] \\
& =0.9225 \tag{4}
\end{align*}
$$

b)

$$
\begin{aligned}
1) & A_{1}=250000 \times 1.005-m \\
A_{2} & =A_{1} \times 1.005-m \\
& =[250000 \times 1.005-m] \times 1.005-m \\
A_{2} & =250000 \times 1.005^{2}-m(1.005+1) \\
\therefore A_{3} & =250000 \times 1.005^{3}-m\left(1 \times 1.005+1.005^{2}\right)
\end{aligned}
$$

4) pay of a $15 \mathrm{yyn}-15 \bar{x} 12$
$=180$ month

$$
A_{180}=\underbrace{250000 \times 1.005^{-180}-m\left(1+1.005 \times \ldots . .1 .005^{179}\right)}_{\substack{\text { Compound } \\ \text { Interest }}}-m \times \text { G.P. (Sk) })
$$

dox't we chant $A_{180}=0$?

Sa the G.P.

$$
\begin{aligned}
& \therefore S \text { of }\left(\times 1.005 \times 1.005^{2}+\ldots .+1.005^{121}\right. \\
& S=\frac{a\left(r^{4}-1\right)}{x-1} \\
& S_{180}=\frac{1\left(1.005^{180}-1\right)}{1.0055^{-1}} \\
&=\frac{1.005^{180}-1}{0.005^{5}}
\end{aligned}
$$

So, $\quad A_{180}=0=250000 \times 1.005^{180}-\frac{\mu \times\left(1.005^{180}-1\right)}{0.005}$

$$
\begin{aligned}
\frac{m_{\times}\left(1.005^{180}-1\right)}{0.005^{180}} & =250000 \times 1.005^{18} \\
m & =\frac{250000 \times 1.005^{180} \times 0.005}{\left(1.005^{180}-1\right)}
\end{aligned}
$$

$\therefore m=\$ 2109.64$ monthly Repayment
ii) Amount owing of tor 5 yean.

$$
\begin{aligned}
& 5 \text { year }=5 \times 12 \\
& =\frac{60 \text { months }}{60}
\end{aligned}
$$

PTO.

$$
A_{60}=250000 \times 1.005^{60}-2109.64 \times\left(\frac{1.005^{60}-1}{0.005}\right)
$$

$$
=\$ 190 \text { 022.89 still owing of or } 5 \text { yean. }
$$

$16 \mathrm{v})$ at end of 5 years - Chins charge.

$$
r=7.2 \% \text { pa. }=0.006 \text { per month }
$$

Repayment $=\$ 2400$.
$A_{x}=0 \rightarrow$ when loan paid off.

$$
\begin{aligned}
0=A_{n} & =190022.89 \times 1.006^{n}-2400 \times\left(\frac{1.006^{n}-1}{0.006}\right) \\
& =140022.89 \times 1.006^{n}-400000 \times 1.006^{n} \times 400000 \\
400000 & =209977.11 \times 1.006^{n} \\
1.006^{n} & =400000 \\
& 209977.11 \\
1.006^{n} & =1.9049 \ldots \text { later logs of beth } \\
n \log 1.006 & =\log 1.905 \\
n & =\frac{l o g}{} 1.905 \\
& =107-7 \text { months }
\end{aligned}
$$

So, it will take another 108 months to pul off the loan.
c) from $\begin{array}{r}y=\frac{1}{x} \quad \text { is } \frac{\pi}{2} \text { units }\end{array}$

$$
\begin{aligned}
& \therefore \quad V=\pi / y^{2} d x \quad y=x^{-1}-y^{2}=x^{-2} \\
& \begin{aligned}
\therefore V & =\pi \int_{a}^{4} x^{-2} d x \\
& =\pi\left[\frac{x^{-1}}{-1}\right]_{a}^{4}
\end{aligned} \\
& =-\pi\left[\frac{1}{x}\right]_{a}^{4} \\
& =-\pi\left(\frac{1}{4}-\frac{1}{a}\right) \\
& \frac{\pi}{2}=\pi\left(\frac{1}{a}-\frac{1}{4}\right) \\
& \therefore \frac{1}{2}=\frac{1}{a}-\frac{1}{4} \\
& \frac{1}{a}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4} \\
& \therefore \frac{1}{a}=\frac{3}{4} \Rightarrow a=\frac{4}{3} \quad\left(1 \frac{1}{3}=1.3\right)
\end{aligned}
$$

[^0]: is $\frac{\pi}{2}$ unit 3, where $0<a<4$, find the value of a.

