

Caringbah High School

2016

Trial HSC Examination

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen (Black pen is preferred)
- Board-approved calculators may be used
- A Board-approved reference sheet is provided for this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total marks - 100
Section I Pages 2-5
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II Pages 6-14
90 marks

- Attempt Questions 11-16
- Allow about 2 hour and 45
minutes for this section

Question 1-10 (1 mark each) Answer on the page provided.

1 If $a=1-2 c$, which expression has c been correctly made the subject?
(A) $c=\frac{-1-a}{2}$
(B) $c=\frac{1-a}{2}$
(C) $c=\frac{a-1}{2}$
(D) $c=\frac{a+1}{2}$

2 If $f(x)=2 x^{2}-3 x+4$, what is the value of $f(1)-f(-1)$?
(A) -6
(B) -2
(C) 6
(D) 2

3 The number of worms W in a worm farm, at time t is given by $W=3000 e^{-k t}$, where k is a positive constant.

Over time, which expression describes the change in the number of worms?
(A) decreasing at a constant rate
(B) increasing at a constant rate
(C) decreasing exponentially
(D) increasing exponentially

4 The second term and the fifth term of a geometric sequence are -3 and 192 respectively. What is the common ratio of the sequence?
(A) 4
(B) $\quad-4$
(C) 8
(D) -8

5 Which of the following circles has the lines $x=1, x=5, y=3$, and $y=7$ as its tangents?
(A) $(x-3)^{2}+\left(y-\frac{7}{2}\right)^{2}=4$
(B) $\left(x-\frac{5}{2}\right)^{2}+(y-5)^{2}=4$
(C) $\quad(x-5)^{2}+(y-3)^{2}=4$
(D) $(x-3)^{2}+(y-5)^{2}=4$

Using Simpson's rule with 3 function values, which expression best represents the area bounded by the curve $y=f(x)$, the x-axis and the lines $x=1$ and $x=5$?
(A) $\frac{2}{3}(1+4 a+b)$
(B) $\quad \frac{1}{2}(1+4 a+b)$
(C) $\quad \frac{1}{2}(4 a+b)$
(D) $\frac{2}{3}(4 a+b)$
$7 \quad$ How many points of intersection of the graph of $y=\sin x$ and $y=1+\cos x$ lie between 0 and 2π ?
(A) 1
(B) 2
(C) 3
(D) 4

8

In the figure above, which region represents the solution to the following inequalities?

$$
\left.\begin{array}{c}
x-3 y<0 \\
x-y+2>0 \\
x+y-4>0
\end{array}\right\}
$$

(A) I
(B) \quad II
(C) III
(D) $\quad I V$

In the figure above, the graph of $y=x^{2}+p x+q$ cuts the x-axis at A and B. Which is the value of $O A+O B$?
(A) $-p$
(B) p
(C) $\quad-q$
(D) q

10 If $\log _{10} x, \log _{10} y, \log _{10} z$ form an arithmetic progression, which one of the following relationships hold true?
(A) $y=10^{\frac{x+z}{2}}$
(B) $y=\frac{x+z}{2}$
(C) $y^{2}=x+z$
(D) $y^{2}=x z$

Section II

90 marks
Attempt all questions 11-16
Allow about 2 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a NEW booklet.
(a) Find the value of $e^{-\frac{\pi+3}{2}}$, correct to 3 significant figures.
(b) Factorise $50-2 x^{2}$.
(c) Simplify $\frac{1}{x^{2}-1}-\frac{1}{x-1}$, expressing the answer as a single fraction.
(d) Solve $|3 x-5|=4$.
(e) Find the values of a and b if $\frac{1}{3-\sqrt{2}}=a+b \sqrt{2}$.
(f) State the domain and range of $y=\sqrt{2 x-1}$.
(g) Find $\int_{0}^{\frac{\pi}{2}} \sec ^{2} \frac{x}{3} d x$.
(a) Find $\frac{d}{d x}\left(\sqrt{x^{3}+1}\right)$.

2
(b) Find the limiting sum of $81-27+9-\ldots .$.
(c) Find $\int(3 x-2)^{5} d x$.
(d) Find the exact value of $\sin \frac{3 \pi}{4}+\cos \frac{7 \pi}{6}$.
(e) The gradient function of a curve is given by $3 x^{2}-5$.

If the curve passes through the point $(1,1)$, find its equation.
2
(f) When a balloon is being filled with helium, its volume at time t is given by $V=\frac{\pi t^{3}}{12} \mathrm{~cm}^{3}$, where t is in seconds.

Find the rate at which the balloon is being filled when $t=1$.
(g) For the parabola $6 y=x^{2}+2 x+13$, use completing the square or otherwise to find:
(i) the vertex.
(ii) the focal length.
(a) Find $\frac{d}{d x}\left(e^{\cos x}\right)$.
(b) Find the shortest distance of the point $(1,-3)$ from the line $2 x-5 y=4$.
(c) In the figure below, $A B C D$ is a square, $C E F$ is an equilateral triangle,
$\angle D C E=130^{\circ}$ and $D C=C E$.

Find the size of $\angle C B F$, giving clear reasons.
(d) Find the value of k for which the equation $3 x^{2}+10 x+k=0$ has:
(i) one root which is the reciprocal of the other.
(ii) equal roots.
(e)

Maeve walks from her house for 6 km , on a bearing of 310° to point B.
She then walks on a bearing of 215° to a point C which is due west of her house.
(i) Copy the diagram and clearly indicate the information mentioned above.
(ii) Calculate to 1 decimal place the distance of C to her house.
(f) Part of the graph of the function $y=-x^{2}+a x+12$, is shown below.

If the shaded area is 45 square units, find the values of a.

Question 14 (15 marks) Start a NEW booklet.
(a) In the diagram below, the straight line L_{1} has equation $2 x-y+4=0$ and cuts the x-axis and y-axis at A and B respectively.

The straight line L_{2}, passing through B and perpendicular to L_{1} cuts the x-axis at C. From the origin O, a straight line perpendicular to L_{2} is drawn to meet L_{2} at D.

(i) Write down the coordinates of A and B.
(ii) Show that the equation of L_{2} is $x+2 y-8=0$.
(iii) Find the equation of the line $O D$.
(iv) Show that the coordinates of D are $\left(\frac{8}{5}, \frac{16}{5}\right)$.
(v) Hence or otherwise, find the area of quadrilateral $O A B D$.
(b) (i) State the period for $y=3 \cos \frac{x}{2}$.
(ii) Neatly sketch the graph of $y=3 \cos \frac{x}{2}$ for $0 \leq x \leq 2 \pi$.
(c) Prove that $\frac{\tan \theta}{\sin \theta}-\cos \theta=\tan \theta \sin \theta$.
(d) Michael is attempting to solve the equation $2 \ln x=\ln (3 x+10)$.

He sets his work out using the following correct steps:

- $\ln x^{2}=\ln (3 x+10)$
- $x^{2}=3 x+10$
- $x^{2}-3 x-10=0$

He is now unsure of what to do next.

Complete the solution for Michael.

End of Question 14

(a) A solid is formed by rotating the curve $y=x^{3}$ about the y-axis for $1 \leq y \leq 8$.

Find the volume of the solid in exact form.
(b)

A particle is observed as it moves in a straight line between $t=0$ and $t=11$.
Its velocity $V \mathrm{~m} / \mathrm{s}$ at time t is shown on the graph above.
(i) What is the velocity of the particle after 4 seconds?
(ii) What is the particle's acceleration after 4 seconds?
(iii) At what time after $t=0$ is the particle at rest?
(iv) At what time does the particle change direction?
(v) Explain what the shaded area represents.
(c) In Daniel's first year of fulltime employment his annual salary is $\$ 75000$.

At the beginning of the second year his salary increases to $\$ 79000$.
His salary continues to increase by $\$ 4000$ at the beginning of each successive year.
(i) What will Daniel's salary be at the beginning of his $25^{\text {th }}$ year?.
(ii) Calculate Daniel's total earnings after working for 25 years.
(iii) During which year of employment will his total earnings first exceed \$2000 000?
(d) Determine the range of values of x when the curve $y=x^{2} \ln x$ is concave up.

End of Question 15

(a) Evaluate $\int_{1}^{2} \frac{e^{x}}{e^{x}-1} d x$ expressing the answer in simplified form.
(b) In $\triangle X Y Z, X Y=X Z=13 \mathrm{~cm}$ and $Y Z=10 \mathrm{~cm}$.

A rectangle $P Q R S$ is inscribed in the triangle with $P Q$ parallel to $Y Z$. Let $P Q=x \mathrm{~cm}$ and $Q R=y \mathrm{~cm}$.
(i) Find the perpendicular height of $\triangle X Y Z$.
(ii) Using similar triangles, show that

$$
y=12-\frac{6 x}{5}
$$

(iii) If the area of the rectangle $P Q R S$ is $A \mathrm{~cm}^{2}$, find the maximum value of A.
(c) Consider the function $f(x)=\frac{4}{x^{2}+1}$.
(i) Show that $f(x)=\frac{4}{x^{2}+1}$ is an even function.
(ii) Explain why there are no x-intercepts for $f(x)=\frac{4}{x^{2}+1}$.
(iii) Find any stationary points and determine their nature.
(iv) Neatly sketch the graph of $y=f(x)$.

Question 11

a) $e^{-\frac{\pi+3}{2}}=0.04638420$

$$
\approx 0.0464 \text { (3Sig fig) }
$$

b) $50-2 x^{2}=2\left(25-x^{2}\right)$

$$
=2(5-x)(5+x)
$$

c) $\frac{1}{x^{2}-1}-\frac{1}{x-1}=\frac{1}{(x-1)(x+1)}-\frac{x+1}{(x-1)(x+1)}$

$$
=\frac{1-x-1}{(x-1)(x+1)}=\frac{-x}{(x-1)(x+1)}
$$

d) $3 x-5=4$ or $3 x-5=-4$

$$
\begin{aligned}
& 3 x=9 \quad \text { or } 3 x=1 \\
& \therefore \quad x=3 \quad \text { or } x=\frac{1}{3}
\end{aligned}
$$

e) $L H S=\frac{1}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3-\sqrt{2}}$

$$
=\frac{3+\sqrt{2}}{7} \quad \rightarrow \quad a=\frac{3}{7}, b=\frac{1}{7}
$$

f) Domain: all real $x \geq \frac{1}{2}$

Range: all real $y \geq 0$
g) $\int_{0}^{\frac{\pi}{2}} \sec ^{2} \frac{x}{3} d x=3\left[\tan \frac{x}{3}\right]_{0}^{\frac{\pi}{2}}$

$$
=3\left(\tan \frac{\pi}{6}-\tan 0\right)=\frac{3}{\sqrt{3}}
$$

Question 12.

a) $\frac{d}{d x}\left(\sqrt{x^{3}+1}\right)=\frac{1}{2}\left(x^{3}+1\right)^{-\frac{1}{2}} \times 3 x^{2}$

$$
=\frac{3 x^{2}}{2 \sqrt{x^{3}+1}}
$$

b) $81-27+9-\ldots \ldots . \rightarrow \quad a=81, r=-\frac{1}{3}$

$$
\therefore S_{\infty}=\frac{81}{1-\left(-\frac{1}{3}\right)}=\frac{243}{4}
$$

c) $\int(3 x-2)^{5} d x=\frac{(3 x-2)^{6}}{18}+C$
d) $\sin \frac{3 \pi}{4}+\cos \frac{7 \pi}{6}=\frac{1}{\sqrt{2}}-\frac{\sqrt{3}}{2}$
e) $\frac{d y}{d x}=3 x^{2}-5$

$$
\therefore y=x^{3}-5 x+C
$$

when $x=1, y=1 \rightarrow C=5$
$\therefore y=x^{3}-5 x+5$
f) $V=\frac{\pi t^{3}}{12} \mathrm{~cm}^{3} \rightarrow \frac{d V}{d t}=\frac{\pi t^{2}}{4}$
when $t=1, \frac{d V}{d t}=\frac{\pi}{4} \mathrm{~cm}^{3} / \mathrm{s}$
g) i) $6 y=\left(x^{2}+2 x+1\right)+12$

$$
\therefore 6(y-2)=(x+1)^{2}
$$

hence the vertex is $(-1,2)$
ii) for the focal length $4 a=6 \rightarrow a=\frac{3}{2}$

Question 13

a) $\frac{d}{d x}\left(e^{\cos x}\right)=-\sin x e^{\cos x}$
b) $\quad d=\frac{|2 \times 1-5 \times-3-4|}{\sqrt{2^{2}+(-5)^{2}}}=\frac{13}{\sqrt{29}}$
c) $\angle F C E=60^{\circ}$ [$\triangle F C E$ is equilateral]
$\angle B C D=90^{\circ} \quad[\triangle A B C D$ is a square]
$\therefore \angle B C F=360^{\circ}-130^{\circ}-90^{\circ}-60^{\circ}=80^{\circ}$
and since $B C=C F$ as $(D C=C E)$

$$
\text { then } \begin{aligned}
\theta & =\angle C B F=\frac{180^{\circ}-80^{\circ}}{2} \\
& =50^{\circ} \quad[\angle \text { 's opp }=\text { sides }] \\
& {[\text { in isosceles } \Delta] }
\end{aligned}
$$

d) i) Product of roots $=1$

$$
\therefore \frac{k}{3}=1 \quad \rightarrow \quad k=3
$$

ii) $\Delta=0$ for equal roots

$$
\begin{aligned}
& \Delta=b^{2}-4 a c=100-12 k \\
& 100=12 k \quad \rightarrow \quad k=\frac{25}{3}
\end{aligned}
$$

e)

$$
\frac{x}{\sin 85^{\circ}}=\frac{6}{\sin 55^{\circ}} \quad \rightarrow \quad x=\frac{6 \sin 85^{\circ}}{\sin 55^{\circ}}
$$

$\therefore x=7.3 \mathrm{~km}$
f) $\int_{0}^{3}-x^{2}+a x+12 d x=45$

$$
\begin{aligned}
\therefore & {\left[-\frac{x^{3}}{3}+\frac{a x^{2}}{2}+12 x\right]_{0}^{3}=45 } \\
& -9+\frac{9 a}{2}+36=45 \quad \rightarrow \quad a=4
\end{aligned}
$$

Question 14.

a) i) $A(-2,0) ; B(0,4)$;
ii) $m_{L_{1}}=2 \rightarrow m_{L_{2}}=-\frac{1}{2}$

$$
\begin{aligned}
\therefore & L_{2}: y-4=-\frac{1}{2}(x-0) \text { using } B(0,4) \\
& \therefore 2 y-8=-x \\
& \therefore \quad x+2 y-8=0
\end{aligned}
$$

iii) $y=2 x$
iv) Solve $y=2 x$ and $x+2 y-8=0$

$$
\begin{aligned}
& \therefore x+2(2 x)-8=0 \\
& 5 x=8 \rightarrow x=\frac{8}{5}
\end{aligned}
$$

when $x=\frac{8}{5}, y=2 \times \frac{8}{5}=\frac{16}{5}$
v) C has coordinates $(8,0)$.

Area of quadrilateral $O A B D=$
Area of $\triangle A B C$ - Area of $\triangle O D C$
$=\frac{1}{2} \times 10 \times 4-\frac{1}{2} \times 8 \times \frac{16}{5}=\frac{36}{5} u^{2}$
b) i) $P=\frac{2 \pi}{1 / 2}=4 \pi$
ii)

c) LHS $=\frac{\sin \theta}{\cos \theta} \times \frac{1}{\sin \theta}-\cos \theta$

$$
=\frac{1}{\cos \theta}-\cos \theta
$$

$$
=\frac{1-\cos ^{2} \theta}{\cos \theta}
$$

$$
=\frac{\sin ^{2} \theta}{\cos \theta}
$$

$$
=\frac{\sin \theta}{\cos \theta} \times \frac{\sin \theta}{1}
$$

$$
=\sin \theta \tan \theta=R H S
$$

d) $(x-5)(x+2)=0$
$\therefore x=5$ or $x=-2$
but since $x>0$ then $x=5$ only

Question 15.

a) $V=\pi \int_{1}^{8} x^{2} d y \quad\left[y=x^{3} \rightarrow x^{2}=y^{2 / 3}\right]$

$$
\begin{aligned}
\therefore V & =\pi \int_{1}^{8} y^{\frac{2}{3}} d y \\
& =\pi\left[\frac{3}{5} y^{5 / 3}\right]_{1}^{8} \\
& =\frac{3 \pi}{5}\left(8^{5 / 3}-1^{5 / 3}\right) \\
& =\frac{3 \pi}{5}(31)=\frac{93 \pi}{5} u^{3}
\end{aligned}
$$

b) i) $12 \mathrm{~m} / \mathrm{s}$
ii) $0 \mathrm{~m} / \mathrm{s}^{2}$
iii) $t=9 \mathrm{~s}$
iv) $t=9 \mathrm{~s}$
v) The distance travelled in the first 9 seconds.
c) i) $\$ 75000+24 \times 4000=\$ 171000$
ii) Total earnings for 25 years $=$
$\$ 75000+\$ 79000+\$ 83000+\ldots \ldots .+\$ 171000$
$=\frac{25}{2}(\$ 75000+\$ 171000)$
$=\$ 3075000$
iii) $2000000=\frac{n}{2}(2 \times 75000+(n-1) \times 4000)$

$$
4000000=150000 n+4000 n^{2}-4000 n
$$

$$
\therefore 2 n^{2}+73 n-2000=0
$$

$$
n=\frac{-73 \pm \sqrt{73^{2}-4 \times 2 \times-2000}}{4}
$$

and since $n>0, n \approx 18.26$
hence during the $19^{\text {th }}$ year.
d) Concave up when $y^{\prime \prime}>0$
$\therefore y^{\prime}=x^{2} \times \frac{1}{x}+2 x \times \ln x$

$$
=x+2 x \ln x
$$

$\therefore y^{\prime \prime}=1+2 x \times \frac{1}{x}+2 \times \ln x$

$$
=3+2 \ln x
$$

$\therefore 3+2 \ln x>0$
$\therefore \ln x>-\frac{3}{2} \quad \rightarrow \quad x>e^{-3 / 2}$

Question 16.

a) $\int_{1}^{2} \frac{e^{x}}{e^{x}-1} d x=\left[\ln \left(e^{x}-1\right)\right]_{1}^{2}$

$$
\begin{aligned}
& =\ln \left(e^{2}-1\right)-\ln (e-1) \\
& =\ln \frac{(e-1)(e+1)}{(e-1)} \\
& =\ln (e+1)
\end{aligned}
$$

b) i) Perpendicular height is 12 cm (Pythagoras)
ii) Let D be the midpoint of $P Q$.
$\therefore \quad D Q=\frac{x}{2}$ and $X D=12-y$.
12

The triangles are similar (equiangular), hence corresponding sides are in the same ratio.
$\therefore \frac{12-y}{x / 2}=\frac{12}{5}$
$\therefore 6 x=60-5 y$
$\therefore y=12-\frac{6 x}{5}$
iii) $A=x y \quad \rightarrow \quad A=x\left(12-\frac{6 x}{5}\right)$
$\therefore A=12 x-\frac{6 x^{2}}{5}$
For a maximum area $\frac{d A}{d x}=0$ and $\frac{d^{2} A}{d x^{2}}<0$.
$\frac{d A}{d x}=12-\frac{12 x}{5} ; \frac{d^{2} A}{d x^{2}}=-\frac{12}{5}<0$ hence maximum.
$\therefore 12-\frac{12 x}{5}=0 \quad \rightarrow \quad x=5 \mathrm{~cm}$
Hence maximum area $=5 \times\left(12-\frac{6 \times 5}{5}\right)$

$$
=30 \mathrm{~cm}^{2}
$$

c) i) A function is even if $f(x)=f(-x)$.

$$
\begin{aligned}
f(-x) & =\frac{4}{(-x)^{2}+1} \\
& =\frac{4}{x^{2}+1}=f(x), \text { hence even. }
\end{aligned}
$$

ii) x-intercepts occur when $f(x)=0$, and since the numerator is constant then $f(x) \neq 0$.
iii) $f(x)=4\left(x^{2}+1\right)^{-1}$

$$
\therefore f^{\prime}(x)=-8 x\left(x^{2}+1\right)^{-2}=\frac{-8 x}{\left(x^{2}+1\right)^{2}}
$$

For stationary points $f^{\prime}(x)=0 \quad \rightarrow \quad x=0$.
When $x=0, y=4$.
Test for maximum or minimum:

x	-1	0	1
$f^{\prime}(x)$	2	0	-2

1 - 1
Hence $(0,4)$ is a maximum stationary point.
iv)

