

Caringbah High School

Year 122019
 Mathematics
 HSC Course
 Assessment Task 4

General Instructions

- Reading time -5 minutes
- Working time -3 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet is provided at the back of this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations
- Marks may not be awarded for partial or incomplete answers

Total marks - 100

Section I 10 marks

Attempt Questions 1-10
Mark your answers on the answer sheet provided. You may detach the sheet and write your name on it.

Section ID 90 marks

Attempt Questions 11-16
Write your answers in the answer booklets provided. Ensure your name or student number is clearly visible.

Name:

Class: \qquad

Marker's Use Only								
Section I	Section II						Total	
Q 1-10	Q11	Q12	Q13	Q14	Q15	Q16		
/10	/15	/15	/15	/15	/15	/15	/100	\%

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-5

1. What is the value of $\log _{2} 3$, correct to 4 significant figures?
(A) 1.584
(B) 1.585
(C) 0.6309
(D) 0.6310
2. The primitive function of $\sec ^{2} 2 x$ is...
(A) $\tan x+c$
(B) $\tan 2 x+c$
(C) $\frac{1}{2} \tan x+c$
(D) $\frac{1}{2} \tan 2 x+c$
3. How many solutions does the equation $(\cos x+1)(2 \sin x-1)=0$ for $0 \leq x \leq 2 \pi$ have?
(A) 2
(B) 3
(C) 4
(D) 5
4. The point $R(6,5)$ is the midpoint of the interval $P Q$, where P has the coordinates $(4,2)$. What is the coordinate of Q ?

(A) $(9,9)$
(B) $(7,8)$
(C) $(8,8)$
(D) $(8,9)$
5. What are the domain and range of $f(x)=\sqrt{4-x^{2}}$?
(A) Domain: $-2 \leq x \leq 2$ Range: $0 \leq y \leq 2$
(B) Domain: $-2 \leq x \leq 2$ Range: $-2 \leq y \leq 2$
(C) Domain: $0 \leq x \leq 2$ Range: $-4 \leq y \leq 4$
(D) Domain: $0 \leq x \leq 2$ Range: $0 \leq y \leq 4$
6. A particle moves so that its velocity function at time t seconds is given by:

$$
v=2 e^{-t}(1-t)
$$

At what time is the acceleration zero?
(A) $t=0$
(B) $t=1$
(C) $t=2$
(D) $t=3$
7. Find the perimeter (P) of the sector of a circle with radius 10 cm and an angle of $\frac{\pi}{3}$ subtended at the centre.
(A) $\quad P=0.5 \times 100 \times\left(\frac{\pi}{3}-\sin \frac{\pi}{3}\right) \mathrm{cm}$
(B) $\quad P=\left(0.5 \times 100 \times \frac{\pi}{3}\right) \mathrm{cm}$
(C) $\quad P=\left(20+\frac{\pi}{3}\right) \mathrm{cm}$
(D) $\quad P=\left(20+\frac{10 \pi}{3}\right) \mathrm{cm}$
8. Which of the following is equal to $\frac{1}{3 \sqrt{5}+\sqrt{2}}$?
(A) $\frac{3 \sqrt{5}-\sqrt{2}}{13}$
(B) $\frac{3 \sqrt{5}+2}{13}$
(C) $\frac{3 \sqrt{5}-\sqrt{2}}{43}$
(D) $\frac{3 \sqrt{5}+\sqrt{2}}{43}$
9. The diagram shows the graph of $y=f(x)$.

Use the graph to determine the value of a which satisfies the condition

$$
\int_{-7}^{a} f(x) d x=0 .
$$

(A) 9
(B) 12
(C) 13
(D) 15
10. The solution of the equation $\ln (x+2)-\ln x=\ln 4$ is
(A) $x=\frac{2}{3}$
(B) $x=\frac{2}{5}$
(C) $x=\frac{3}{2}$
(D) $x=\frac{5}{2}$

Section II

60 marks
Attempt Questions 11-16
Allow about $\mathbf{2}$ hours $\mathbf{4 5}$ minutes for this section
Answer each question in a SEPARATE writing booklet.
Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.
(a) Calculate correct to one decimal place, the value of
$\sqrt{\frac{3 x y}{z}}$ when $x=4.2, y=6.8$ and $z=4.4$
(b) Simplify: $\frac{x-x^{-2}}{1+x^{-2}}$
(c) Differentiate:
(i) $\frac{2}{5 x^{3}}$
(ii) $e^{x} \sin x$
(iii) $\left(e^{3 x}-5\right)^{4}$
(d) A parabola has an equation given by: $y=\frac{1}{2}\left(x^{2}-6 x+19\right)$
(i) Express the above equation in the form $(x-h)^{2}=4 a(y-k)$. 2
(ii) Find the coordinates of the vertex and focus of the parabola. 2
(iii) Find the equation of the directrix of the parabola. 1
(iv) Sketch the locus of P, indicating all the above features. 2

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.
(a) Find the primitive of $\cos (2 x+1)$.
(b) If α and β are the roots of the equation $2 x^{2}-3 x+4=0$, find the value of $\alpha^{2}+\beta^{2}$.
(c) Find, in general form, the equation of the tangent to the curve $y=x \ln x$ at the x - intercept.
(d) Find $\int_{0}^{1} \frac{3 x}{x^{2}+1} d x$, in exact form.
(e) Solve and graph the solution for $|1-3 x| \geq 2$.
(f) For what values of k will the equation $x^{2}-k x+9=0$ have real and different 2 roots?

Question 13 (15 marks) Use a SEPARATE writing booklet.
(a) Find
(i) $\int e^{5 x+1} d x$
(ii) $\int \cot x d x$
(iii) $\int\left(x^{2}-1\right)^{2} d x$
(b) Evaluate $\int_{0}^{3} \sqrt{5 x+1} d x$.
(c) The parabola $y=-x^{2}+13 x-36$, passes through the point $P(6,6)$.

(i) Show the equation of the tangent to the parabola at the point $P(6,6)$ is $y=x$.
(ii) Find the area bounded by the parabola, the tangent and the x - axis.
(d) Solve $2^{2 x}-5 \times 2^{x}+4=0$

Question 14 (15 marks) Use a SEPARATE writing booklet.
(a)

(i) Prove that $\triangle A B C$ and $\triangle A D B$ are similar.
(ii) If $A D=4 \mathrm{~cm}$ and $D C=12 \mathrm{~cm}$, find the length of $A B$.
(b) Let $f(x)=\frac{1}{3} x^{3}+x^{2}-3 x+5$.
(i) Find the stationary points and determine their nature. 4
(ii) Find any inflexion points. 2
(iii) Sketch the graph of $f(x)$. 1
(iv) For what value of x is $f(x)$ concave up? $\quad \mathbf{1}$
(c) The mass, M, in grams of radioactive substance is expressed as $M=195 e^{-k t}$ where k is a positive constant and t the time in days.
The mass of the substance halved in 6 days.
(i) Find the value of k, correct to 4 decimal places.
(ii) At what rate is the mass decaying after 15 days. Answer correct to 2 one decimal place.

Question 15 (15 marks) Use a SEPARATE writing booklet.
(a) Amelia is saving for a holiday. In the first month she saves $\$ 30$, in the second month her savings are $\$ 5$ more than the month before.
(i) How much will she save in the $21^{\text {st }}$ month?
(ii) How much money will she have saved in total by the $21^{\text {st }}$ month?
(iii) Amelia needs $\$ 2100$ to pay for her plane ticket. How long will it take her to save this amount?
(b) Calculate the volume of a solid of revolution if $y=\frac{1}{\sqrt{x}}$ is rotated about the $y-$ axis from $y=1$ to $y=2$.
(c) A particle is travelling in a straight line, starting from the origin, such that

$$
\frac{d^{2} x}{d t^{2}}=\frac{8}{(t+1)^{2}}
$$

where x is displacement in metres and t is time in seconds.
(i) Explain why the acceleration is always positive.
(ii) Find the expression for velocity of the particle.
(iii) Find the distance covered between $t=2$ and $t=5$ seconds.
(d) Solve $3 \tan 2 x=\sqrt{3}$ for $0 \leq x \leq 2 \pi$

End of Question 15

Question 16 (15 marks) Use a SEPARATE writing booklet.
(a) Sam borrowed $\$ 18000$ to buy a new car. He is charged interest at 12% p.a. compounded monthly, on the balance owing. The loan is to be repaid in equal monthly instalments over 5 years.
Let A_{n} be the amount owing after the $n t h$ monthly repayments M has been made.
(i) Write an expression for the amount owing after one month, A_{1}.
(ii) Show that $A_{n}=18000(1.01)^{n}-100 M\left(1.01^{n}-1\right)$
(iii) Calculate Sam's monthly instalment.
(b) If $2 x^{2}-3 x+3 \equiv A(x-1)^{2}+B(x-1)+C$, find the value of A, B and C.
(c) Use Simpson's Rule with 3 function values to estimate

$$
\int_{0}^{\frac{\pi}{4}} \sec x d x
$$

Answer correct to two decimal places.
(d) $A B$ and $A C$ are radii of the length r metres of a circle with centre A. The arc $B C$ of the circle subtends an angle of θ at A. The perimeter of figure $A B C$ is 8 m .

(i) Show that the area $A \mathrm{~m}^{2}$ of the sector $A B C$ is given by $A=\frac{32 \theta}{(2+\theta)^{2}}$.
(ii) Hence, find the maximum area of the sector.

Yr 12 Trial Mathematics 2019 Solutions

Section (I)

$Q 1$	B	$Q 6$	C
$Q 2$	D	$Q 7$	D
23	B	08	C
$Q 4$	C	09	D
05	A	$Q 10$	A

QI. $\log _{2} 3=\frac{\log _{e} 3}{\log _{e} 2}$

$$
=1.585(B)
$$

$2 \int \sec ^{2} 2 x d x=\frac{1}{2} \tan 2 x+c$

Q3 $(\cos x+1)(2 \sin x-1)=0$

$$
\therefore x=\frac{\pi}{6}, \frac{s \pi}{6}, \pi
$$

$\therefore 3$ solutions (B)
QU

$$
\begin{array}{rr}
\frac{4+x}{2}=6, & \frac{y+2}{2}=5 \\
4+x=12 & y+2=10 \\
x=8 & y=8
\end{array}
$$

OR by inspection.

$$
(8,8)(c)
$$

OS $f(x)=\sqrt{4-x^{2}}$
D: $-2 \leq x \leq 2$
$R: 0 \leqslant y \leqslant 2(A)$

Q6 $v=2 e^{-t}(1-t)$

$$
\begin{aligned}
& 26=\alpha e \\
& a=2 e^{-t}(-1)+(1-t)\left(-2 e^{-t}\right) \\
&=-2 e^{-t}-2 e^{-t}+2 t e^{-t} \\
&=-4 e^{-t}+2 t e^{-t} \\
&=2 e^{-t}(-2+t) \\
& 2 e^{-t}(-2+t)=0 \\
& \quad t=2(c)
\end{aligned}
$$

Q]

$$
\begin{align*}
P & =\theta+2 r \\
& =10 \times \frac{\pi}{3}+2 \times 10 / \frac{\pi}{3} \\
& =\left(\frac{10 \pi}{3}+20\right) \mathrm{cm}(D) \tag{D}
\end{align*}
$$

$$
\text { Q8 } \begin{aligned}
& \frac{1}{3 \sqrt{5}+\sqrt{2}} \times \frac{3 \sqrt{5}-\sqrt{2}}{3 \sqrt{5}-\sqrt{2}} \\
= & \frac{3 \sqrt{5}-\sqrt{2}}{45-2} \\
= & \frac{3 \sqrt{5}-\sqrt{2}}{43} \quad(c)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Qt } A_{\text {rectangle }}=3 \times 10=304^{2} \\
& A_{\text {triangle }}=\frac{1}{2} \times 6 \times 5 \\
& =\frac{5 b}{2} \\
& A_{1}=A_{2} \text {, for } \int_{-7}^{a} f(x) d x=0 \text {. } \\
& \therefore \frac{5 b}{2}=30 \\
& 5 b=60 \\
& \therefore a=b+3 \\
& =12+3 \\
& \therefore a=15 \text { (D) }
\end{aligned}
$$

$210 \ln (x+2)-\ln x=4$

$$
\begin{align*}
\frac{x+2}{x} & =4 \\
x+2 & =4 x \\
3 x & =2 \\
x & =\frac{2}{3} \tag{A}
\end{align*}
$$

Sectien II
Qu
(a) $\sqrt{\frac{3 x y}{z}}=\sqrt{\frac{3 \times 4.2 \times 6.8}{4.4}}$

$$
=4.4
$$

$$
\text { (b) } \begin{aligned}
& \frac{x-x^{2}}{1+x^{-2}}=\frac{x-\frac{1}{x^{2}}}{1+\frac{1}{x^{2}}} \\
&=\frac{x^{3}-1}{x^{2}} \div \frac{x^{2}+1}{x^{2}} \\
&=\frac{x^{3}-1}{x^{2}} \times \frac{x^{x}}{x^{2}+1} \\
&=\frac{x^{3}-1}{x^{2}+1} \\
& \text { (c) (i) } \frac{d}{d x}\left(\frac{2}{5 x^{3}}\right)=\frac{d}{d x}\left(\frac{2}{5} x^{-3}\right) \\
&=\frac{-6}{5} x^{-4} \\
&=\frac{-6}{5 x^{4}}
\end{aligned}
$$

$$
\text { (ii) } \begin{aligned}
& \frac{d}{d x}\left(e^{x} \sin x\right) \\
&= e^{x} \cos x+\sin x e^{x} \\
&= e^{x}(\cos x+\sin x)
\end{aligned}
$$

(iii) $\frac{d}{d x}\left(e^{3 x}-5\right)^{4}$

$$
\begin{aligned}
& =4\left(e^{3 x}-5\right)^{3}\left(3 e^{3 x}\right) \\
& =12 e^{3 x}\left(e^{3 x}-5\right)^{3}
\end{aligned}
$$

$$
\begin{aligned}
& (d)(i) y=\frac{1}{2}\left(x^{2}-6 x+19\right) \\
& 2 y=x^{2}-6 x+19 \\
& 2 y=x^{2}-6 x+9+10 \\
& 2 y-10=(x-3)^{2} \\
& 2(y-5)=(x-3)^{2} \\
& \therefore(x-3)^{2}=2(y-5)
\end{aligned}
$$

(ii.) $a=1 / 2$

$$
\therefore v(3,5) \quad F(3,5.5)
$$

(iii) $y=4.5$
(iv)

Q12

$$
\begin{aligned}
& \text { (a) } \int \cos (2 x+1) d x \\
& =\frac{1}{2} \sin (2 x+1)+c
\end{aligned}
$$

$$
\begin{aligned}
&(b) \quad 2 x^{2}-3 x+4=0 \\
& \alpha+b=3 / 2, \alpha b=2 \\
& \alpha^{2}+b^{2}=(\alpha+B)^{2}-2 \alpha b \\
&=(3 / 2)^{2}-2(2) \\
&=-1^{3 / 4}
\end{aligned}
$$

Q12.cost
(c)

$$
\begin{aligned}
y^{\prime} & =x\left(\frac{1}{x}\right)+\ln x(1) \\
& =1+\ln x
\end{aligned}
$$

$x-\operatorname{int}, y=0$.

$$
x \ln x=0
$$

$$
x=0, \ldots
$$

The olly tangert that con exist is at $(1,0)$
wher $x=1, y^{\prime}=1+(n)$

$$
\begin{aligned}
& y-y=m\left(x-x_{1}\right) \\
& y-0=1(x-1) \\
& x-y-1=0 \\
& x-y-1
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \int_{0}^{1} \frac{3 x}{x^{2}+1} d x \\
= & \frac{3}{2} \int_{0}^{1} \frac{2 x}{x^{2}+1} d x \\
= & \frac{3}{2}\left[\ln \left(x^{2}+1\right)\right] \\
= & \frac{3}{2}[\ln 2-\ln] \\
= & \frac{3}{2}[\ln 2-0] \\
= & \frac{3}{2} \ln 2
\end{aligned}
$$

$$
\begin{aligned}
& (\text { e) }|1-3 x| \geqslant 2 \\
& -3 x=2 \\
& -3 x=1 \\
& x=-\frac{1}{3}
\end{aligned}
$$

$$
1-3 x=-2
$$

$$
-3 x=-3
$$

test

$$
x=1
$$

$$
\therefore x \leqslant-\frac{1}{3}, x \geqslant 1
$$

(f) $x^{2}-k x+9=0$.

For seal \& different roets:

$$
\Delta>0
$$

\[

\]

Q13
(a)

$$
\text { (i) } \int e^{5 x+1} d x .
$$

$$
\text { (ii) } \begin{aligned}
& \int \cot x d x \\
= & \int \frac{\cos x}{\sin x} d x \\
= & \ln \sin x+c
\end{aligned}
$$

(iii)

$$
\text { ii } \begin{aligned}
& \int\left(x^{2}-1\right)^{2} d x \\
= & \int\left(x^{4}-2 x^{2}+1\right) d x \\
= & \frac{x^{5}}{5}-\frac{2 x^{3}}{3}+x+c
\end{aligned}
$$

el 3 cont
(b)

$$
\text { b) } \begin{aligned}
& \int_{0}^{3} \sqrt{5 x+1} d x \\
= & \int_{0}^{3}(5 x+1)^{1 / 2} d x \\
= & {\left[\frac{2(5 x+1)^{3 / 2}}{3 \times 5}\right]_{0}^{3} } \\
= & \frac{2}{15}\left[(5(3)+1)^{3 / 2}-1\right] \\
= & \frac{2}{15}\left[16^{3 / 2}-1\right] \\
= & \frac{2}{15}[64-1] \\
= & \frac{2}{15} \times 63 \\
= & \frac{42}{15} \\
= & 8^{2 / 5}
\end{aligned}
$$

(c) (i)

$$
\begin{aligned}
& y=-x^{2}+13 x-36 \quad f(6,6) \\
& y^{\prime}=-2 x+13
\end{aligned}
$$

sub $x=6, y^{\prime}=-2(6)+13$

$$
=-12+13
$$

$$
\therefore m=1
$$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y-6=1(x-6)
$$

$$
y=x
$$

(ii) For $y=-x^{2}+13 x-36$
x-int, $y=0$.

$$
\begin{gathered}
x^{2}-13 x+36=0 \\
(x-9)(x-4)=0 \\
x=9,4
\end{gathered}
$$

$A=\frac{1}{2} b h-\int_{4}^{6}$ parabola

$$
=\frac{1}{2} \times 6 \times 6-\int_{4}^{6}\left(-x^{2}+13 x-36\right) d x
$$

$$
=18-\left[\frac{-x^{3}}{3}+\frac{13 x^{2}}{2}-36 x\right]_{4}^{6}
$$

$$
=18-\left[\left(\frac{-6^{3}}{3}+\frac{13(6)^{2}}{3}-36(6)\right)\right.
$$

$$
\begin{aligned}
& =\left[8-\left[-\frac{t^{3}}{3}+\frac{13(4)^{2}}{2}-36(4)\right)\right] \\
& =18-\left[-54-\left(\frac{-184}{3}\right)\right] \\
& =18+54-\frac{184}{3} \\
& =\frac{32}{3} \\
& =10 \frac{2}{3} u^{2}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& 2^{2 x}-5 \times 2^{x}+4=0 \\
& \left(2^{x}\right)^{2}-5 \times 2^{x}+4=0
\end{aligned}
$$

let $u=2^{x}$

$$
\begin{aligned}
& u^{2}-5 u+4=0 \\
& (u-4)(u-1)=0 \\
& u=4,1
\end{aligned}
$$

But $u=2^{x}$

$$
\begin{array}{ll}
2^{x}=4 & 2^{x}=1 \\
2^{x}=2^{2} & 2^{x}=2
\end{array}
$$

$$
\therefore x=0,2
$$

014

(i) In $\triangle A B C \not \subset \triangle A D B$
$\angle A C B=\angle A B D=\alpha$ (given)
$\angle C A B=\angle B A D$ (common \angle)
$\therefore \triangle A B C I I) \triangle A D B$ (equiangular.)
(ii)

$$
\begin{aligned}
\frac{A B}{A D} & =\frac{A C}{A B} \\
\frac{x}{4} & =\frac{16}{x} \\
x^{2} & =64 \\
x & =8 \quad(a s \quad x>0)
\end{aligned}
$$

b) (i)

$$
\begin{aligned}
& \text { (i) } \begin{aligned}
& f(x)=\frac{1}{3} x^{3}+x^{2}-3 x+5 \\
& f^{\prime}(x)=x^{2}+2 x-3 \\
& f^{\prime}(x)=0, \\
& x^{2}+2 x-3=0 \\
&(x+3)(x-1)=0 \\
& x=-3,1 \\
& f(-3)=14, f(1)=10 / 3 . \\
& f^{\prime \prime}(x)=2 x+2 \\
& f^{\prime \prime}(-3)=2(-3)+2 \\
&=-4<0, \max \\
& f^{\prime \prime}(1)=2(1)+2 \\
&=4>0
\end{aligned} \quad \text { min }
\end{aligned}
$$

$\therefore(-3,14)$ is $0 \max +p \neq$ $(1,10 / 3)$ is a min $+p$.
(ii) $f^{\prime \prime}(x)=2 x+2$
$f^{\prime \prime}(x)=0$, inflexion pt.
$2 x+2=0$.

$$
2 x=-2
$$

$$
x=-1
$$

$$
f(-1)=26 / 3
$$

$\therefore(-1,26 / 3)$ is a possible inflexion point

x	-2	-1	0
$f^{\prime \prime}(x)$	-2	0	2

\therefore change in concavity
$\therefore\left(-1,-6 \frac{1}{3}\right)$ is an inflexion point.
(in)

(iv) $x>-1$
(c) (i) $m=195 e^{-k t}$
when $t=0, M=195$

$$
\begin{aligned}
97.5 & =195 e^{-6 k} \\
0.5 & =e^{-6 k} \\
\ln (0.5) & =\ln e^{-6 k} \\
-6 k & =\ln (0.5) \\
k & =\frac{-\ln (0.5)}{6}=0.1155
\end{aligned}
$$

Q14 cost
(c) (ii)

$$
\begin{aligned}
& \frac{d M}{d t}=-195 k e^{-k t} \\
& =-195(0.1155) e^{-0.1155(i 5)} \\
& =-3.98 \ldots \\
&
\end{aligned}
$$

$Q 15$
(a) $(i) 30,35,40, \ldots$

$$
\begin{aligned}
T_{21} & =30+20 \times 5 \\
& =\$ 130
\end{aligned}
$$

(ii)

$$
\begin{aligned}
S_{21} & =\frac{21}{2}(30+130) \\
& =\$ 1680
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \text { (ii) } 2100=\frac{n}{2}[2(30)+(n-1) 5] \\
& 4200=n[60+5 n-5] \\
& 4200=n[5 n+55] \\
& 4200=5 n^{2}+55 n \\
& 5 n^{2}+55 n-4200=0 \\
& 5\left(n^{2}+11 n-840\right)=0 \\
& n^{2}+11 n-840=0 \\
& (n+35)(n-24)=0 \\
& n=-35,24
\end{aligned}
$$

$\therefore n=24$ since $n>0$.
$\therefore 24$ morths to pay $\$ 2100$

$$
\begin{aligned}
& \text { (b) } y=\frac{1}{\sqrt{x}}, y=1, y=2 \\
& v=\pi \int_{2}^{1} x^{2} d y \\
& =\pi \int_{1}^{2} y^{-4} d y \\
& =\pi\left[\frac{y^{-3}}{-3}\right]^{2} \\
& =-\frac{\pi}{3}\left[\frac{1}{y^{3}}\right]^{2} \\
& =-\frac{\pi}{3}\left[\frac{1}{y^{2}}\right. \\
& =-\frac{1}{3}\left[\frac{1}{8}-1\right] \\
& =-\frac{\pi}{3}\left[-\frac{1}{8}\right] \\
& \left.=\frac{x^{2}}{y^{4}}\right] \\
& \text { (c) } \\
& \text { (i) } x^{-4}
\end{aligned}
$$

Since 6oth mumerator \& derominator are bets poritive, then $\frac{d^{2} x}{d t^{2}}>0$.

Q15cont.
(c)

$$
\begin{aligned}
& \frac{d x}{d t}=8 \int(t+1)^{-2} d t \\
& =8\left[\frac{(t+1)^{-1}}{-1(1)}\right]+c \\
& \frac{d x}{d t}=\frac{-8}{t+1}+c
\end{aligned}
$$

when $t=0, \frac{d x}{d t}=0$

$$
\begin{aligned}
& \quad \frac{-8}{b+1}+c=0 \\
& -8+c=0 \\
& \therefore=8 \\
& \therefore \frac{d x}{d t}=\frac{-8}{t+1}+8
\end{aligned}
$$

(iii)

$$
\begin{aligned}
x & =\int_{2}^{5}\left(\frac{-8}{t+1}+8\right) d t \\
& =-8 \int_{2}^{5} \frac{1}{t+1} d t+\int_{2}^{5} 8 d t \\
& =-8[\ln (t+1)]_{2}^{5}+[8 t]_{2}^{5} \\
& =-8[\ln 6-\ln 3]+[8(5)-8(2)] \\
& =-8[\ln 6-\ln 3]+(40-16) \\
& =-8 \ln 2+24 \\
& =24-8 \ln 2
\end{aligned}
$$

(d) $3 \tan 2 x=\sqrt{3}$
$0 \leq x<2 \pi$. $\tan 2 x=\frac{\sqrt{3}}{3} \quad 0 \leq 2 x \leq 4 \pi$

$$
\begin{aligned}
& 2 x=\tan ^{-1}\left(\frac{\sqrt{3}}{3}\right) \\
&=\frac{\pi}{6} \\
& \frac{s \pi}{6}, \left.\frac{19 \pi}{6} \right\rvert\, c \\
& \therefore 2 x=\frac{\pi}{6}, \frac{7 \pi}{6}, \frac{13 \pi}{6}, \frac{19 \pi}{6} \\
& x=\frac{\pi}{12}, \frac{7 \pi}{12}, \frac{13 \pi}{12}, \frac{19 \pi}{12}
\end{aligned}
$$

Q16,
(a) 木18000, $12 \% \mathrm{p} \cdot a$.... Syss $=1 \% /$ math, 60 month
(i) $A_{1}=18000(1.01)-M$

$$
\text { (ii) } \left.\begin{array}{rl}
A_{2} & =A_{1}(1.01)-M \\
& =[18000(1.01)-M](1.01)-M \\
& =18000(1.01)^{2}-M(1.01)-M \\
& =18000(1.01)^{2}-M(1.01+1) \\
A_{3} & =A_{2}(1.01)-M \\
& \left.=18000(1.01)^{2}-M(1.01+1)\right](1.01)-M \\
& =18000(1.01)^{3}-M(1.012+1.01)-M \\
& =18000(1.01)^{3}-M\left(1+1.01+1.01^{2}\right. \\
A_{n} & =18000(1.01)^{n}-M\left(1+1.01+1.01^{2}+\right. \\
\left.+1.01^{n-1}\right)
\end{array}\right]=\left[\frac{\left.1.01^{n}-1\right)}{0.01}\right] .
$$

Q 16 cont.

$$
\frac{x 16 \text { cont }}{\left(\text { a) }(i i i) A_{60}\right.}=18000(1: 01)^{60}-100 \mathrm{~m}\left(101^{100}-1\right)
$$

But $A_{60}=0$
$18000(1.01)^{60-100 M}\left(1.01^{60}-1\right)=0$

$$
100 \mathrm{M}(1.0160-1)=18000(1.01)^{60}
$$

$$
M=\frac{18000(1.01)^{60}}{100\left(1.01^{60}-1\right)}
$$

$$
\therefore M=\$ 400.40
$$

(b) $2 x^{2}-3 x+3 \equiv A(x-1)^{2}+B(x-1)+C$

RHS:

$$
\begin{aligned}
& A(x-1)^{2}+B(x-1)+C \\
= & A\left(x^{2}-2 x+1\right)+B x-B+C \\
= & A x^{2}-2 A x+B+B x-B+C \\
= & A x^{2}+(-2 A+B) x+A-B+C .
\end{aligned}
$$

Equatig LHS $\&$ RHS:

$$
\begin{array}{r}
A=2,-2 A+B=-3, A-B+C=3 \\
-2(2)+B=-3 \quad 2-1+C=3 \\
-4+B=-3 \quad 1+C=3 \\
B=1 \quad C=2
\end{array}
$$

$$
\therefore A=2, B=1, C=2
$$

(c) $\int_{0}^{\pi / 4} \sec x d x$.

x	0	$\frac{\pi}{85}$	$\frac{\pi}{4}$
$\sec 4$	1	$\sec \frac{\pi}{8}$	$\sqrt{2}$

$$
\begin{aligned}
A & =\frac{\pi / 8}{3}\left[1+4 \times \sec \frac{\pi}{8}+\sqrt{2}\right] \\
& =0.88
\end{aligned}
$$

(d) (i)

$$
\begin{aligned}
& P=2 r+r \theta \\
& 8=2 r+r \theta \\
& 8=r(2+\theta) \\
& r=\frac{8}{2+\theta}
\end{aligned}
$$

$$
A=\frac{1}{2} r^{2} \theta \ldots,
$$

sub(1) into (2)

$$
\begin{aligned}
& A=\frac{1}{2}\left(\frac{8}{2+\theta}\right)^{2} \times \theta \\
&=\frac{1}{2} \times \frac{64}{(2+\theta)^{2}} \times \theta \\
&=\frac{32 \theta}{(2+\theta)^{2}} \\
&(i i) \frac{d A}{d \theta}=\frac{(2+\theta)^{2} \times 3-32 \theta\left[2(2+\theta)(1)^{-}\right.}{(2+\theta)^{4}} \\
&=\frac{32(2+\theta)^{2}-64 \theta(2+\theta)}{(2+\theta)^{4}} \\
&=\frac{32(2+\theta)^{4}[2+\theta-2 \theta]}{(2+\theta)^{4}} \\
&=\frac{32[2-\theta]}{(2+\theta)^{3}} d A
\end{aligned}
$$

For max area, $\frac{d A}{d \theta}=0$.

$$
\begin{aligned}
& \frac{32(2-\theta)}{(2+\theta)^{3}}=0, \theta \neq-2 . \\
& 32(2-\theta)=0 . \\
& \theta=2
\end{aligned}
$$

To check natere:

0	0	2	3
$d A$	8	0	-32120
1	-	1	

$$
\therefore \theta=2 \text { is }
$$ a max.

\therefore Max area $=\frac{32(2)}{(2+2)^{2}}=4 m^{2}$

