

Caringbah High School

Year 12 2019 Mathematics HSC Course Assessment Task 4

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black pen
- Board-approved calculators may be used
- A reference sheet is provided at the back of this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations
- Marks may not be awarded for partial or incomplete answers

Total marks – 100

10 marks

Attempt Questions 1-10 Mark your answers on the answer sheet provided. You may detach the sheet and write your name on it.

90 marks

Attempt Questions 11-16 Write your answers in the answer booklets provided. Ensure your name or student number is clearly visible.

Name:	

Class:

Marker's Use Only									
Section I	ection I Section II			То	Total				
Q 1-10	Q11	Q12	Q13	Q14	Q15	Q16			
"		(1.5	(1 -	(15	(15	(1.5	(100	%	
/10	/15	/15	/15	/15	/15	/15	/100		

Section I

10 marks Attempt Questions 1-10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-5

- 1. What is the value of $\log_2 3$, correct to 4 significant figures?
 - (A) 1.584
 - (B) 1.585
 - (C) 0.6309
 - (D) 0.6310
- 2. The primitive function of $\sec^2 2x$ is...
 - (A) $\tan x + c$
 - (B) $\tan 2x + c$
 - (C) $\frac{1}{2} \tan x + c$ (D) $\frac{1}{2} \tan 2x + c$
- 3. How many solutions does the equation $(\cos x + 1)(2 \sin x 1) = 0$ for $0 \le x \le 2\pi$ have?
 - (A) 2
 - (B) 3
 - (C) 4
 - (D) 5

4. The point R(6, 5) is the midpoint of the interval PQ, where P has the coordinates (4, 2). What is the coordinate of Q?

5. What are the domain and range of $f(x) = \sqrt{4 - x^2}$?

(A) Domain: $-2 \le x \le 2$ Range: $0 \le y \le 2$

- (B) Domain: $-2 \le x \le 2$ Range: $-2 \le y \le 2$
- (C) Domain: $0 \le x \le 2$ Range: $-4 \le y \le 4$
- (D) Domain: $0 \le x \le 2$ Range: $0 \le y \le 4$

6. A particle moves so that its velocity function at time t seconds is given by:

$$v = 2e^{-t}(1-t)$$

At what time is the acceleration zero?

- (A) t = 0
- (B) t = 1
- (C) t = 2
- (D) t = 3

- 7. Find the perimeter (P) of the sector of a circle with radius 10 cm and an angle of $\frac{\pi}{3}$ subtended at the centre.
 - (A) $P = 0.5 \times 100 \times \left(\frac{\pi}{3} \sin\frac{\pi}{3}\right) \text{ cm}$

(B)
$$P = \left(0.5 \times 100 \times \frac{\pi}{3}\right) \text{cm}$$

(C) $P = \left(20 + \frac{\pi}{3}\right) \text{cm}$

$$(D) \quad P = \left(20 + \frac{10\pi}{3}\right) cm$$

8. Which of the following is equal to
$$\frac{1}{3\sqrt{5}+\sqrt{2}}$$
?

- (A) $\frac{3\sqrt{5} \sqrt{2}}{13}$
- (B) $\frac{3\sqrt{5}+2}{13}$

$$\begin{array}{c} \text{(C)} \quad \frac{3\sqrt{5}-\sqrt{2}}{43} \end{array}$$

(D)
$$\frac{3\sqrt{5} + \sqrt{2}}{43}$$

9. The diagram shows the graph of y = f(x).

Use the graph to determine the value of a which satisfies the condition

$$\int_{-7}^{a} f(x) dx = 0.$$

- (A) 9
- (B) 12
- (C) 13
- (D) 15
- 10. The solution of the equation $\ln(x+2) \ln x = \ln 4$ is

(A)
$$x = \frac{2}{3}$$

(B) $x = \frac{2}{5}$
(C) $x = \frac{3}{2}$
(D) $x = \frac{5}{2}$

End of Section I- Multiple Choice Questions

Section II

60 marks Attempt Questions 11–16 Allow about 2 hours 45 minutes for this section

Answer each question in a SEPARATE writing booklet.

Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Calculate correct to one decimal place, the value of 1 $\sqrt{\frac{3xy}{z}}$ when x = 4.2, y = 6.8 and z = 4.4

(b) Simplify:
$$\frac{x - x^{-2}}{1 + x^{-2}}$$
 2

- (c) Differentiate:
 - (i) $\frac{2}{5x^3}$ 1

(ii)
$$e^x \sin x$$
 2

(iii)
$$(e^{3x}-5)^4$$
 2

(d) A parabola has an equation given by: $y = \frac{1}{2}(x^2 - 6x + 19)$

(i)	Express the above equation in the form $(x-h)^2 = 4a(y-k)$.	2
(ii)	Find the coordinates of the vertex and focus of the parabola.	2
(iii)	Find the equation of the directrix of the parabola.	1
(iv)	Sketch the locus of P, indicating all the above features.	2

Question 12 (15 marks) Use a SEPARATE writing booklet.

- (a) Find the primitive of cos(2x + 1). 1
- (b) If α and β are the roots of the equation $2x^2 3x + 4 = 0$, 3 find the value of $\alpha^2 + \beta^2$.
- (c) Find, in general form, the equation of the tangent to the curve $y = x \ln x$ at the 3 x -intercept.

(d) Find
$$\int_0^1 \frac{3x}{x^2 + 1} dx$$
, in exact form. 3

- (e) Solve and graph the solution for $|1 3x| \ge 2$. 3
- (f) For what values of k will the equation $x^2 kx + 9 = 0$ have real and different 2 roots?

Question 13 (15 marks) Use a SEPARATE writing booklet.

- (a) Find
 - (i) $\int e^{5x+1} dx$ 1
- (ii) $\int \cot x \, dx$ 1

(iii)
$$\int (x^2 - 1)^2 dx$$
 2

- (b) Evaluate $\int_0^3 \sqrt{5x+1} \, dx$. 3
- (c) The parabola $y = -x^2 + 13x 36$, passes through the point P(6, 6).

- (i) Show the equation of the tangent to the parabola at the point P(6, 6) is 2 = y = x.
- (ii) Find the area bounded by the parabola, the tangent and the x axis. 4

(d) Solve $2^{2x} - 5 \times 2^x + 4 = 0$

End of Question 13

2

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a)

	(i)	Prove that $\triangle ABC$ and $\triangle ADB$ are similar.	2
	(ii)	If $AD = 4$ cm and $DC = 12$ cm, find the length of AB .	1
(b)	Let	$f(x) = \frac{1}{3}x^3 + x^2 - 3x + 5.$	
	(i)	Find the stationary points and determine their nature.	4
	(ii)	Find any inflexion points.	2
	(iii)	Sketch the graph of $f(x)$.	1
	(iv)	For what value of x is $f(x)$ concave up?	1
(c)	c) The mass, M , in grams of radioactive substance is expressed as $M = 1956$ where k is a positive constant and t the time in days. The mass of the substance halved in 6 days.		
	(i)	Find the value of k , correct to 4 decimal places.	2
	(ii)	At what rate is the mass decaying after 15 days. Answer correct to one decimal place.	2

Question 15 (15 marks) Use a SEPARATE writing booklet.

- (a) Amelia is saving for a holiday. In the first month she saves \$30, in the second month her savings are \$5 more than the month before.
 - (i) How much will she save in the 21^{st} month? 1
 - (ii) How much money will she have saved in total by the 21st month? 2
 - (iii) Amelia needs \$2100 to pay for her plane ticket. How long will it take her 2 to save this amount?
- (b) Calculate the volume of a solid of revolution if $y = \frac{1}{\sqrt{x}}$ is rotated about the y - axis from y = 1 to y = 2.
- (c) A particle is travelling in a straight line, starting from the origin, such that

$$\frac{d^2x}{dt^2} = \frac{8}{(t+1)^2}$$

where x is displacement in metres and t is time in seconds.

(i)	Explain why the acceleration is always positive.	1
(ii)	Find the expression for velocity of the particle.	2
(iii)	Find the distance covered between $t = 2$ and $t = 5$ seconds.	3

2

(d) Solve $3 \tan 2x = \sqrt{3}$ for $0 \le x \le 2\pi$

Question 16 (15 marks) Use a SEPARATE writing booklet.

- Sam borrowed \$18 000 to buy a new car. He is charged interest at 12% p.a. (a) compounded monthly, on the balance owing. The loan is to be repaid in equal monthly instalments over 5 years. Let A_n be the amount owing after the *nth* monthly repayments M has been made. Write an expression for the amount owing after one month, A_1 . 1 (i) 3 Show that $A_n = 18000(1.01)^n - 100M(1.01^n - 1)$ (ii) Calculate Sam's monthly instalment. 1 (iii) If $2x^2 - 3x + 3 \equiv A(x - 1)^2 + B(x - 1) + C$, find the value of A, B and C. (b) 2 (c) 2
 - (c) Use Simpson's Rule with 3 function values to estimate $\int_{0}^{\frac{\pi}{4}} \sec x \, dx$ Answer correct to two decimal places.
- (d) AB and AC are radii of the length r metres of a circle with centre A. The arc BC of the circle subtends an angle of θ at A. The perimeter of figure ABC is 8 m.

(i) Show that the area $A m^2$ of the sector *ABC* is given by $A = \frac{32\theta}{(2+\theta)^2}$.

4

(ii) Hence, find the maximum area of the sector.

End of Paper!

 $\frac{Yr}{D} = \frac{12}{12} \frac{Trial}{Trial} \frac{Mathematics}{Trial} \frac{2019}{Trial} \frac{2019}{Trial} \frac{501}{Trial} \frac{1}{T^2}$ Section (E) $\frac{D! - 2 \leq x \leq 2}{R: 0 \leq y \leq 2(A)} \xrightarrow{2}$ Q1 B 96 C Q2 D Q7 D $Q_{6} V = 2e^{-t}(1-t)$ 83 B 8 C 04 C 09 D $a = 2e^{-t}(-1) + (1-t)(-2e^{-t})$ 05 A 1010 A $=-2e^{\pm}-2e^{\pm}+2\pm e^{\pm}$ $=-4e^{-t}+2te^{-t}$ Q1 log_3= log_3 $= 2e^{-t}(-2+t)$ 10g 2 = 1.585 (B) 2e-t(-2+t)=0 E = 2(c) $\sum \int \sec^2 2x \, dx = \frac{1}{2} \tan 2x \, dx$ $\frac{07}{3} P = r 0 + 2\Gamma$ $= 10 \times TT + 2 \times 10$ $= 10 \times TT + 2 \times 10$ Q3 (w5x+1)(25inn-1)=0 $= \left(\frac{10\pi}{3} + 20\right) cm (b)$ OSXSZT $\cos x = -1$ $2\sin x = 1$ 08 1 × 3/5-5-35-52 35-52 x=TT Sinx=2 -1+ The X=TV/6 STE SEA VE = 35-5-45-2 $\therefore X = E, \overline{E}, \overline{C}, \overline{T}$ =35-52 (c) : 3 solutions (B) 43 $\frac{4+x}{2} = 6, \frac{y+2}{2} = 5$ Q9 A = 3x10=300² rectargle 94 Atriangle = 2xbx5 = 5b 4+x=12 y+2=10 X=8 y=8 $A_1 = A_2$, for $\int_{-\infty}^{\infty} f(x) dx = 0$. by inspection. $\frac{5b}{2} = 30$ 3 = a = b + 3 5b = b0 = 12 + 3 b = 12 = a = 15(b)(8,8) (c)

 $(iii) \frac{d}{d} \left(e^{3x}-5\right)^4$ $a10 \ln(x+2) - \ln x = 4$ x+2=4. $=4(e^{3x}-5)^{3}(3e^{3x})$ $\chi + 2 = 4\chi$ $= 12e^{32}(e^{32}-5)^3$ 3x=2 $\chi = \frac{2}{3} (A)$ $(dXi)y = \frac{1}{2}(x^2 - 6x + 19)$ $2y = \pi^2 - 6x + 19$ Section II 2y=x2-6x+9+10 $\frac{(2)}{(2)} \sqrt{\frac{3xy}{z}} = \frac{3x4.2x6.8}{4.4}$ $2y - 10 = (x - 3)^{2}$ $\lambda(y-5) = (x-3)^{2}$ $(x-3)^2 = \lambda(y-5)$ = 4.4 $(\overline{11}) a = \frac{1}{2}$ $(\sqrt{13}, 5) F(3, 5, 5)$ $\frac{(b)}{(t+x^{-2})} = \frac{x-x^{-1}}{(t+x^{-2})}$ $= \chi^{3} - 1 + \chi^{2} + 1$ $= \chi^{2} - 1 + \chi^{2} + 1$ χ^{2} (iii) y = 4.5(iv) = 4.5 $= \frac{(3,5.5)}{(3,5.5)} = \frac{(3,$ $= x^3 - 1 \times y^2$ x2 x2+1 $= x^3 - 1$ x2+1 $(c)(i) \frac{d}{dx} \left(\frac{2}{5x^3}\right) = \frac{d}{dx} \left(\frac{2}{5}x^{-3}\right)$ (a) f cos (2x41) dx $= \frac{-16 x^{-4}}{5}$ $= \frac{1}{2} \sin(2x+1) + c$ $=-\frac{b}{5x^4}$ $(b) 2x^2 - 3x + 4 = 0.$ a+b = 3/2, ab = 2. $a^2+b^2 = (a+b)^2 - 2ab$ (ii) dr. (exsinx) = excosx+sinxe $= (\frac{3}{2})^{-} - 2(2)$ = ex (cosx+sinx) $= -1^{3}/4$ (2)

 $\begin{array}{c|c} (e) & |1-3x| \ge 2 \\ \hline & -3x = 2 \\ \hline & 1-3x = -2 \end{array}$ Q12 cost. (c) $y = x \ln x$ $y' = x(\frac{1}{x}) + \ln x(1)$ -3x = 1 -3x = -3 $\chi = \frac{1}{3}$ $\chi = 1$ =1+1nxx - int, y = 0 $x \ln x = 0$. x=0,1 : x < -1 x > 1 The only tangent that can $(f) \times^2 - k \times + 9 = 0$. exist is at (1,0) For real & different mots: when x=1, y'=1+1n) \$>0 $(-k)^{2} - 4(1)(q) > 0$ $y-y_1=m(x-x_1)$ 12-36>0, k² > 36 y - 0 = 1(x - 1)y = x - 1x-y-1=0. - KK-6, K>6. $\left(a\right) \left(\frac{3x}{2x+1} dx\right)$ $\frac{Q13}{(a)(i)} \int e^{5x+1} dx$ $= 3 \left(\frac{2x}{x^2 + 1} dx \right)$ = 5 e + c $= \frac{3}{2} \left[\ln (x^{2} + i) \right]^{2}$ (ii) J cotx dre $=\frac{3}{2}\left[\ln 2 - \ln 1\right]$ = f cosk dre sinx $=\frac{3}{2}\left[\ln 2-0\right]$ = In sinx+c $(\pi i) \int (x^2 - 1)^2 dx$ $= \int (x^4 - \lambda x^2 + 1) dx$ $=\frac{x^{5}-2x^{3}+x+c}{5}$

(b) [3 Josefl dx (ii) For y=-x2+13x-36 x-int, y=0.x2-13x+36>0 $= \int_0^3 (5\pi i + 1)^{1/2} dx.$ (x-q)(x-4) = 0 $\chi = 9, 4$ $= \left[\frac{2(5x+1)^{3/2}}{3x5} \right]_{0}^{3}$ A====bh- J_parabola $=\frac{2}{15}\left[(5(3)+1)^{3/2}-1\right]$ $=\frac{1}{2}\times b\times b - \int_{4}^{b} (-x^{2}+13x-3b) dx$ $=\frac{2}{15}\left[\frac{16^{3}(2-1)}{16}\right]$ $= 18 - \left[\frac{-\chi^{3} + \frac{13\chi^{2}}{2} - 36\chi}{4} \right]_{4}^{6}$ $=\frac{2}{15}\left[64-1\right]$ $= |8 - \left[\left(\frac{-6^3}{3} + \frac{13(6)^2}{2} - 36(6) \right) \right]$ $-\left(-\frac{4^{3}}{3}+\frac{13(4)^{2}}{2}-36(4)\right)$ = 15 - 15 $=18-\left[-54-\left(-\frac{184}{3}\right)\right]$ $= \frac{42}{15}$ = 8 7/5 = 18+54-184 $(c)(i) y = -x^2 + 13x - 3b + 1(6,6)$ $=\frac{32}{3}$ y=-2x+13 =10 = u sub x=6, y'=-2(6)+13 =-12+13 (d) 22x-5x2 +4=0. 1.M=1 $(2^{\chi})^{2} - 5\chi 2^{\chi} + 4 = 0$ $y-y=m(x-x_1)$ let $y=2^{x}$ y-6=1(x-6)42-SU+4=0. $M = X_{-}$ (u-4)(u-1) = 0. u=4,1But u=2x $2^{\chi} = 4 \qquad 2^{\chi} = 1$ $2^{\chi} = 2^{2} \qquad 2^{\chi} = 2^{0}$ I.K=P,

(a) 16 (a) A (ii) f''(x) = 2x+2f"(x)=0, inflexion pt. 2x42-0 A 22-2-2 r Bo A x = -1 $f(-1) = \frac{26}{3}$ (i) In DAGC & DADB, :. (-1, 20/3) is a possible LACB = LAGD = ~ (given) inflexion point. LCAB = LBAD (common L) 1. SABCIII SADB (equiangular) × -2 -1 0 £"(x) -2 0 2 (ii) AB = ACAD AB. : change in concavity : (-1, 26/3) is an inflexion $\frac{1}{4} = \frac{16}{16}$ point. 2-=64 x = 8 (as x > 0) (iii) b) (i) $f(x) = \frac{1}{3}x^3 + x^2 - 3x + 5$ $f'(x) = x^2 + 2x - 3$ f'(x)=0, stat. pt. $x^{2} + \lambda x - 3 = 0$. (x+3)(x-1) = 0 $\chi = -3, 1$ $f(-3) = 14, f(1) = \frac{10}{3}.$ $(iv) \approx 2-1$ $(c)(i) = 195e^{-kt}$ when t=0, M=195f"(x)=2x+2 f''(-3) = 2(-3) + 297.5=195e-6k =-420, mex f''(n) = 2(n) + 20:5=e-6k $\ln(0.5) = \ln e^{-G}$ = 4 >0 min : (-3,14) is a max top \$ -bk = ln(0.5)(1,19/3) is a min +p. K=-IN(0.5)=0-1122 5

(b) $y = \frac{1}{\sqrt{2}}, y = 1, y = 2$ Q14 cont. (c)(ii) dM = -195 ke kt $y^2 = \frac{1}{x}$ V=Tr[x²dy dt =-195(0.1155) e= 0.1155(15) $\chi = \frac{1}{42}$ $= \pi \int_{1}^{2} \frac{y^{-4} dy}{y^{-4} dy} \qquad x^{2} = \frac{1}{y^{4}}$ =-3-98-- $= \pi \left[\frac{y^{-3}}{2} \right]^{2}$ $2^{2} = y^{-4}$ als. $= -\frac{1}{3} \left[\frac{1}{3} \right]_{1}^{2}$ (a)(i) 30,35,40, ... $T_{21} = 30 + 20x5$ $= -TT \begin{bmatrix} 1 & -\frac{1}{3} \\ -\frac{1}{3} \end{bmatrix}$ = \$130 (7i) $S_{a} = \frac{21}{2} (30+130)$ $= \frac{1}{3} \left[\frac{1}{8} - 1 \right]$ = \$1680 =-15[-3] $(iii) 2100 = \frac{1}{2} [2(30) + (n-1)5]$ $= 7\pi u^3$ 24 4200= ~ [60+51-5] 4200=n[5n+55] $(c)(i) \frac{d^{2}x}{dt^{2}} = 8$ $4200 = 50^{2} + 550$ 52+550-4200=0 $5(n^2 + 11n - 840) = 0$. Since both numerator & $n^{2} + 11n - 840 = 0$ deroninator are both (n+35)(n-24) = 0.paritive, then dix >0. n = -35, 24-1. n=24 since N>0. : 24 months to pay \$2100

(d) $3 \tan 2x = \sqrt{3}$ $0 \le x \le 2\pi$. $\tan 2x = \sqrt{3}$ $0 \le 2x \le 4\pi$. Q15 cont $(\bigcirc)(ii) \frac{dx}{dt} = 8 \int (t+i)^2 dt$ $= 8 \left[\frac{(t+1)^{-1}}{-1(1)} \right] + C$ $2x = tan^{-1}\left(\frac{\sqrt{3}}{3}\right)$ s A $\frac{1}{6}$ = 1 71 191 dx = -8 + Cdt til 12x2 6, 6, 6, 6 when too, dx =0 $x = \frac{\pi}{12}, \frac{7\pi}{12}, \frac{13\pi}{12}, \frac{19\pi}{12}$ de -8 + C=0. 0+1 -8+C=0 Q16 (a) \$18000, 1220, a, Syrs =1%/month, 60month C=8 -dx = -8 + 8dt t+1 $(i) A_1 = 18000 (1.01) - M$ $(1ii) = \int_{2}^{5} \left(\frac{-8}{+1} + 8\right) dt$ $(ii) A_2 = A_1(1.01) - M_1$ $= -8 \int_{2}^{5} \frac{1}{t+1} dt + \int_{2}^{5} 8 dt$ = [18000 (1.01) - M] (1.01) - M= 18000 (1.01) - M (1.01) - M $= -8 \left[\ln(t+i) \right]_{2} + \left[8t \right]_{2}^{2}$ =18000(1.01)2-M(1.01+1) $= -8 \left[\ln (6 - \ln 3) + \left[8(5) - 8(2) \right] A_3 = A_2 (1.01) - M$ = $\left[8000 (1.01)^2 - M(1.01+1) \right] (1.01) - M$ = -8 [ln 6 - ln 3] + (40 - 16) $=18000(101)^{3}-M(101^{2}+1.01)-M$ $= 18000 (1.01)^{3} - M(1+1.01+1.01^{2})$ = -8(n2+24) $A_{n} = 18000 (1.01)^{n} - M(i+1.01+1.01^{2} + ... + 1.01^{n-1})$ = 18000 (1.01)^{n} - M[1(101^{n-1})] 0.01] = 24-8/n2 $= 18000(1.0)^{n} - 100 M(1.01^{n} - 1)^{n}$

 $(d)(i) P = 2r + r \Theta$ 8=2-+19 600 (10160-1) 8 = -(2 + 0)But $A_{60} = 0$ 18000 (1.01)⁶⁰-100M (1.01⁶⁰-1)=0 2+0-100 M (1.0160 - 1) = 18000 (1.01) 600 $A = \frac{1}{2} r^2 \Theta \dots \Theta$ $M = 18000 (1.01)^{60}$ sub 1 into D $100(101^{60}-1)$ $A = \frac{1}{2} \left(\frac{g}{2+\theta} \right)^2 \times \Theta$: M = \$ 400.40 $=\frac{1}{2}\times\frac{64}{(2+0)^{2}}\times\frac{9}{2}$ (b) $2x^2 - 3x + 3 \equiv A(x - 1)^2 + B(x - 1) + C$ $= \frac{329}{(2+9)^2}$ ROIS: $A(x-1)^{2}+B(x-1)+C$ $=A(x^2-2x+1)+Bx-B+C$ $(11) \frac{d^{A}}{d\Phi} = (2+\Phi)^{2} \times 32 = 329 [2(2+\Phi)(1)]$ $(2+\Phi)^{4}$ =Ax2-2Ax+A+Bx-B+C $=Ax^{+}(-2A+B)x+A-B+C$ $= 32(2+0)^{2} - 640(2+0)$ (2+8)4 Equating LHS & RHS: = 32(2+0)[2+0-20] A=2, -2A+B=-3, A-B+C=3(2+0)4 $(-2(2)+B=-3)^{2}-1+C=3$ -4+B = -3 1+c=3= 32 [2-8] $B=1 \qquad C=2.$ For max area, $\frac{dH}{d0} = 0$. : A = 2, B = 1, C = 2 $\frac{3\lambda(2-\theta)}{2} = 0, \ \theta \neq -2$ (c) Jo sec x dx. $(2+0)^{3}$ 32(2-0)=0. x O T T T secal 1 sector J2 $\Theta = 2$. To check nature ! 9-1 1.0=2.1 0 3 -32/15 8 28 0 a max $A \doteq \frac{\pi}{3} \left[1 + 4 \times \sec \frac{\pi}{3} + 5 \right]$ $-Max, area = 32(2) = 4m^2$ =0.88 8