（⿴囗十）CRANBROOK
 SCHOOL

2013

YEAR 12

TRIAL EXAMINATION

Mathematics

General Instructions

－Reading time－ 5 minutes
－Working time -3 hours
－Write using black or blue pen
－Board－approved calculators may be used
－A table of standard integrals is provided at the back of this paper
－Show all necessary working in Questions 11－16

Total marks－ 82

Section I

7 marks
－Attempt Questions 1－10
－Allow about 15 minutes for this section

Section II

75 marks
－Attempt Questions 11－16
Allow about 2 hours and 45 minutes for this section

Section I

7 marks

Attempt Questions 1－10
Allow about 15 minutes for this section

Use the multiple－choice answer sheet for Questions 1－10

1 What is $\frac{1+\sqrt{5}}{7-2 \sqrt{5}}$ as a fraction with a rational denominator？
（A）$\frac{12+9 \sqrt{5}}{29}$
（B）$\frac{17+9 \sqrt{5}}{29}$
（C）$\frac{12+9 \sqrt{5}}{69}$
（D）$\frac{17+9 \sqrt{5}}{69}$

4 How many solutions are there to the equation $\cos x=x$ for $0 \leq x \leq 2 \pi$ ？
（A） 0
（B） 1
（C） 2
（D） 3

5 What values of x is the curve $f(x)=x^{3}+x^{2}$ concave down？
（A）$x<-\frac{1}{3}$
（B）$x>-\frac{1}{3}$
（C）$x<-3$
（D）$x>3$

7 What is the value of $\sum_{r=1}^{50}(2 r-4)$?
(A) 96
(B) 2350
(C) 2450
(D) 4700

8 What values of k does the quadratic equation $x^{2}-4 k x+4 k=0$ have no real roots?
(A) $0<k<4$
(B) $0>k>4$
(C) $-1<k<0$
(D) $0<k<1$

9 The displacement, x metres, from the origin of a particle moving in a straight line at any time (t seconds) is shown in the graph.

When was the particle at rest?
(A) $t=4.5$ and $t=11.5$
(B) $t=0$
(C) $t=2, t=8$ and $t=14$
(D) $t=1.5$ and $t=8$

10 What is solution to the equation $\cos \theta=-\frac{\sqrt{3}}{2}$ for $0^{\circ} \leq \theta \leq 360^{\circ}$?
(A) $\theta=30^{\circ}$ or 330°
(B) $\theta=60^{\circ}$ or 300°
(C) $\theta=150^{\circ}$ or 210°
(D) $\theta=120^{\circ}$ or 240°

Section III

90 marks

Attempt Questions 11-16

Allow about 2 hours and 45 minutes for this section

Answer each question in a separate writing booklet.
All necessary working should be shown in every question

Question 11 (13 marks) START A NEW BOOKLET

a) Write $5,140,000$ in scientific notation
b) Differentiate $y=2 x^{3}\left(3-x^{2}\right)$ with respect to x
c) Solve $|4 x-1|<3$
d) Factorise $3 x^{2}-5 x-2$
e) Find integers a and b such that $(5-\sqrt{3})^{2}=a+b \sqrt{3}$?
f) Find $\int \frac{x}{x^{2}+1} d x$
h) Simplify $\log _{10} 20 A-\log _{10} 2 A$
a) Show that $\frac{\operatorname{cosec} \theta \sec \theta}{\tan \theta}=\operatorname{cosec}^{2} \theta$
b) The quadratic equation $3 x^{2}-4 x+1=0$ has roots α and β. Find:
i) $\alpha \beta+(\alpha+\beta)$
ii) $\frac{1}{\alpha}+\frac{1}{\beta}$
c) Differentiate with respect to x, and factorise where possible:
i) $\frac{2}{\sqrt{3-x^{2}}}$
ii) $\frac{\ln x}{e^{x}}$
d) A geometric series has a $3^{\text {rd }}$ term of 16 , and a $6^{\text {th }}$ term of 128 . Find the first term and the common ratio.

2
e) The diagram below shows the region bounded by the x-axis, the y-axis, $y=3 e^{2 x}$ $x=-1$.

Find the volume of the solid formed, correct to 2 decimal places, if the shaded region is rotated about the x-axis.

Question 13 (15 marks)

START A NEW BOOKLET
a) The diagram shows the points $A(0,4)$ and $B(-2,0)$. Point C is the midpoint of $A B$. Line $C E$ is drawn perpendicular to $A B$ and crosses the y-axis at D and the x-axis at E.

i) Find the coordinates of C .
ii) Show that $C E$ has equation $x+2 y-3=0$. 3
iii) Find the coordinates of E.1
iv) Show that the distance $A E$ is 5 units. 1
v) Find the equation of the circle centred at E with radius $A E$ 1
vi) Show that point B lies on the circle found in part v). 1
c) The following diagram shows a circle with a centre A, radius $3 \sqrt{2} \mathrm{~cm}$, and a chord of length 8 cm .

i) Use the cosine rule to find $\angle B A C$ in radians, correct to 2 decimal places.
ii) Hence find, correct to the nearest cm^{2}, the area of the minor segment cut off by the chord.
b) The curve $y=1-x^{2}$ and the straight line $y=x-1$ are shown in the diagram below. They intersect at Point A and Point B. Point A has the coordinates $(1,0)$.

i) Show that B has the coordinates $(-2,-3)$
ii) Find the area of the shaded region.
c) After an initial advertising campaign for a new product was ceased, the sales of that product declined at a rate proportional to the current monthly sales S at any time, i.e. $\frac{d S}{d t}=-k S$, where time is in months.
i) Prove that $S=S_{0} e^{-k t}$ satisfies the equation $\frac{d S}{d t}=-k S$, where k, S_{0} are constants.
ii) If sales drop by 20% in four months, find the exact value of k.
iii) If this trend continued, in what time would monthly sales be half the original sales?
a) Boxes are stacked in layers, where each layer contains one box less than the layer below. There are six boxes in the top layer, seven boxes in the next layer, and so on. There are n layers altogether.
i) Write down the number of boxes in the bottom layer
ii) Show that there are $\frac{1}{2} n(n+11)$ boxes altogether
b) A parabola below has equation $x^{2}=12 y$. One point on the parabola is $A(6,3)$.
i) Find the equation of the focal chord through A
ii) Find the coordinates of the point B, the other endpoint of the focal chord through A.
iii) Find the equation of the tangent to the parabola at A.
c) Wendy has set up her superannuation fund, and has accumulated $\$ 134,000$. However, due to an accident she is no longer able to work and make any further contribution to the fund. Wendy is leaving the money in the superannuation fund to accumulate interest at 8% p.a. compounded annually. However she needs to withdraw $\$ 24,000$ at the end of each year for normal living expenses.
i) Show that at the end of the first year she has $\$ 120,720$ left in the superannuation fund
ii) Show that an expression for the amount she has in the fund after n years is given by $A_{n}=300000-166000(1.08)^{n}$
iii) Hence find how many years the fund will last before there is no money in it.
a)

In the diagram above, $P X=X R$ and $P S$ is parallel to $Q R$
i) Prove that $\triangle P X S \equiv \triangle R X Q$
ii) Hence show that $P Q=R S$
b) A piece of wire of length 50 cm is to be cut into two sections, one of which is used to form a square, the other of which is used to form a circle. The length of the edge of the square is $x \mathrm{~cm}$.
. i) Show that the radius of the circle is given by $r=\frac{25-2 x}{\pi}$
ii) Find the area of the circle
iii) Find the total area of the square and the circle
iv) Find the value for x for which the total area of the square and
the circle is a minimum.

STANDARD INTEGRALS

End of paper

$\int x^{n} d x$	$=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0$, if $n<0$
$\int \frac{1}{x} d x$	$=\ln x, x>0$
$\int e^{a x} d x$	$=\frac{1}{a} e^{a x}, a \neq 0$
$\int \cos a x d x$	$=\frac{1}{a} \sin a x, a \neq 0$
$\int \sin a x d x$	$=-\frac{1}{a} \cos a x, a \neq 0$
$\int \sec ^{2} a x d x$	$=\frac{1}{a} \tan a x, a \neq 0$
$\int \sec ^{2} a x \tan a x d x$	$=\frac{1}{a} \sec a x, a \neq 0$
$\int \frac{1}{a^{2}+x^{2}} d x$	$=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0$
$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x$	$=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a$
$\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x$	$=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0$
$\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x$	$=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)$

Zunit Trial Crambrook 2013
multiple cholce

$$
\begin{aligned}
& 1 / \frac{(1+\sqrt{5})}{(7-2 \sqrt{5})} \times \frac{(7+2 \sqrt{5})}{(7+2 \sqrt{5})} \\
& =\frac{7+9 \sqrt{5}+10}{49-20}=\frac{17+9 \sqrt{5}}{29}
\end{aligned}
$$

Remimber $\pi \doteqdot 3.1$
\therefore use this scale to draw $y=x$ THEN I PT OF IMT.
(B)

5/

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}+2 x \\
& f^{\prime \prime}(x)=6 x+2
\end{aligned}
$$

c colown $\therefore f^{\prime \prime}(x)<0$

$$
6 x+2<0 \quad x<-\frac{1}{3}
$$

(A)

$$
\begin{aligned}
& \text { 7) } \sum_{r=1}^{50}(2 r-4)=-2+0+2+\ldots \\
& a=T_{1}=-2 \quad l=T_{50}=96 \\
& S_{50}=\frac{n}{2}(a+l) \\
& \quad=25(-2+96) \\
& \text { (B) }=2350
\end{aligned}
$$

8/ No real roots $\Delta<0$

$$
\begin{aligned}
& (-4 k)^{2}-16 k<0 \\
& 16 k^{2}-16 k<0 \\
& 16 k(k-1)<0 \\
& \text { DRAW } 15 \text { R Onember }
\end{aligned}
$$ cuve 's less than zers. where y-Values are less thon zero ie when $0<k<1$ (D)

9) ATREST $\rightarrow V=0$
stationiary paints on the displacement curve will be zeros of veloity cairve is $t=4.5,11.5$

10, $\cos \theta=\frac{-\sqrt{3}}{2}$
$\theta=180^{\circ}-30^{\circ}$,

$$
\begin{aligned}
& 180^{\circ}+30^{\circ} \\
= & 150^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& 180^{\circ}+30^{\circ} \\
&= 150^{\circ}, 210^{\circ} \\
& \hline
\end{aligned}
$$

(C)
30°
(1.A) 5, 50,000

$$
5.14 \times 10^{6}
$$

Solutions

Number bectueen 1 and 10

$$
\text { B) } \begin{align*}
y & =2 x^{3} \quad\left(3-x^{3}\right) \\
u & =2 x^{3} \quad V=3-x^{2} \\
u^{\prime} & =6 x^{2} \quad V^{\prime}=-2 x \\
\frac{d y}{d x} & =-4 x^{4}+6 x^{2}\left(3-x^{2}\right) \\
& =18 x^{2}-10 x^{4} \tag{2}
\end{align*}
$$

c) $|4 x-1|<3$

Case 1: Positive
Case 2: Wegative

$$
\begin{align*}
4 x-1 & <3 \\
4 x & <4 \\
x & \leqslant 1
\end{aligned} \quad \begin{aligned}
& 4 x-1>-3 \\
& 4 x>-2 \tag{2}\\
& x=-\frac{1}{2} \\
&-\frac{1}{2}<x<1
\end{align*}
$$

D)

$$
\begin{gather*}
3 x^{2}-5 x-2 \\
=(3 x+1)(x-2) \tag{2}
\end{gather*}
$$

E)

$$
\begin{align*}
(5-\sqrt{3})^{2} & =(5-\sqrt{3})(5-\sqrt{3}) \\
& =25-10 \sqrt{3}+3 \\
& =28-10 \sqrt{3} \\
a & =28 \\
b & =-10 \tag{2}
\end{align*}
$$

f) $\int \frac{x}{x^{2}+1} d x$

$$
\begin{aligned}
& \sqrt{x^{2}+1} \\
= & \frac{1}{2} \ln \left(x^{2}+1\right)+c
\end{aligned}
$$

H) $\log _{10} 20 A-\log _{10} 1$
$=\log .\left(\frac{2 O A}{2 A}\right)$
Cancel $A^{\prime}=$!!

$$
=\log _{10} 10
$$

$$
=1
$$

Q12
a) $L H \cdot \operatorname{cosec} \theta \sec \theta$

$$
\begin{aligned}
& \frac{\tan \theta}{\frac{\operatorname{cosec} \theta \times \frac{1}{\cos \theta}}{\cos \theta}} \\
&= \operatorname{cosec} \theta \times \frac{1}{\cos \theta} \times 1 \\
&= \operatorname{cosec} \\
& \sin \theta \\
&= \operatorname{cosec}^{2} \theta=\operatorname{cosec} \theta \\
&=
\end{aligned}
$$

always check RHS ...
Notice on RHS we have $\operatorname{cosec}^{2} \theta$

So leave the cosec
Reduce all other terms Io $\sin \theta, \cos \theta$
Fraction the y needs refining for a number of boys.
b) $\alpha+\beta=-\frac{b}{a}=-\frac{4}{3}=\frac{4}{3} \quad \alpha \beta=\frac{c}{a}=\frac{1}{3}$
i) $\alpha \beta+\alpha+\beta=\frac{4}{3}+\frac{1}{3}=\frac{5}{3}$
ii)

$$
\begin{aligned}
\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\beta+\alpha}{\alpha \beta} & =\frac{\frac{4}{3}}{\frac{1}{3}} \\
& =\frac{4}{3} \times \frac{3^{\prime}}{1}
\end{aligned}
$$

$$
\text { ii) } \left.\begin{array}{rl}
\frac{d}{d y}(\ln x \\
e^{x}
\end{array}\right)=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}=\left\{\begin{aligned}
& =\frac{e^{x} \times \frac{1}{x}-(\ln x) e x}{e^{2 x}} \\
& =\frac{e^{x}\left(\frac{1}{x}-\ln x\right)}{e^{2 x}}
\end{aligned}\right.
$$

again basic fraction division and audition - common denominators

$$
\text { c) i) } \frac{2}{\sqrt{3-x^{2}}}=2\left(3-x^{2}\right)^{-\frac{1}{2}}
$$

$$
\begin{aligned}
& =\frac{4}{3} \times \frac{3}{1} \\
& =4 \\
& =4 \times \frac{\text { neeol to be understood. }}{\text { CHAIN RULE QUESTION!! }}
\end{aligned}
$$ Not A Quotient

$$
f^{\prime}(x)=-\frac{1}{2} x^{1}\left(3-x^{2}\right)^{-\frac{3}{2}} \times-2 x
$$ rule ques ton While it will stol work

$$
=\frac{2 x}{\left(3-x^{2}\right)^{3 / 2}}
$$ IF DONE CAREFULLY it tokes wore tune or mosel who did this were MOT careful (3) (ii) is a quotient rale Q. NOW SHOULD NOT leave. as double decker fretion!!

d)

$$
\begin{array}{l|l|l}
T_{3}=a r^{2}=160 & \frac{a r^{5}}{a r^{2}}=\frac{128}{16} & \begin{array}{l}
\text { cutest into (1) } \\
T_{6}=a r^{5}=1280 \\
r^{3}=8 \\
a r^{2}=16 \\
a r^{2}=2
\end{array} \\
a(4)=16 \\
a=4
\end{array}
$$

e)

$$
\begin{aligned}
V & =\pi \int_{-1}^{0}\left(3 e^{2 x}\right)^{2} \\
& =\pi \int_{-1}^{0} \frac{9 e^{4 x}}{\equiv} d x \\
& =9 \pi\left[\frac{e^{4 x}}{4}\right]_{-1}^{0} \\
& =\frac{9 \pi}{4}\left[e^{0}-e^{-4}\right]
\end{aligned}
$$

\therefore Volurne $\doteqdot 6.94 \mathrm{u}^{3}$
Q13

$$
\begin{aligned}
\text { i) Midpoint } c & =\left(\frac{0+2}{2}, \frac{4+0}{2}\right) \\
& =(-1,2)
\end{aligned}
$$

RTQ if it says $2 D P$. DO T. ()
$3^{2}=9 \quad 1111$

$$
\left.\frac{ \pm 0}{2}\right)
$$

If ashed to show
(ii)

$$
\begin{array}{ll}
M_{A B}=\frac{4}{2}=2 . & y-2=-\frac{1}{2}(x+1) \\
\therefore M_{C E}=-\frac{1}{2} & 2 y-4=-x-1 \\
& x+2 y-3=0
\end{array}
$$ $x+2 y-3=0$ SHOW THIS' IN THIS FORMAT Some were sespey \ominus^{-}

(iii) Let $y=0$ in $x+2 y-3=0$

$$
\begin{aligned}
& x+2 y-3=0 \\
& x=3 \quad \therefore E i(3,0) \text { (}
\end{aligned}
$$

iv) $A E=\sqrt{9+16}=5 \vee$ some students need $I S$ learn
v) $(x-a)^{2}+(y-b)^{2}=r^{2}$ Some this! (a, b) is the CEHTRE $(x-3)^{2}+y^{2}=25 \quad(r) \quad(x a d u s$
vi) JUST SUBSTITUTE!

$$
\left.\begin{array}{l}
x=-2 \\
y=0
\end{array}\right\} \begin{aligned}
& -2-3)^{2}+0=25 \\
& \text { cis }=25=R H S
\end{aligned}
$$

$$
\therefore B \text { lies on aricle! }
$$

b)

Clearly $h=1$

$$
\begin{aligned}
& \therefore \int_{-3}^{1} 3^{x} d x \quad \text { or } \frac{b-a}{h}=\frac{1--3}{4}=1 \\
& =\frac{h}{3}\left(y_{0}+y_{n}+4\left(y_{1}+y_{3}\right)+2\left(y_{2}\right)\right) \text { use } y \text { values } \\
& =\frac{1}{3}\left(\frac{1}{27}+3+4\left(\frac{1}{9}+1\right)+2\left(3^{-1}\right) \quad\right. \text { Learn the } \\
& =2.27(2 d p) \quad \text { procedure } \downarrow \\
& \text { TAKE CARE! }
\end{aligned}
$$

$C_{(i)} L$ Lean the rule $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

$$
\begin{aligned}
\cos A & =\frac{(3 \sqrt{2})^{2}+(3 \sqrt{2})^{2}-8^{2}}{2 \times 3 \sqrt{2} \times 3 \sqrt{2}} \\
& =-\frac{28}{36} \\
\therefore A & =2.46(2 d p) R T Q
\end{aligned}
$$

ii)

$$
\begin{aligned}
A_{\text {seaman }} & =\frac{1}{2} r^{2}(\theta-\sin \theta) \\
& =16 \mathrm{~cm}^{2} \text { (using } 2: 46 \text {) } \\
& =17 \mathrm{~cm}^{2} \text { using exact value }
\end{aligned}
$$ lo th were given monks.

QuESTION 14 - Marns.
(c)
(b) $y=1-x^{2} \quad y=x-1$
(i) $1-x^{2}=x-1$

$$
x^{2}+x-2=0 .
$$

(i)

$$
(x+2)(x-1)=0 .
$$

$$
\therefore x=-2,1
$$

whe $x=-2, y=(-2)-1$

$$
\therefore B(-2,-3)
$$

(ii) $A=\int_{-2}^{1}\left(1-x^{2}\right)-(x-1) d x$.

$$
\begin{aligned}
& =\int_{-2}^{1} 2-x-x^{2} d x \\
& =\left[2 x-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{-2}^{1} \\
& =\left(2(1)-\frac{(1)^{2}}{2}-\frac{(1)^{3}}{3}\right)-\left(2(-2)-\frac{(-2)^{2}}{2}\right. \\
& \left.-\frac{(-2)^{3}}{3}\right)=4 \frac{1}{2} \text { min }^{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d s}{d t} & =-k \cdot s_{0} e^{-w t} \\
\therefore \frac{d s}{d t} & =-k \cdot S
\end{aligned}
$$

as required.

$$
\begin{aligned}
\text { (ii) } t & =0, S=100 \%=S_{0}=1 \\
t & =4, S=80 \%=0.8 \\
\therefore \quad 0.8 & =1 \cdot e^{-k .4} \\
0.8 & =e^{-4 k} \\
\log _{e} 0.8 & =-4 h \\
\therefore k & =\frac{\ln 0.8}{-4}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \delta=0.5 \\
& \therefore 0.5=1 e^{-h t} \\
& \therefore \log _{e} 0.5=-h t \\
& \therefore t=\frac{\ln 0.5}{-h} \\
& \therefore t=\frac{\ln 0.5}{-\left(\frac{\ln 0.8}{-4}\right)} \\
& \therefore t=12.43 \text { months }(2 . d . p)
\end{aligned}
$$

QUESTION 15
Q. NOTE THAT THIS IS AN AP: EACH LAYER INCREASING BY 1.
i. $T_{n}=$?

$$
\bar{T}_{n}=a+(n-1) d
$$

$$
n=n \quad=6+(n-1) \times 1
$$

$$
a=6
$$

$$
=5+n
$$

$$
d=1
$$

- MANN DID NOT COMPLETE 4 SIMPLIFY... ATtENTION.

TO DETAIL, PLEASE!
il.
-NO PROBLEMS.
b.
i. NOTE: $x^{2}=4 a y \rightarrow x^{2}=12 y$

$$
\therefore F \propto \subset \cup S=(0,3)
$$

$\operatorname{USING}(6,3) \neq(0,3):$

$$
\begin{gathered}
\frac{y-3}{x-0}=\frac{3-3}{6-0} \\
\frac{y-3}{x}=0 \\
y=3
\end{gathered}
$$

$$
\begin{aligned}
& S_{n}=? \quad S_{n}=n / 2[2 a+(n-1) \cdot d] \\
& n=n \\
& =\pi / 2(12+n-1) \\
& a=6 \\
& =n / 2(n+11)
\end{aligned}
$$

OR NOTE THAT ALINE THRU $(0,3) \neq(6,3)$
MUST BE $y=3$

- THERE WAS MINIMAL EXPLANATION/WORKING FOR THIS QUESTION.
- SHOW THE MARKER HOW YOU LOT FROM $a=3 \Rightarrow y=3$. FOR ALL THE CAN TELL, YOU HAVE ASSUMED FOCUS = EQ'N OF A LINE...
- IF YOU USE DIAGRAMS IN LOUR REASONING, KEEP THEM NEAT \& LARGE.
i/ AS PARABOLA IS SYMMETRICAL ABOUT y-AXIS, $\therefore B$ would BE $(-6,3)$
- NO PRODS!
iii) $\quad x^{2}=12 y$

$$
y=\frac{x^{2}}{12}
$$

RE-ARRANGE
$y^{\prime}=\frac{2 x}{12}-\frac{x}{6} / \quad$ DIFFERENTIATE
At $A(6,3) \ldots y^{\prime}=6 / 6=1$
$y-3=1(x-6)$
... PT/GRAD FORMULA.

$$
y=x-3
$$

OR

$$
x-y-3=0
$$

- ANSWERED WELL.
- A MINOR ANNOYANCE WAS NOT RECOGNISING CORRECT GENERAL FORM.
c.
i.

$$
\begin{aligned}
A_{1} & =\$ 134000 \times \text { INTEREST }- \text { WITHDRAWAL } \\
& =\$ 134000 \times 1.08-24000 \\
& =\$ 120720 \mathrm{~V}
\end{aligned}
$$

ii. $A_{1}=A_{0} \times 1.08-24000$

$$
\begin{aligned}
A_{2} & =A_{1} \times 1.08-24000 \\
& =\left(A_{0} \times 1.08-24000\right) \times 1.08-24000 \\
& =A_{0} \times 1.08^{2}-24000 \cdot 1.08-24000 \\
& =A_{0} \times 1.08^{2}-24000(1+1.08)
\end{aligned}
$$

$$
A_{3}=A_{2} \times 1.08-24000
$$

$$
=\left(A_{0} \times 1.08^{2}-24000(1+1.08)\right) \times 1.08-24000
$$

$$
=A_{0} \times 1.08^{3}-24000\left(1+1.08+1.08^{2}\right)
$$

$$
\therefore A_{n}=A_{0} \times 1.08^{n}-24000\left(1+1.08+\ldots 1.08^{n-1}\right)
$$

$$
A_{n}=134000 \times 1.08^{n}-\frac{24000\left(1.08^{n}-1\right)}{0.08}
$$

EXPAND $\left\{\begin{array}{l}=134000 \times 1.08^{n}-300000\left(1.08^{n}-1\right)\end{array}\right.$

$$
\begin{aligned}
& =134000 \times 1.08^{n}-300000 \times 1.08^{n} \\
A_{n} & =300000-166000 \times 1.08^{n}
\end{aligned}
$$

- GENERALLY ANSWERED WELL.
- SOME STUDENTS JUMPED FROM $A_{1} \rightarrow A_{n}$. $40 U$ NEED TO "BUILD" THE EQ'N MORE.
- QUITE A FEW STUDENTS FOUND VALUES FOR $n=1,2,3$ FOR BOTH. THE SERIES-BASED EXPRESSION AND THE EXPRESSION PROVIDED. AS THEY FOUND BOTH TO BE EQUIVALENT, THEY TOOK THAT AS A PROOF.
- THIS IS NOT MATHEMATICALLY SOUND AS THERE WAS ONLY A LIMITED SET OF VALUES TESTED
iii. NO \$ LEET $\Rightarrow A_{n}=0$

$$
0=300000-166000(1.08)^{n}
$$

$$
166000(1.08)^{n}=300000
$$

$$
\begin{gathered}
1.08^{n}=\frac{300}{166} \\
\log _{1.08}\left(\frac{300}{166}\right)=n
\end{gathered}
$$

$$
\frac{\log _{10}\left(\frac{300}{166}\right)}{\log _{10}(1.08)}=n
$$

$$
\therefore n=7.689
$$

($7.7,8$, etc... were also accept

- ANSWERED WELL. ONLY A FEW MINOR ALGEBRAIC ERRORS.

Q(6.) In $\triangle P \times s$ and $\triangle E \times Q$
iii) $A_{T}=x^{2}+\frac{625-100 x+4 x^{2}}{\pi}$

Px=xe Giver
$\angle S P X=\angle Q Q X\binom{$ (atrencte angles on paivalle1) }{ ines are equal }

$$
\frac{d A}{d x}=2 x-\frac{100}{\pi}+\frac{8 x}{\pi}
$$

$\angle P X S=\angle Q \times R$ (Uartically opposite angles equal)/

$$
\text { let } \frac{d \mathbb{C}}{d x}=0 \text { stat pt. }
$$

$$
\begin{array}{ll}
\therefore \triangle P \times S \equiv \triangle R \times Q \text { (ABS) } I & d x \\
\text { ii) } P S=Q R \text { corresponding sides of congment } \Delta s . & O=2 x+\frac{8 x}{\pi}-\frac{100}{\pi} \\
\end{array}
$$

AS $P S=Q R$ and $P S \| Q R, P S R Q$ is a
parallelogram. Equal and parallel opposite =side $+2 \pi x+8 x=100$
$\therefore P Q=S R$ Opposite sides of a parallelogram.
6) D

$$
\begin{array}{rl}
4 x & s o c k \\
4 x+2 \pi & =50 \\
r & =\frac{50-4 x}{2 \pi} \\
r=25-2 x
\end{array}
$$

$$
\text { ii) } A=\pi r^{2}
$$

$$
=\pi\left(\frac{25-2 x}{\pi}\right)^{2}
$$

$$
=\frac{\pi(25-22)^{2}}{\pi^{2}}
$$

Note: You could also prove congruency,
of $\triangle P \times Q$ and $s x$.

$$
\begin{aligned}
& \text { of } \Delta p \times a \text { and ste. } \\
& \text { o Diagonals bisect }
\end{aligned}
$$

$$
\begin{aligned}
& \text { * Diagonals bisect } \\
& \text { each other, } \therefore \text { Parallelegten }
\end{aligned}
$$

check min:

$$
\begin{gathered}
\frac{d^{2} \Delta_{T}}{d x^{2}}=2+\frac{8}{\pi} \\
>0 \\
\therefore \text { min }
\end{gathered}
$$

