CRANBROOK student Number SCHOOL


## Mathematics

| Reading time | 5 minutes |
| :--- | :--- |
| Writing time | 3 hours |
| Total Marks | 100 |
| Task weighting | $35 \%$ |

## General Instructions

- Write using blue or black pen
- Diagrams drawn using pencil
- A Board-approved calculator may be used
- The Reference sheet is on the last page of this booklet
- Use the Multiple-Choice Answer Sheet provided
- All relevant working should be shown for each question


## Additional Materials Needed

- Multiple Choice Answer Sheet
- 6 writing booklets


## Structure \& Suggested Time Spent

## Section I

Multiple Choice Questions

- Answer Q1 - 10 on the multiple choice answer sheet
- Allow 20 minutes for this section


## Section II

Extended response Questions

- Attempt all questions in this section in a separate writing booklet
- Allow about 160 minutes for this section

This paper must not be removed from the examination room
Disclaimer
The content and format of this paper does not necessarily reflect the content and format of the HSC examination paper.

## Section I

## 10 Marks

## Allow about $\mathbf{2 0}$ minutes for this section

Use the multiple choice answer sheet for Questions 1 - 10.

1 What is 25.09582 correct to 4 significant figures?
(A) 25.09
(B) $\quad 25.10$
(C) 25.095
(D) 25.096

2 The quadratic equation $x^{2}+3 x-1=0$ has roots $\alpha$ and $\beta$. What is the value of $\alpha \beta+(\alpha+\beta) ?$
(A) 4
(B) 2
(C) $\quad-4$
(D) $\quad-2$

3 The semi-circle $y=\sqrt{9-x^{2}}$ is rotated about the $x$-axis. Which of the following expressions is correct for the volume of the solid of revolution?
(A) $\quad V=\pi \int_{0}^{3}\left(9-x^{2}\right) d x$
(B) $\quad V=2 \pi \int_{0}^{3}\left(9-x^{2}\right) d x$
(C) $\quad V=\pi \int_{0}^{3}\left(9-y^{2}\right) d y$
(D) $\quad V=2 \pi \int_{0}^{3}\left(9-y^{2}\right) d y$

4 The curve $y=2 x^{3}+a x^{2}-3$ has a point of inflexion at $x=1$. The value of $a$ is:
(A) 6
(B) $\frac{3}{2}$
(C) 0
(D) -6
$5 \quad$ What is the derivative of $\left(1+\log _{e} x\right)^{4}$ ?
(A) $\quad 4\left(1+\log _{e} x\right)^{3}$
(B) $\quad \frac{\left(1+\log _{e} x\right)^{5}}{5}$
(C) $\frac{4\left(1+\log _{e} x\right)^{3}}{x}$
(D) $\quad \frac{\left(1+\log _{e} x\right)^{5}}{5 x}$

6 The area between the curve $y=\frac{1}{x}$, the $x$-axis and the lines $x=1$ and $x=b$ is equal to 2 square units. The value of $b$ is:
(A) $e$
(B) $\quad e^{2}$
(C) $2 e$
(D) 3

7 For which values of $x$ is the curve $f(x)=2 x^{3}+x^{2}$ concave down?
(A) $x<-\frac{1}{6}$
(B) $\quad x>-\frac{1}{6}$
(C) $x<-6$
(D) $\quad x>6$
$8 \quad$ What is the angle of inclination of the line $3 x+2 y=7$ with the positive direction of the $x$-axis?
(A) $33^{\circ} 41^{\prime}$
(B) $56^{\circ} 19^{\prime}$
(C) $123^{\circ} 41^{\prime}$
(D) $\quad 146^{\circ} 19^{\prime}$

9 Solve $\sin x=\frac{\sqrt{3}}{2}$ for $0^{\circ} \leq x \leq 360^{\circ}$
(A) $60^{\circ}$ or $240^{\circ}$
(B) $30^{\circ}$ or $150^{\circ}$
(C) $\quad 30^{\circ}$ or $210^{\circ}$
(D) $\quad 60^{\circ}$ or $120^{\circ}$

10 Interest rates are increasing at a decreasing rate.
Which of the following graphs represents the above statement?


(C)

(D)


## Section II

## 90 Marks

Allow about 160 minutes for this section
Answer question 11-16 in separate booklets.

## Question 11

Start a new booklet
15 Marks
(a) Simplify 6-2(4-2p)
(b) Find the derivative of $x \log _{e} x^{2}$
(c) Given that $a$ and $b$ are integers find the values of $a$ and $b$ if $(5-3 \sqrt{2})^{2}=a-\sqrt{b}$.
(d)


In the diagram $\angle C A B=30^{\circ}, \angle E D B=116^{\circ}$, and $\angle A E F=98^{\circ}$.
Find the size of $\angle A B C$.
(e) Solve for $0 \leq x \leq 2 \pi, 2 \cos ^{2} x=1$.
(f) Differentiate $\frac{3 x}{2 x^{2}-1}$ with respect to $x$ leaving your answer in simplest form. $\mathbf{2}$
(g) Find $\int_{0}^{\frac{\pi}{9}} 4 \sec ^{2}(3 x) d x$ leaving your answer in exact form.
(a) For the parabola $(x-2)^{2}=4 y$
(i) Find the coordinates of the vertex 1
(ii) State the equation of the directrix of the parabola 1
(b) Consider the quadratic equation $2 x^{2}+4 x-k=0$
(i) Write down the discriminant of this equation. 1
(ii) For what values of $k$ does $2 x^{2}+4 x-k=0$ have real roots.
(c) The velocity of a particle moving along the $x$ axis is given by $v=b+\frac{c}{t+1}$, where $b$ and $c$ are constant.

Given that the particle has initial velocity $2 \mathrm{~ms}^{-1}$ and its initial acceleration was $4 \mathrm{~ms}^{-2}$, find the values of $b$ and $c$.
(d) In the diagram $A, B, C$ and $D$ are the points $(-1,0),(2,4),(-6,0)$ and $(-2,2)$ respectively. $D$ is also the midpoint of $A E$.

(i) Find the length of the interval $A B$.
(ii) Find the equation of the circle with centre at $B$ which passes through the point $A$.
(iii) Show that the size of $\angle C A B$ is $127^{\circ}$ to the nearest degree.
(iv) Find the midpoint of $B C$.
(v) Show that the equation of the line $B C$ is $x-2 y+6=0$ 1
(vi) Find the perpendicular distance of $A$ from the line $B C$ in simplest exact form. 2
(vii) What type of quadrilateral is $A B E C$ ? Give reasons for your answer.
(a) Use Simpson's Rule, with 3 function values, to find the area between the curve $y=x e^{\sqrt{x}}$, the $x$ axis, and the lines $x=4$ and $x=9$. Give your answer correct to 2 decimal places.
(b) The diagram shows a sector with angle $\theta$ at the centre and radius $4 \sqrt{3} \mathrm{~cm}$.

The arc length is $\frac{8 \pi \sqrt{3}}{3} \mathrm{~cm}$.

(i) Find the size of angle $\theta$.
(ii) Find the length of chord $A B$.
(iii) Find the exact area of the shaded minor segment. Leave your answer in its simplest form.
(c) Anthony bought a second hand car. Its odometer read 10500 km on the day he bought it.

He drove the car for 250 km in the first week, 270 km in the second week and in each successive week he drove it 20 km more than the previous week.
(i) What distance did he drive in the $15^{\text {th }}$ week? 2
(ii) What distance will he drive this car during the first 15 weeks?
(iii) In how many weeks will his car's odometer show 20620 km ?
(a) The sum of the first 2 terms of a geometric progression is $\frac{8}{9}$ of its limiting sum. $\mathbf{2}$ Find the common ratio.
(b) A particle moves in a straight line so that its displacement, $x$ metres from a fixed point on a line is given by $x=t+\frac{25}{t+2}$, where $t$ is measured in seconds.
(i) Find the particle's initial position. $\mathbf{1}$
(ii) Find expressions for the velocity and acceleration in terms of $t$. $\mathbf{2}$
(iii) Find when and where the particle is at rest. $\mathbf{2}$
(iv) What value does the velocity approach as $t \rightarrow \infty$ ? $\mathbf{1}$
(v) Explain why the particle is never to left of its initial position. $\mathbf{1}$

Question 14 continues on the next page.
(c) The number $N$ of bacteria in a culture at a time $t$ seconds is given by the equation $N=A e^{k t}$.
(i) If the initial number of bacteria is 25000 , and after 10 seconds there are 26813 bacteria, find the values of $A$ and $k$.
(ii) Determine the number of bacteria after 30 seconds (to the nearest whole number).
(iii) After what time period will the number of bacteria have doubled?
(iv) At what rate is the number of bacteria increasing when $t=30$ seconds?
(a) A function is defined by $f(x)=x^{3}-3 x^{2}-9 x+22$.
(i) Find the coordinates of the turning points of the graph $y=f(x)$ and determine their nature.
(ii) Find the coordinates of the point(s) of inflexion.
(iii) Hence, sketch the graph of $y=f(x)$, showing the turning points, the point(s) of inflexion and the $y$-intercept.
(b) Consider the curve $y=4 x^{2}(1-x)$.
(i) Show that the gradient of the tangent at the point $(1,0)$ is -4 .
(ii) Find the equations of the tangent and normal to this curve at the point $(1,0)$
(iii) The tangent and normal cut the $y$-axis at $A$ and $B$ respectively.

If the point of intersection of the tangent and the normal is $C$, find the area of $\triangle A B C$.

## END OF QUESTION 15

(a) Robert borrows $\$ 400000$ to buy a house. The interest rate is $6 \%$ p.a. compounding monthly. He agrees to repay the loan in 30 years with equal monthly repayments of $\$ M$.

Let $\$ A_{n}$ be the amount owing after the $n^{\text {th }}$ repayment.
(i) If the amount owing after two repayments $A_{2}$ is $\$ 399$ 201.61, show that his monthly repayment is $\$ M=\$ 2398.20$.
(ii) Show that $A_{n}=\$ 479640-\$ 79640 \times 1.005^{n}$.
(iii) After how many months will the amount owing be less than $\$ 150000$ ?
(b) $A B C D$ is a parallelogram with sides $A B=2 a$ and $B C=b . E F$ is parallel to $A B$ and $D C$, and $D E=x$.
$G$ is the midpoint of $A B$. The line parallel to $E G$ from $F$ intersects $C D$ at $H$ where $D H=c$.

(i) Show that $\triangle A E G$ is similar to $\triangle C F H$.
(ii) Find an expression for $x$ in terms of $a, b$ and $c$.
(c) The parabola $y=b-a x^{2}$, where $a>0$ and $b>0$, is under the curve $y=\frac{4}{x^{2}+1}$.

The parabola touches the curve at two points that are symmetrical at the $y$-axis, as shown in the diagram below.

Let the two curves intersect at $x= \pm q$.

(i) Show $a q^{4}+(a-b) q^{2}+4-b=0$.

1
(ii) Hence show that $b=4 \sqrt{a}-a$.
(iii) Hence show $0<a<4$.

## REFERENCE SHEET

- Mathematics -
- Mathematics Extension 1 -
- Mathematics Extension 2 -


## Factorisation

$a^{2}-b^{2}=(a+b)(a-b)$
$a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

Angle sum of a polygon
$S=(n-2) \times 180^{\circ}$

## Equation of a circle

$(x-h)^{2}+(y-k)^{2}=r^{2}$

Trigonometric ratios and identities

$$
\begin{array}{l|l}
\sin \theta=\frac{\text { opposite side }}{\text { hypotenuse }} & \operatorname{cosec} \theta=\frac{1}{\sin \theta} \\
\cos \theta=\frac{\text { adjacent side }}{\text { hypotenuse }} & \sec \theta=\frac{1}{\cos \theta} \\
\tan \theta=\frac{\text { opposite side }}{\text { adjacent side }} & \tan \theta=\frac{\sin \theta}{\cos \theta} \\
\cot \theta=\frac{\cos \theta}{\sin \theta} \\
\sin ^{2} \theta+\cos ^{2} \theta=1
\end{array}
$$

## Exact ratios



Sine rule
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule
$c^{2}=a^{2}+b^{2}-2 a b \cos C$
Area of a triangle
Area $=\frac{1}{2} a b \sin C$

## Distance between two points

$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Perpendicular distance of a point from a line
$d=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}$

## Slope (gradient) of a line

$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Point-gradient form of the equation of a line
$y-y_{1}=m\left(x-x_{1}\right)$
nth term of an arithmetic series
$T_{n}=a+(n-1) d$

## Sum to $\boldsymbol{n}$ terms of an arithmetic series

$S_{n}=\frac{n}{2}[2 a+(n-1) d] \quad$ or $\quad S_{n}=\frac{n}{2}(a+l)$
$\boldsymbol{n}$ th term of a geometric series
$T_{n}=a r^{n-1}$

Sum to $\boldsymbol{n}$ terms of a geometric series
$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$ or $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$

Limiting sum of a geometric series
$S=\frac{a}{1-r}$

Compound interest
$A_{n}=P\left(1+\frac{r}{100}\right)^{n}$

## Mathematics (continued)

Differentiation from first principles
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

## Derivatives

If $y=x^{n}$, then $\frac{d y}{d x}=n x^{n-1}$
If $y=u v$, then $\frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x}$
If $y=\frac{u}{v}$, then $\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
If $y=F(u)$, then $\frac{d y}{d x}=F^{\prime}(u) \frac{d u}{d x}$
If $y=e^{f(x)}$, then $\frac{d y}{d x}=f^{\prime}(x) e^{f(x)}$
If $y=\log _{e} f(x)=\ln f(x)$, then $\frac{d y}{d x}=\frac{f^{\prime}(x)}{f(x)}$
If $y=\sin f(x)$, then $\frac{d y}{d x}=f^{\prime}(x) \cos f(x)$
If $y=\cos f(x)$, then $\frac{d y}{d x}=-f^{\prime}(x) \sin f(x)$
If $y=\tan f(x)$, then $\frac{d y}{d x}=f^{\prime}(x) \sec ^{2} f(x)$

## Solution of a quadratic equation

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

## Sum and product of roots of a quadratic equation

$\alpha+\beta=-\frac{b}{a} \quad \alpha \beta=\frac{c}{a}$

## Equation of a parabola

$(x-h)^{2}= \pm 4 a(y-k)$

Integrals
$\int(a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{a(n+1)}+C$
$\int e^{a x+b} d x=\frac{1}{a} e^{a x+b}+C$
$\int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+C$
$\int \sin (a x+b) d x=-\frac{1}{a} \cos (a x+b)+C$
$\int \cos (a x+b) d x=\frac{1}{a} \sin (a x+b)+C$
$\int \sec ^{2}(a x+b) d x=\frac{1}{a} \tan (a x+b)+C$

## Trapezoidal rule (one application)

$\int_{a}^{b} f(x) d x \approx \frac{b-a}{2}[f(a)+f(b)]$

## Simpson's rule (one application)

$\int_{a}^{b} f(x) d x \approx \frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right]$

## Logarithms - change of base

$\log _{a} x=\frac{\log _{b} x}{\log _{b} a}$

## Angle measure

$180^{\circ}=\pi$ radians

Length of an arc
$l=r \theta$

Area of a sector
Area $=\frac{1}{2} r^{2} \theta$

Angle sum identities
$\sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi$
$\cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi$
$\tan (\theta+\phi)=\frac{\tan \theta+\tan \phi}{1-\tan \theta \tan \phi}$

## $t$ formulae

If $t=\tan \frac{\theta}{2}$, then

$$
\begin{aligned}
& \sin \theta=\frac{2 t}{1+t^{2}} \\
& \cos \theta=\frac{1-t^{2}}{1+t^{2}} \\
& \tan \theta=\frac{2 t}{1-t^{2}}
\end{aligned}
$$

## General solution of trigonometric equations

$\sin \theta=a, \quad \theta=n \pi+(-1)^{n} \sin ^{-1} a$
$\cos \theta=a, \quad \theta=2 n \pi \pm \cos ^{-1} a$
$\tan \theta=a, \quad \theta=n \pi+\tan ^{-1} a$

Division of an interval in a given ratio
$\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right)$

## Parametric representation of a parabola

For $x^{2}=4 a y$,

$$
x=2 a t, \quad y=a t^{2}
$$

At $\left(2 a t, a t^{2}\right)$,
tangent: $\quad y=t x-a t^{2}$
normal: $x+t y=a t^{3}+2 a t$
At $\left(x_{1}, y_{1}\right)$,
tangent: $x x_{1}=2 a\left(y+y_{1}\right)$
normal: $\quad y-y_{1}=-\frac{2 a}{x_{1}}\left(x-x_{1}\right)$
Chord of contact from $\left(x_{0}, y_{0}\right): x x_{0}=2 a\left(y+y_{0}\right)$

## Acceleration

$\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}=v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$

## Simple harmonic motion

$x=b+a \cos (n t+\alpha)$
$\ddot{x}=-n^{2}(x-b)$

## Further integrals

$\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}+C$
$\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C$

Sum and product of roots of a cubic equation
$\alpha+\beta+\gamma=-\frac{b}{a}$
$\alpha \beta+\alpha \gamma+\beta \gamma=\frac{c}{a}$
$\alpha \beta \gamma=-\frac{d}{a}$

## Estimation of roots of a polynomial equation

Newton's method
$x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}$

## Binomial theorem

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

Multiple Choice, Page 1
Wednesday, 12 July 2017
Ql 25.09582
$\checkmark$ Rand up

$$
=25.10
$$

QL

$$
\begin{gathered}
x^{2}+3 x-1=0 \\
\alpha+\beta=-3 \\
\alpha \beta=-1 \\
\alpha \beta+(\alpha+\beta) \\
=-1-3 \\
=-4
\end{gathered}
$$

Answer
Q3


$$
\begin{aligned}
V & =\pi \int_{-3}^{3} y^{2} d x \\
& =\pi \int_{-3}^{3} 9-x^{2} d x \\
0 & =2 \pi \int_{0}^{3} 9-x^{2} d x
\end{aligned}
$$

Answer (B)

Multiple Choice, Page 2
Wednesday, 12 July 2017 11:11 AM
QU

$$
\begin{gathered}
y=2 x^{3}+a x^{2}-3 \\
\frac{d y}{d x}=6 x^{2}+2 a x \\
\frac{d^{2} y}{d x^{2}}=12 x+2 a \\
@ x=1 \quad, \frac{d^{2} y}{d x^{2}}=0 \\
\therefore 0=12+2 a \\
a=-6 \quad \text { Answer }
\end{gathered}
$$

POI @ $x=1$

QU

$$
\begin{aligned}
& y=(1+\ln x)^{4} \\
& \frac{d y}{d x}=4(1+\ln x)^{3} \times \frac{1}{x} \quad \text { Answer }
\end{aligned}
$$

Qb

$$
\begin{aligned}
& A=\int_{1}^{b} \frac{1}{x} d x \\
& 2=[\ln x]_{1}^{b} \\
& 2=\ln b \quad \text { Answer } \\
& b=e^{2} \quad
\end{aligned}
$$

Multiple Choice, Page 3
Wednesday, 12 July 2017 11:11 AM
Q7 Concave down, $\frac{d^{2} y}{d x^{2}}<0$

$$
\begin{aligned}
& f^{\prime}(x)= f^{\prime \prime}(x)<0 \\
& f^{\prime \prime}(x)=12 x+2 \\
& 12 x+2<0 \\
& 12 x<-2 \\
& x<-\frac{1}{6} \quad \text { Answer }
\end{aligned}
$$

Q8 $\quad 3 x+2 y=7$

$$
\begin{aligned}
y & =-\frac{3}{2} x+\frac{7}{2} \\
\quad m & =-\frac{3}{2} \\
\theta & =\tan ^{-1}\left(\frac{-3}{2}\right) \\
& =123^{\circ} 41^{\prime} \quad \text { Answer (C) }
\end{aligned}
$$

Qq

$$
\begin{aligned}
& \left.\sin x=\frac{\sqrt{3}}{2} \quad \checkmark \right\rvert\, \checkmark \\
& \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=60^{\circ} \\
& \therefore x=60^{\circ}, 180-60^{\circ} \\
& \\
& =60^{\circ}, 120^{\circ}
\end{aligned}
$$

$\therefore$ Answer (D)

Multiple Choice, Page 4
Q10 Increasing at a decreasing late gradients are positive

Answer (A) gradient getting
Multiple Choice Answers

$$
\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
B & C & B^{2} & D^{\prime} & C & B & A & C & D & A
\end{array}
$$

Question 11, Page 1
Wednesday, 12 July 2017
(a)

$$
\begin{align*}
& 6-2(4-2 p) \\
= & 6-8+4 p \\
= & 4 p-2 \tag{1}
\end{align*}
$$

(b)

$$
\begin{aligned}
& \frac{d}{d x} x \ln x^{2} \\
& =x \times \frac{2}{x}+1 x \ln x \\
& =2+\ln x^{2}
\end{aligned}
$$

$$
\begin{array}{rl}
u=x & v=\ln x \\
\frac{d u}{d x}=1 & \frac{d r}{d x}=\frac{2}{x}
\end{array}
$$

(1) Product rule
(c) $(5-3 \sqrt{2})^{2}=a-\sqrt{b}$

$$
\begin{aligned}
\text { HS } & =25-30 \sqrt{2}+9 \times 2 \\
& =43-\sqrt{900 \times 2} \\
& =43-\sqrt{1800}
\end{aligned}
$$

$\therefore a=43, b=1800$ (1) Mist state values of $a \& b$

Question 11, Page 2
Wednesday, 12 July 2017
11:16 AM
(d)


$$
\begin{equation*}
\left.\angle F E C=82^{\circ} \quad \text { (Supplementary } \angle: s\right) \tag{1}
\end{equation*}
$$

$\angle E C D=116-82$ (exterior $\angle$ of $\triangle E C D$ is equal to the sum of the interior upposites)

$$
=34^{\circ}
$$

$\therefore \angle A B C=34-30$ (exterior $\angle$ of $\triangle A B C$ is equal $=4^{\circ}$ to the sum of interior opposites)
(e)

$$
\begin{align*}
& 2 \cos ^{2} x=1 \quad 0 \leq x \leq 2 \pi \\
& \cos x= \pm \frac{1}{\sqrt{2}} \quad \text {. All } 4 \text { quadiants } \\
& \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}} \\
& \therefore x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4} \tag{1}
\end{align*}
$$

Question 11, Page 3
Wednesday, 12 July 2017 11:16 AM
(f) let $\begin{array}{llll}y=\frac{3 x}{2 x^{2}-1} & u & u & =3 x\end{array} \quad v=2 x^{2}-1$

$$
\begin{align*}
\frac{d y}{d x} & =\frac{3\left(2 x^{2}-1\right)-3 x \times 4 x}{\left(2 x^{2}-1\right)^{2}}  \tag{1}\\
& =\frac{6 x^{2}-3-12 x^{2}}{\left(2 x^{2}-1\right)^{2}} \\
& =\frac{-3\left(1+2 x^{2}\right)}{\left(2 x^{2}-1\right)^{2}}
\end{align*}
$$

(g)

$$
\begin{aligned}
& 4 \int_{0}^{\frac{\pi}{9}} \sec ^{2} 3 x d x \quad \frac{d}{d x} \tan x=\sec ^{2} x \\
\therefore & =4\left[\frac{\tan 3 x}{3}\right]_{0}^{\frac{\pi}{9}} \\
& =\frac{4}{3}\left[\tan \frac{\pi}{3}-\tan 0\right] \\
& =\frac{4 \sqrt{3}}{3}
\end{aligned}
$$

Question 12, Page 1
Wednesday, 12 July 2017 11:15 AM
(a) (i) $(x-2)^{2}=4 y \quad(x-h)^{2}=4 a(y-h)$

- verkx @ $(2,0)$ (1)
focal length $=1$
concave up
(ii) concave up directirx one focal length below the vertex

$$
y=-1
$$

(b) $2 x^{2}+4 x-k=0$
(i)

$$
\begin{aligned}
1 & =b^{2}-4 a c \\
& =16-4 \times 2 \times-k \\
& =16+8 k
\end{aligned}
$$

(ii) Real roots means $\Delta \geqslant 0$

$$
\begin{aligned}
\therefore \quad 16+8 k & \geqslant 0 \\
8 k & \geqslant-16 \\
k & \geqslant-2 \quad \text { (1) Also accept } k>-2
\end{aligned}
$$

Question 12, Page 2
Wednesday, 12 July 2017 11:15 AM
(c)

$$
\begin{align*}
& v=b+\frac{c}{t+1} \\
& a=\frac{d v}{d t} \\
& \frac{d v}{d t}=\frac{-c}{(t+1)^{2}} 11 \quad \text { When } \\
& 4=\frac{-c}{1^{2}} \\
& c=-4 \tag{1}
\end{align*}
$$

When $t=0$

$$
\begin{aligned}
& v=2 \\
& a=4
\end{aligned}
$$

$$
\text { Hbo } 2=b+c
$$

$$
2=b-4
$$

(d)

(i)

$$
\begin{aligned}
A B & =\sqrt{(2+1)^{2}+(4-0)^{2}} \\
& =\sqrt{9+16} \\
& =5 \text { (1) }
\end{aligned}
$$

$$
\begin{aligned}
\text { (ii) } & \text { centre }(2,4) \\
& \text { radius }=5 \\
\therefore & (x-2)^{2}+(y-4)^{2}=25(1)
\end{aligned}
$$

(iii)

$$
\begin{aligned}
m_{A B} & =\frac{4-0}{2+1} \\
& =\frac{4}{3} \\
\therefore \quad \tan \alpha & =\frac{4}{3} \curvearrowleft \\
\angle C A B & =180^{\circ}-\tan ^{-1}\left(\frac{4}{3}\right) \\
& \left.=127^{\circ} \text { (Nearest degree }\right)
\end{aligned}
$$

Question 12, Page 3
Wednesday, 12 July 2017
(iv) Midpoint $\left(x_{m}, y_{m}\right)$

$$
\begin{array}{rlrl}
x_{m} & =\frac{-6+2}{2} & y_{m} & =\frac{0+4}{2} \\
& =-2 & =2 \\
(-2,2)
\end{array}
$$

(v)

$$
\begin{align*}
m_{B C} & =\frac{4-0}{2+6} \\
& =\frac{1}{2} \\
\therefore \frac{1}{2} & =\frac{y-0}{x+6}  \tag{1}\\
x+6 & =2 y \\
x-2 y+6 & =0
\end{align*}
$$

(vi)

$$
\begin{aligned}
D & =\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} \\
& =\frac{|(\mid x-1)-2 \times 0+6|}{\sqrt{1^{2}+2^{2}}} \\
& =\frac{5}{\sqrt{5}} \\
& =\sqrt{5}
\end{aligned}
$$

Question 12, Page 4
(vii) $A B E C$ is a Rhombus ${ }^{(1)}$ as

- diagonals bisect each other
- Adjacent sides were equal (1)

Question 13, Page 1
(a)

$$
\begin{aligned}
A & \doteqdot \frac{h}{3}\left(y_{0}+4 y_{1}+y_{2}\right) \quad x \\
A & \div \frac{2 \cdot 5}{3}\left(4 e^{2}+4 \times 6.5 e^{\sqrt{6.5}}+9 e^{3}\right) \\
& \div 452.62 \quad(2 d p)
\end{aligned}
$$

$\stackrel{h}{\sqrt{ }}$
$\begin{array}{cccc}x & 4 & 6.5 & 9 \\ y & 4 e^{2} & 6.5 e^{\sqrt{5}} & 9 e^{3}\end{array}$
(1) $h=2.5$
(1) $y$ courdnues
(1) lorrect
area
(1) Rounding
(b) (i) Arc length $=r \theta$

$$
\begin{gathered}
\frac{8 \pi \sqrt{3}}{3}=4 \sqrt{3} \theta \\
\theta=\frac{2 \pi}{3}
\end{gathered}
$$

(ii) By the coone rule

$$
\begin{aligned}
A B^{2} & =(4 \sqrt{3})^{2}+(4 \sqrt{3})^{2}-2 \times 4 \sqrt{3} \times 4 \sqrt{3} \times \cos \frac{2 \pi}{3} \\
& =2(48)-2 \times 48 \times\left(-\frac{1}{2}\right) \\
& =2(48)+48 \\
A B^{2} & =144 \\
A B & =12 \mathrm{~cm}
\end{aligned}
$$

Question 13, Page 2
Wednesday, 12 July 2017 11:14 AM
(iii)

$$
\begin{align*}
A_{\text {segment }} & =A_{\text {sector }}-A_{\text {TRIANGLE }} \\
& =\frac{(4 \sqrt{3})^{2}}{2} \times \frac{2 \pi}{3}-\frac{(4 \sqrt{3})^{2}}{2} \sin \frac{2 \pi}{3}  \tag{1}\\
& =\frac{(4 \sqrt{3})^{2}}{2}\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right) \\
& =4(4 \pi-3 \sqrt{3}) \mathrm{cm}^{2} \tag{1}
\end{align*}
$$

(c) (i) Distance travelled per week is an arithmetic progression

$$
\begin{align*}
a & =250, d=20  \tag{1}\\
T_{n} & =250+(n-1) 20 \\
T_{15} & =250+14 \times 20  \tag{1}\\
& =530 \mathrm{~km} \tag{1}
\end{align*}
$$

(ii) $S_{15}=\frac{15}{2}(2 \times 250+(15-1) \times 20)$

$$
=5850 \mathrm{~km}
$$

(iii) Stated at $10,500 \mathrm{~km}$
$\therefore$ How mary weeks to add 10120 km

$$
\begin{equation*}
\therefore S_{n}=10120 \tag{1}
\end{equation*}
$$

Question 13, Page 3
Wednesday, 12 July 2017 11:14 AM

$$
\begin{aligned}
& \frac{n}{2}(2 \times 250+(n-1) \times 20)=10120 \\
& 500 n+20 n^{2}-20 n=20240 \\
& 20 n^{2}+480 n-20240=0 \\
& n^{2}+24 n-1012=0 \\
& n=\frac{-24 \pm \sqrt{576+4 \times 1 \times 1012}}{2} \\
& =22 \&-46 \\
& n>0
\end{aligned}
$$

$$
\therefore \quad n=22
$$

$\therefore$ It will take 22 weeks. (1)

Question 14, Page 1
Wednesday, 12 July 2017 11:14 AM
(a)

$$
\begin{gathered}
S_{\infty}=\frac{a}{1-r} \quad \begin{array}{l}
T_{1}=a \\
T_{2}=a r
\end{array} \\
\therefore \quad a+a r=\frac{8}{9}\left(\frac{a}{1-r}\right) \\
\alpha(1+r)=\frac{8 \alpha}{9(1-r)} \\
(1+r)(1-r)=\frac{8}{9} \\
1-r^{2}=\frac{8}{9} \\
r^{2}=\frac{1}{9} \\
r= \pm \frac{1}{3}
\end{gathered}
$$

(b) $\quad x=t+\frac{25}{t+2}$
(i) $t=0, x=25 / 2$ metres
(ii)

$$
\begin{align*}
v & =\frac{d x}{d t} \\
& =1-25(t+2)^{-2} \\
& =1-\frac{25}{(t+2)^{2}} \\
a & =\frac{d v}{d t} \\
& =\frac{50}{(t+2)^{3}} \tag{1}
\end{align*}
$$

,Question 14, Page 2
Wednesday, 12 July 2017 11:14 AM
(iii) Find when $r=0$

$$
\begin{gather*}
0=1-\frac{25}{(t+2)^{2}} \\
(t+2)^{2}=25 \\
t+2= \pm 5 \\
t=-7 \quad \text { or } 3 \\
\text { As } t>0, \quad t=3  \tag{1}\\
\end{gather*} \quad \begin{aligned}
& =2=8 \tag{1}
\end{aligned}
$$

(iv) As $t \rightarrow \infty \quad \frac{1}{t} \rightarrow 0 \quad$ (As the denominator gets very
large)

$$
\begin{aligned}
\therefore \frac{25}{(t+2)^{2}} & \rightarrow 0 \\
& v \rightarrow 1
\end{aligned}
$$

(v) As $t \rightarrow 0$

$$
\left.x=t^{x}+\frac{25}{t+2} \quad \text { Always }>0\right]
$$

Always $>0$ $x$ is always positive

Question 14, Page 3
Wednesday, 12 July 2017 11:14 AM
(c) $N=A e^{k t}$
(i)

$$
\begin{array}{ll}
t=0 & N=25,000 . \\
t=10 & N=26813 \tag{2}
\end{array}
$$

(1)

$$
\begin{align*}
25000 & =A \times e^{0} \\
\therefore A & =25000 \tag{1}
\end{align*}
$$

(2)

$$
\begin{aligned}
26813 & =25,000 e^{10 k} \\
e^{10 k} & =\frac{26813}{25000} \\
10 k & =\ln \frac{26813}{25000} \\
k & =\frac{\ln \left(\frac{26813}{25000}\right)}{10} \\
& =0.00700 / 10196 \ldots
\end{aligned}
$$

(ii)

$$
\begin{aligned}
t & =30 \\
N & =A e^{30 k} \\
& =30843 \text { (1) (Nearest whole number) }
\end{aligned}
$$

Question 14, Page 4
Wednesday, 12 July 2017 11:14 AM
(iii)

$$
\begin{align*}
N & =A e^{k t} \\
\therefore e^{k t} & =2 \\
t & =\frac{\ln 2}{k} \\
& =99.0054 \\
& =99 \text { seconds (nearest second) } \tag{1}
\end{align*}
$$

(iv) $\frac{d N}{d t}=k A e^{k t}=k N$

When $t=30$

$$
\begin{aligned}
& \frac{d N}{d t}=k \times A e^{30 k} \\
&=216 \quad \text { bacteria/second (nearest whole } \\
& \text { number) }
\end{aligned}
$$

Question 15, Page 1
Wednesday, 12 July 2017 11:13 AM
(a) (i)

$$
\begin{aligned}
& f(x)=x^{3}-3 x^{2}-9 x+22 \\
& f^{\prime}(x)=3 x^{2}-6 x-9 \\
& f^{\prime \prime}(x)=6 x-6
\end{aligned}
$$

Turning points occur when $f^{\prime}(x)=0$

$$
\begin{aligned}
0 & =3 x^{2}-6 x-9 \\
& =3\left(x^{2}-2 x-3\right) \\
& =3(x-3)(x+1)
\end{aligned}
$$

$x=3$ (1) $y=-5$ (1) $f^{\prime \prime}(x)=12 \therefore$ Min

$$
x=-1 \quad y=27 \quad f^{\prime \prime}(x)=-12 \ldots \text { Max }
$$

(ii) Points of Inflexion occur when $f^{\prime \prime}(x)=0$

$$
\begin{array}{ll} 
& 6 x-6=0 \\
x=1 \\
x=1 & y=11  \tag{1}\\
\hdashline \text { (1) } & x \\
f^{\prime}(x) & 0.9 \\
-0.6 & 0 \\
0.6 & 1.1 \\
\text { TEST }
\end{array}
$$ Concavity change

$$
\therefore \text { POI } \because(1,11)
$$

Question 15, Page 2
Wednesday, 12 July 2017
Wednesday, 11:13 AM

(b) (i)

$$
\begin{aligned}
y & =4 x^{2}(1-x) \\
& =4 x^{2}-4 x^{3} \\
\frac{d y}{d x} & =8 x-12 x^{2} \\
& =4 x(2-3 x)
\end{aligned}
$$

When $x=1$

$$
\begin{aligned}
\frac{d y}{d x} & =4(2-3) \\
& =-4
\end{aligned}
$$

As required
(ii)

$$
\begin{aligned}
& \text { Tangent } \\
& -4=\frac{y-0}{x-1} \\
& -4 x+4=y \\
& 4 x+y-4=0
\end{aligned}
$$

(1)
(iii) $\begin{aligned} A \Rightarrow & y \text { int of } \quad B \Rightarrow \\ & \text { tangent }\end{aligned}$

$$
A(0,4) \longleftarrow
$$



As $A C \rightarrow B C$ we could us

$$
\begin{align*}
& \text { Area }=\frac{1}{2}(A C \times B C) \\
& \text { But } O C A B \\
& \text { Area }=\frac{1}{2}(A B \times O C)^{\swarrow} \\
&=\frac{1}{2}\left(\frac{17}{4} \times 1\right) \\
&=\frac{17}{8} \text { units }^{2}
\end{align*}
$$

Question 16, Page 1
Wednesday, 12 July 2017
(a)

$$
\begin{aligned}
A_{0} & =400000 \quad \text { let } r=\frac{0.06}{12} \\
A_{1} & =400000 \times(1+r)-M \\
A_{2} & =A_{1} \times(1+r)-m \quad \text { Building } \\
& =400000(1+r)^{2}-M(1+r)-M
\end{aligned}
$$

$A_{3} A_{2}=399201.61$

$$
\begin{array}{r}
399201.61=400000(1+r)^{2}-m(1+r+1) \\
\left.M=\frac{400000(1 \mathrm{r})^{2}-399201.61}{(2+r)}\right]_{\int_{M}}^{\text {Solving }} \mathrm{f}_{\mathrm{r}}^{1} \mathrm{l}
\end{array}
$$

$$
=\$ 2398.20 \quad \text { As required. }
$$

(ii)

$$
\begin{aligned}
A_{3}= & A_{2} \times(1+v)-M
\end{aligned}
$$

(1)

Question 16, Page 2

$$
\begin{array}{r}
A_{n}=400000(1+r)^{n}-m\left((1+r)^{n-1}+(1+r)^{n-2}+\ldots\right. \\
\ldots+(1+r)+1)
\end{array}
$$

This is a G.P

$$
a=1
$$

$$
r=1+r
$$

$$
n=n
$$

$$
\begin{align*}
A_{n} & =40000(1+r)^{n}-M\left[\frac{1\left((1+r)^{n}-1\right)}{1+r-1}\right]  \tag{1}\\
& =40000(1+r)^{n}-\frac{M\left((1+r)^{n}-1\right)}{r}
\end{align*}
$$

Subbing in $M=r$

$$
\begin{aligned}
A_{n} & =40000(1.005)^{n}-\frac{2398.20\left((1.005)^{n}-1\right)}{0.005} \hat{0} \\
& =40000(1.005)^{n}-479640(1.005)^{n}(1) \\
& =479640-79640(1.005)^{n} \quad \text { As required }
\end{aligned}
$$

(iii) $A_{n}<150000$

$$
\begin{aligned}
& 479640- 79640(1.005)^{n}<150000 \\
&- 79640(1.005)^{n}<-329640 \\
&(1.005)^{n}>4.139126 \ldots \\
& n>\frac{\log 4.139126 \ldots}{\log 1.005} \\
& n>284.806 \ldots
\end{aligned}
$$

$\therefore$ Owing less then $\$ 150000$ after 285 months (1)

Question 16, Page 4
Wednesday, 12 July 2017
(b)

(i) Prove $\triangle A E G|\mid \triangle C F H$
$\angle E A G=\angle F C H$ (Opposite Lis of a parallelogram are equal)
let $\angle A G E=\alpha$
(1) 2 angles
$\angle G E F=\alpha$ (Alternate Lis on parallel lines $A B \notin E F$ are equal)
$\angle E F H=\alpha$ (Alternate Lis on parallel lines $E h \& M F$ we equal)
$\angle F H C=\alpha$ (Alternate Lis on parallel lines $C D \& E F$ we equal)
$\triangle A E G \mid \| C F H \quad$ (equiangular)
(ii) EDCF is a parallelogram
$\therefore C F=x$ (opposite sides of a parallelogram are equal)

$$
\begin{align*}
& \therefore A E+x=b \\
& A E=b \cdot x \\
& A G=a \\
& H C=2 a-c \\
& \frac{C F}{H C}=\frac{A E}{A C} \\
& \text { (1) Side length of triangles } \\
& \text { in } a, b, c \$ x \\
& \begin{array}{l}
\text { (Corresponding sides of similar } \\
\text { triangles are in a fixed }
\end{array} \\
& \text { ratio) (1) } \\
& \frac{x}{2 a-c}=\frac{b-x}{a} \\
& a x=(2 a-c)(b-x) \\
& a x=(2 a-c) b-(2 a-c) x \\
& a x+(2 a-c) x=(2 a-c) b \\
& (3 a-c) x=(2 a-c) b \\
& x=\frac{(2 a-c) b}{3 a-c} \tag{1}
\end{align*}
$$

$\begin{array}{ll}\text { (c) } \quad y=b-a x^{2} \quad & a>0 \\ b>0\end{array} \quad y=\frac{4}{x^{2}+1}$
2 points of contact

$$
\begin{aligned}
& \text { (i) } b-a x^{2}=\frac{4}{x^{2}+1} \\
& \left(x^{2}+1\right)\left(b-a x^{2}\right)=4 \\
& b x^{2}-a x^{2}+b-a x^{4}=4 \\
& a x^{4}+a x^{2}-b x^{2}+4-b=0 \\
& a x^{4}+(a-b) x^{2}+4-b=0
\end{aligned}
$$

(ii) This only has one solution for $x^{2}$

$$
\begin{gather*}
\Delta=0  \tag{1}\\
(a-b)^{2}-4 \times a \times(4-b)=0 \\
a^{2}-2 a b+b^{2}-16 a+4 a b=0 \\
a^{2}+2 a b+b^{2}-16 a=0 \\
(a+b)^{2}=16 a \\
a+b= \pm 4 \sqrt{a} \\
b=4 \sqrt{a}-a
\end{gather*}
$$

Only the as $a+b>0$

As required
(ii) If there a 2 solutions
then $x^{2}=\frac{-(a-b)}{2 a}$

$$
\begin{aligned}
& \therefore \quad x^{2}>0 \\
& \frac{b-a}{2 a}>0 \\
& (4 \sqrt{a}-a)-a>0 \\
& 4 \sqrt{a}-2 a>0 \\
& 2 \sqrt{a}-a>0
\end{aligned}
$$

let $u=\sqrt{a}$

$$
\begin{aligned}
& 2 u-u^{2}>0 \\
& u(2-u)
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\therefore 0 & <u
\end{array}\right)<2, ~=\sqrt{a}<2
$$

(1) All steps shown
 As required

