

Name: \qquad

Teacher: \qquad

Class: \qquad

FORT STREET HIGH SCHOOL

2010

HIGHER SCHOOL CERTIFICATE COURSE

ASSESSMENT TASK 3: TRIAL HSC

Mathematics

TIME ALLOWED: 3 HOURS
(PLUS 5 MINUTES READING TIME)

Outcomes Assessed	Questions	Marks
Chooses and applies appropriate mathematical techniques in order to solve problems effectively	$1,2,3$	
Manipulates algebraic expressions to solve problems from topic areas such as functions, quadratics, trigonometry, probability and logarithms	$4,5,7,8$	
Demonstrates skills in the processes of differential and integral calculus and applies them appropriately	6,9	
Synthesises mathematical solutions to harder problems and communicates them in appropriate form	10	

Question	1	2	3	4	5	6	7	8	9	10	Total	$\%$
Marks	$/ 12$	$/ 12$	$/ 12$	$/ 12$	$/ 12$	$/ 12$	$/ 12$	$/ 12$	$/ 12$	$/ 12$	$/ 120$	

Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board - approved calculators may be used
- Each new question is to be started in a new booklet

STANDARD INTEGRALS

$$
\begin{array}{ll}
\int x^{n} d x & =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
\int \frac{1}{x} d x & =\ln x, x>0 \\
\int e^{a x} d x & =\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& =\frac{1}{a} \sin a x, a \neq 0 \\
\int \cos a x d x & =-\frac{1}{a} \cos a x, a \neq 0 \\
\int \sin a x d x & =\frac{1}{a} \tan a x, a \neq 0 \\
\int \sec ^{2} a x d x \\
\int \sec ^{2} a x \tan a x d x & =\frac{1}{a} \sec a x, a \neq 0 \\
\int \frac{1}{a^{2}+x^{2}} d x & =\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x & =\sin -1 \frac{x}{a}, a>0,-a<x<a \\
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x & =\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
N
\end{array}
$$

Question One: (Start a NEW BOOKLET)

a) Evaluate $\frac{\pi}{\sqrt{e^{2}-1}}$ correct to 3 decimal places.
b) Solve $\frac{3-2 x}{x}=4$.
c) Rationalise the denominator of $\frac{2}{1+\sqrt{3}}$.
d) Factorise $4+11 x-3 x^{2}$.
e) Sketch the graph of $x+2 y-6=0$, showing the intercepts on both axes.
f) Find the equation (in General Form) of the line perpendicular to $4 x-3 y-1=0$ that passes through the point $(2,-3)$.

Question Two: (Start a NEW BOOKLET)

a) Differentiate with respect to x :

$$
\begin{equation*}
\text { i. } \quad x^{2} e^{x} \tag{2}
\end{equation*}
$$

ii. $\quad(1+\tan x)^{2}$
b) Find
i. $\int 4 x-\sin x d x$
ii. $\int_{1}^{3} \frac{1}{x^{2}} d x$
c) Find the equation of the tangent to the curve $y=x-\frac{1}{x}$ at the point $(-1,0)$.

Question Three: (Start a NEW BOOKLET)

a) Triangle $A B C$ is isosceles with $A B=A C$. $A B$ and $A C$ are extended to D and E respectively, with $\mathrm{BD}=\mathrm{CE}$, as shown in the diagram below.

i. Copy the diagram into you answer booklet showing the information given.
ii. Prove that $\triangle A B E \equiv \triangle A C D$.
b) Using Simpson's Rule with five function values to find and approximate value for the integral $\int_{0}^{2} e^{x^{2}} d x$, to 2 decimal places.
c) A geometric series has a $3^{\text {rd }}$ term of $\frac{1}{12}$ and an eighth term of $\frac{-1}{384}$. For this series:
i. Find an expression for T_{n}.
ii. Find the sum of the first 8 terms.
iii. Find the limiting sum.

Question Four: (Start a NEW BOOKLET)

a) Solve $2 \cos x=\sqrt{3}$ for $-\pi \leq x \leq \pi$.
b) For the parabola $x^{2}=6(y+1)$:
i. Write down the coordinates of the vertex.
ii. Find the coordinates of the focus.
iii. Draw a neat sketch of the parabola.
iv. Calculate the area bounded by the parabola and the line $y=5$.
c) Two ordinary dice are rolled and the score is the sum of the numbers on the top faces.
i. What is the probability that the score is 5 ?
ii. What is the probability that the score is not 5 ?
iii. What is the probability that the dice show "doubles" (i.e. that both numbers on the top faces are the same)?

Question Five: (Start a NEW BOOKLET)

a) A 10 m long ladder (AB) rests against a wall, with its foot (B) 6 m from the base (C) of the wall (AC) as shown in the diagram below (Not drawn to Scale). D is a point on the ladder AB.

i. How far up the wall does the ladder reach?
ii. Explain why DF||BC.
iii. Prove $\triangle A D F\|\| A B C$.
iv. Felix climbs the ladder to point D so that he is 3 m directly above the ground (E). How far along the ladder (BD) has he climbed?
b) Find the equation of the normal to the curve $y=x(x-2)$ when $x=2$.
c) Given $g(x)=a x^{2}+b x+c$ and that $g(0)=4, g(1)=23, g(-1)=1$, determine the values of a, b and c.

Question Six: (Start a NEW BOOKLET)

a) For the function $y=x^{3}-3 x^{2}-9 x+6$:
i. At what point does this curve cut the y-axis?
ii. Find the coordinates of any stationary points and determine their nature.
iii. Find the coordinates of any points of inflection.
iv. For what values of x is the curve concave up?
v. Sketch the curve, showing the information above.
b) If $\sin \theta=-\frac{2}{3}$ and $\cos \theta>0$, find the value of $\tan \theta$ (in surd form).
c) Show that the derivative of $x e^{x}$ is $e^{x}+x e^{x}$, and hence find $\int x e^{x} d x$.

Question Seven: (Start a NEW BOOKLET)

a) If α and β are the roots of $4 x^{2}+8 x-1=0$, find the value of

$$
\begin{align*}
\text { i. } & \alpha+\beta \tag{1}\\
\text { ii. } & \alpha \beta \tag{1}\\
\text { iii. } & \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}} \tag{2}
\end{align*}
$$

b) For the curve $y=3 \sin 2 x$:
i. State the amplitude.
ii. Find the period.
iii. Draw a neat sketch of the curve for $0 \leq x \leq \pi$.
c) Find the value of:
i. $\quad \log _{2} 45$, given that $\log _{2} 3=1.585$ and $\log _{2} 5=2.322$, without using the change of base law.
ii. $\quad \log _{7} 0.3$, using change of base law.
d) Find p so that $9 x^{2}-3 x+p=0$ has only one root.

Question Eight: (Start a NEW BOOKLET)

a) In the diagram, XY is an arc of a circle with centre O and radius 12 cm . The length of the $\operatorname{arc} X Y$ is $4 \pi \mathrm{~cm}$.

i. Find the exact size of θ in radians.
ii. Find the area of the sector OXY
b) The region bounded by the curve $y=e^{x}+e^{-x}$, the x-axis and the lines $x=0$ and $x=2$ is rotated about the x-axis. Find the volume of the solid formed. (Answer in terms of e).
c) Beginning with a circular piece of fabric of radius 5 cm , Lynn sewed together circular strips of different coloured fabrics which increased in width to make a circular tablecloth. The finished width of the first strip was 10 cm , the second was 15 cm , the third 20 cm , and so on, as shown opposite.
i. Show that the width of the $10^{\text {th }}$ strip was 55 cm .
ii. The radius of the Tablecloth was 455 cm . How many strips were sewn onto the edge of the first circular piece?

d) Solve for $x: 4 e^{2 x}-e^{x}=0$.

Question Nine: (Start a NEW BOOKLET)

a) For the inequality $y \leq 4-x^{2}$:
i. Shade the region bounded simultaneously by the inequality above, and the inequalities $x \geq 0$ and $y \geq 3 x$.
ii. Find the volume of the solid of revolution formed when the region defined in (i) above is rotated about the y-axis.
b) A farmer needs to construct two holding paddocks, one rectangular (ABCD) and one a rhombus (CDXY) for horses and cattle respectively. The diagram below shows an aerial view of the paddocks, including the use of an existing fence as part of the boundary.

The farmer has only 700m of fencing. We also know that $\angle C D X=30^{\circ}$.
i. By letting $A B=x$, show that the area A of the two paddocks is given by

$$
\begin{equation*}
A=700 x-\frac{7 x^{2}}{2} . \tag{2}
\end{equation*}
$$

ii. Hence find the maximum area that can be enclosed.
iii. Calculate the dimensions for the rectangular paddock, when the overall area is a maximum.

Question Ten: (Start a NEW BOOKLET)

a) Jerry joins a Superannuation fund, investing \$P at the beginning of every year at 9% p.a. compounding annually.
i. Write an expression for the value of his investment A_{1} at the end of the first year.
ii. Write an expression for the value of his investment A_{2} at the end of the second year.
iii. Show that, after n years, the value of his investment A_{n} is given by

$$
\begin{equation*}
A_{n}=\frac{109 P}{9}\left(1.09^{n}-1\right) \tag{2}
\end{equation*}
$$

iv. If, after 30 year, he wishes to collect $\$ 1,000,000$, calculate the value of $\$ \mathrm{P}$ to the nearest dollar.
b) A triangle is right-angled at B. D is the point on $A C$ such that $B D$ is perpendicular to $A C$. Let $\angle B A C=\theta$.
i. Draw a diagram showing this information.

You are given that $6 A D+B C=5 A C$:
ii. Show that $6 \cos \theta+\tan \theta=5 \sec \theta$
iii. Deduce that $6 \sin ^{2} \theta-\sin \theta-1=0$
iv. Find θ.

Question One:

a) 1.242886646 $=1.243$ (to 3dp)
b) $3-2 x=4 x$

$$
\begin{aligned}
& 3=6 x \\
& x=\frac{1}{2}
\end{aligned}
$$

c) $\frac{2}{1+\sqrt{3}} \times \frac{1-\sqrt{3}}{1-\sqrt{3}}$

$$
\begin{aligned}
& =\frac{2(1-\sqrt{3})}{1-3} \\
& =\frac{2(1-\sqrt{3})}{-2}
\end{aligned}
$$

$$
=\sqrt{3}-1
$$

d) $=4+12 x-x-3 x^{2}$

$$
\begin{aligned}
& =4(1+3 x)-x(1+3 x) \\
& =(1+3 x)(4-x)
\end{aligned}
$$

e) $2 y=6-x$

$$
y=3-\frac{1}{2} x
$$

f) $x=0: y=0$: $y=3 \quad x=6$

g) $3 y=4 x-1$

$$
y=\frac{4}{3} x-\frac{1}{3} \Rightarrow m_{1}=\frac{4}{3} \text {, so perp. gives } m_{2}=-\frac{3}{4}
$$

So through $(2,-3)$:

$$
\begin{aligned}
y-(-3) & =-\frac{3}{4}(x-2) \\
4 y+1 & =z 3 x+6 \\
3 x+4 y+6 & =0
\end{aligned}
$$

Marking

Comments
(1) answer
(1) dp's
(1) algebra
(1) answer
(1) \times conjugate
(1) answer In simplest form!
(1) resolves pairs
© answer
(1) intercepts

Some had trouble finding these!
(1) perp. gradient

©graph

pern

Question Two:

$$
\text { a) i) } \begin{aligned}
& u=x^{2} \quad v=e^{x} \\
& d u=2 x \quad d v=e^{x} \\
& \therefore \frac{d\left(x^{2} e^{x}\right)}{d x} \\
&= x^{2} e^{x}+2 x e^{x} \\
&= x e^{x}(x+2) \\
& \text { ii) } \frac{d(1+\tan x)^{2}}{d x} \\
&= 2(1+\tan x)^{1} \times \frac{d(\tan x)}{d x} \\
&= 2 \sec ^{2} x(1+\tan x)
\end{aligned}
$$

b) i) $\int 4 x-\sin x d x$

$$
=2 x^{2}+\cos x+c
$$

$$
\text { ii) } \int_{1}^{3} \frac{1}{x^{2}} d x
$$

$$
=\left[-\frac{1}{x}\right]_{1}^{3}
$$

$$
=\frac{-1}{3}-\frac{-1}{1}
$$

$$
=\frac{2}{3}
$$

c) $\frac{d y}{d x}=1+\frac{1}{x^{2}}$,
so when $x=-1 \frac{d y}{d x}=2$
Hence $y-0=2(x+1)$
or $y=2 x+2$

Marking

(1) product rule
(1) answer
©chain rule
(1) answer
(1) answer
(1) for ' $+C$ '
(1) int \& limits
(1) subst
(1) answer
(1) derivative
(1) gradient
(1) answer

Comments

Mostly good

Some struggled with structure of the Chain Rule.
Some did not know the derivative of $\tan x$.
Quite a few integration errors, and some forgot "+c"

Many 2 Unit
candidates got a log or differentiated. Many also made sign errors in substitution.

Some could not find derivative. Many errors to find " $m=2$ " (" $\mathrm{m}=0$ " was popular). More seriously, not finding an " m " value but using algebra:
$y=\left(1+\frac{1}{x^{2}}\right)(x+1)$
is meaningless!

Question Three:

a) i)

ii) $\mathrm{AB}=\mathrm{AC}$ and $\mathrm{BE}=\mathrm{CD}$ (given)
$A D=A B+B D, A E=A C+C E$ (st. lns), so
$A D=A C+C E$, hence
$\mathrm{AD}=\mathrm{AE}$
In \triangle ' $s A B E, A C D$
i) $\mathrm{AB}=\mathrm{AC}$ (given)
ii) $\angle E A B=\angle D A C$ (common angle)
iii) $\mathrm{AD}=\mathrm{AE}$ (shown above)
$\therefore \triangle A B E \equiv \triangle A C E$ (SAS)
(1) reason
(1) reason
(1) reason
(1) conclusion
b) For $y=e^{x^{2}}$, with $h=0.5$:
(1) values

x	0	0.5	1	1.5	2
y_{i}	1	$e^{0.25}$	e	$e^{2.25}$	e^{4}

Simpsons Rule:

$$
\begin{array}{ll}
A & =\frac{h}{3}\left[\left(y_{0}+y_{4}\right)+2\left(y_{1}+y_{3}\right)+4 y_{2}\right] \\
& \text { (1) subst } \\
& =\frac{0.5}{3}\left[\left(1+e^{4}\right)+4\left(e+e^{2.25}\right)+2 e\right] \\
\doteq & \\
\doteq 17.35362645 & \text { (} 17.35
\end{array}
$$

Some students failed to give all the information required.
Some did not show this (or equivalent); Need to state the triangles;

Some did not state the test used.

Some students had the 4 and the 2 the wrong way around in the formula.
c) With $T_{3}=\frac{1}{12}, T_{8}=\frac{-1}{384}$:
i. $\quad a r^{2}=\frac{1}{12}$ and $a r^{7}=\frac{-1}{384}$, hence

$$
\begin{aligned}
\frac{T_{8}}{T_{3}} & =\frac{-1}{384} \div \frac{1}{12} \\
\frac{a r^{7}}{a r^{2}} & =\frac{-1}{384} \times \frac{12}{1} \\
r^{5} & =\frac{-1}{32} \\
r & =\frac{-1}{2} \\
a .\left(\frac{-1}{2}\right)^{2} & =\frac{1}{12} \\
a & =\frac{1}{3}
\end{aligned}
$$

(1) a, r values
(1) T_{n} correct
ii. $\quad S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$

$$
\begin{aligned}
S_{8} & =\frac{\frac{1}{3}\left(1-\left(\frac{-1}{2}\right)^{8}\right)}{1-\frac{-1}{2}} \\
& =\frac{\frac{1}{3}\left(1-\frac{1}{256}\right)}{\frac{3}{2}} \\
& =\frac{1}{3} \cdot \frac{2}{3} \cdot \frac{255}{256} \\
& =\frac{85}{384}
\end{aligned}
$$

(1) S_{8} correct

This answer best left as a fraction.
iii. $\quad S_{\infty}=\frac{a}{1-r}$

$$
\begin{aligned}
& =\frac{\frac{1}{3}}{1-\frac{-1}{2}} \\
& =\frac{1}{3} \cdot \frac{2}{3} \\
& =\frac{2}{9}
\end{aligned}
$$

Question Four:

a) $\cos x=\frac{\sqrt{3}}{2}$

$$
\begin{aligned}
x & =\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
& =\frac{\pi}{6}
\end{aligned}
$$

$\cos x$ positive in Q1 \& Q4, but with $-\pi \leq x \leq \pi$,
$x=\frac{\pi}{6}, \frac{-\pi}{6}$
b)
i. Vertex is $(0,-1)$
ii. $\quad 4 a=6$

Hence $a=\frac{3}{2}$, so focus is $(0,-1+a)$ or $\left(0, \frac{1}{2}\right)$
(1) answer
iii.

iv. $y=5$
and $\quad x^{2}=6(y+1)$

$$
\begin{array}{rlrl}
x^{2} & =6(5+1) \\
& =36 & y+1 & =\frac{x^{2}}{6} \\
y & =\frac{x^{2}}{6}-1
\end{array}
$$

(1) graph
$x= \pm 6$, hence
(1) answer
(1) eqn for Int
(1) boundaries
-

Sketch was poorly done by many must show vertex, focus, intercepts.

Use a ruler to draw axes!

Poorly done.
Students need to review area between two curves.

Marking

Comments

Many did not read the requirements of the question: $-\pi \leq x \leq \pi$ also implies radians!

$$
\begin{aligned}
A & =\int_{-6}^{6} 5-\left(\frac{x^{2}}{6}-1\right) d x \\
& =2 \int_{0}^{6} 5-\left(\frac{x^{2}}{6}-1\right) d x \\
& =2\left[6 x-\frac{x^{3}}{18}\right]_{0}^{6} \\
& =2\left[\left(6^{2}-\frac{6^{3}}{18}\right)-0\right] \\
& =48
\end{aligned}
$$

(1) answer
c)
i. First die 1 to 4 must correspond to $2^{\text {nd }}$ die 4 to1, so 4 outcomes give a total of 5

$$
\begin{aligned}
P(5) & =\frac{4}{36} \\
& =\frac{1}{9}
\end{aligned}
$$

(1) reason for 4
(1) answer
ii. $\quad P($ not 5$)=1-P(5)$

$$
\begin{aligned}
& =1-\frac{1}{9} \\
& =\frac{8}{9}
\end{aligned}
$$

(1) answer
iii. $\quad P($ doubles $)=\frac{1}{6}$
(1) answer

Question Five:

a)
i. By Pythagoras: $A C^{2}=10^{2}-6^{2}$

$$
=64
$$

$A C=8$
ii. $\angle D F A=\angle B C A=90^{\circ}$

For $B C$ and $D F, \angle D F A$ and $\angle B C A$ are in a corresponding position and equal.
Hence $B C \| D F$.
iii. In \triangle 's $A D F, A B C$
$\angle D F A=\angle B C A=90^{\circ}$ (given in diagram) $\angle A$ is common.
Hence all angles are equal so
$\triangle A F D \| \mid \triangle A B C$
iv. Similarly, $\triangle B D E\|\| A B C$, hence

$$
\frac{D E}{A C}=\frac{D B}{A B}
$$

$$
\frac{3}{8}=\frac{D B}{10}
$$

$$
D B=3.75
$$

b) $y=x^{2}-2 x ; x=2, y=0$
$\frac{d y}{d x}=2 x-2 ; x=2, \frac{d y}{d x}=2$, so normal gradient is
$\frac{-1}{2}$
$y-0=\frac{-1}{2}(x-2)$

$$
y=1-\frac{x}{2}
$$

$$
0=x+2 y-2
$$

c) $g(0)=4: 4=a \cdot 0^{2}+b \cdot 0+c$
$g(1)=23: 23=a .1^{2}+b .1+c$
$g(-1)=1: 1=a .(-1)^{2}+b .(-1)+c$, giving the eqns
$4=c$
$23=a+b+c \quad\langle 2\rangle$
$1=a-b+c \quad\langle 3\rangle$
$\langle 1\rangle$ in $\langle 2\rangle$ and $\langle 3\rangle$ gives:
$a+b=19$
$a-b=-3$, then adding gives:
$2 a=16$; back-substitution gives $23=8+b+4$
$a=8$

$$
b=11
$$

Hence $a=8, b=11, c=4$

Marking

(1) answer
(1) reasoning
(1) reasons
(1) conclusion

Comments

Some students failed to recognise corresponding angles, or failed to write that fact down!

Parts b) and c) generally well done.
(1) gradient
(1) answer
(1) set-up
(1) answers

Question Six:

a)
i. y-intercept at $(0,6)$.

Marking

(1) answer
ii. $y^{\prime}=3 x^{2}-6 x-9$
$y^{\prime \prime}=6 x-6$
Stat Pts when $y^{\prime}=0$:

$$
\begin{aligned}
0 & =3 x^{2}-6 x-9 \\
& =x^{2}-2 x-3 \\
& =(x-3)(x+1)
\end{aligned}
$$

$\therefore x=-1,3$
(1) x values

$$
x=-1 \quad x=3
$$

$$
y=(-1)^{3}-3(-1)^{2}-9(-1)+6 \quad y=(3)^{3}-3(3)^{2}-9(3)+6
$$

$$
=11 \quad=-21
$$

Pts are $(-1,11)$ and $(3,-21)$

$$
\begin{array}{rlrl}
x & =-1 & x & =3 \\
y^{\prime \prime} & =-12 & y^{\prime \prime} & =12 \\
& \Rightarrow c c d & & \Rightarrow c c u
\end{array}
$$

(1) test
$\therefore(-1,11)$ is a max t.p.
and $(3,-21)$ is a min t.p.
(1) points
iii. $y^{\prime \prime}=0: 0=6 x-6$, hence possible
inflection pt when $x=1$.
when $x<1, y^{\prime \prime}<0 \Rightarrow c c d$
when $x>1, y^{\prime \prime}>0 \Rightarrow c c u$
hence concavity changes, so $(1,-5)$ is a point of inflexion.
iv. Concave up when $y^{\prime \prime}>0$

$$
\begin{aligned}
6 x-6 & >0 \\
6 x & >6
\end{aligned}
$$

i.e. when $\quad x>1$
(1) answer
v.

(1) t.p’s

Make sure coordinates are stated when the question asks for them

Must test the nature of Stat. Pts and Inflexion Pts!

Sketch very poorly done.
Use:

- a ruler for axes
- a suitable scale

Show the information requested:
\bullet turning points

- inflexion point
- intercepts (x and y)
(1) intercepts
b) $\sin \theta=\frac{-2}{3}$

Some students did not know the ASTC results.

Hence $x^{2}=3^{2}-2^{2}$, or $x=\sqrt{5}$

$$
\sin \theta<0 \Rightarrow Q_{3}, Q_{4}
$$

$$
\cos \theta>0 \Rightarrow Q_{1}, Q_{4} \Rightarrow \tan \theta \text { in } Q_{4} ; \tan \theta<0
$$

(1) quadrant

Hence $\tan \theta=\frac{-2}{\sqrt{5}}$
(1) answer
c) $\frac{d\left(x e^{x}\right)}{d x} \quad \begin{array}{lll}u=x & v=e^{x} \\ u^{\prime}=1 & v^{\prime}=e^{x}\end{array}$

$$
\begin{aligned}
& =x e^{x}+1 \cdot e^{x} \\
& =e^{x}+x e^{x} \quad \text { as reqd. }
\end{aligned}
$$

(1) product rule

Showing a result - you must clearly demonstrate the link for each step.

Hence $\frac{d\left(x e^{x}\right)}{d x}=e^{x}+x e^{x}$, so integrating gives:

$$
\begin{aligned}
& x e^{x}=\int\left(e^{x}+x e^{x}\right) d x \\
& \quad=\int e^{x} d x+\int x e^{x} d x \\
& \begin{aligned}
& \therefore \int x e^{x} d x=x e^{x}-\int e^{x} d x \\
&= x e^{x}-e^{x}+c \\
& \quad=e^{x}(x-1)+c
\end{aligned}
\end{aligned}
$$

Question Seven:

a) $4 x^{2}+8 x-1=0$:
i. $\quad \alpha+\beta=\frac{-8}{4}$

$$
=-2
$$

ii. $\quad \alpha \beta=\frac{-1}{4}$
iii. $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$

$$
=\frac{\alpha^{2}+\beta^{2}}{\alpha^{2} \beta^{2}}
$$

$$
=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{(\alpha \beta)^{2}}
$$

$$
=\frac{(-2)^{2}-2 \cdot \frac{-1}{4}}{\left(\frac{-1}{4}\right)^{2}}
$$

$$
=16\left(4+\frac{1}{2}\right)
$$

$$
=72
$$

b) $y=3 \sin 2 x$
i. Amplitude is 3
ii. Period is $\frac{2 \pi}{2}$, or π
iii.
(1) amplitude, © period/shape

c)
i. $\quad \log _{2} 45$
$=\log _{2}(5 \times 9)$
$=\log _{2} 5+\log _{2} 3^{2}$
$=\log _{2} 5+2 \log _{2} 3$
$=2.322+2 \times 1.585$
$=5.492$
ii. $\quad \log _{7} 0.3$
$=\frac{\ln 0.3}{\ln 7}$
$=-0.6187196284$
$\simeq-0.619$
(1) answer
d) $9 x^{2}-3 x+p=0$

For only one root, $\Delta=0$
(1) answer

Many multiplied the logs, instead of adding them.
real root!

$$
\begin{gathered}
\therefore b^{2}-4 a c=0 \\
0=9-4.9 \cdot p \\
36 p=9 \\
\quad p=\frac{1}{4}
\end{gathered}
$$

(1) set-up
(1) answer

Too many had
$\Delta>0$ for one real root!

This was also successfully resolved by sums and products of roots by many:

$$
\begin{aligned}
\alpha+\beta & =-\frac{-3}{9}, \alpha \beta=\frac{p}{9} \alpha=\beta, \text { giving: } \\
2 \alpha & =\frac{1}{3} \\
\alpha & =\frac{1}{6}(=\beta) \\
\left(\frac{1}{6}\right)^{2} & =\frac{p}{9} \\
p & =\frac{9}{36} \\
& =\frac{1}{4}
\end{aligned}
$$

Question Eight:

a)
i. $\quad l=r \theta$
$4 \pi=12 \theta$

$$
\therefore \theta=\frac{\pi}{3}
$$

ii. $\quad A=\frac{1}{2} r^{2} \theta$

$$
\begin{aligned}
& =\frac{1}{2} \cdot 12^{2} \cdot \frac{\pi}{3} \\
& =24 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

b) $y=e^{x}+e^{-x}$, so
$y^{2}=\left(e^{x}+e^{-x}\right)^{2}$
$=e^{2 x}+2 e^{x} e^{-x}+e^{-2 x}$
$=e^{2 x}+e^{-2 x}+2$
Volume is given by:
$v=\int_{0}^{2} \pi y^{2} d x$
$=\pi \int_{0}^{2} e^{2 x}+e^{-2 x}+2 d x$
$=\pi\left[\frac{1}{2} e^{2 x}-\frac{1}{2} e^{-2 x}+2 x\right]_{0}^{2}$
$=\pi\left[\left(\frac{1}{2} e^{4}-\frac{1}{2} e^{-4}+4\right)-\left(\frac{1}{2} e^{0}-\frac{1}{2} e^{0}+0\right)\right]$
$=\frac{\pi}{2}\left(e^{4}-e^{-4}+8\right)$ cu.units
c)
i. $\quad T_{1}=10, T_{2}=15, T_{3}=20 \ldots$
$T_{2}-T_{1}=5 ; T_{3}-T_{2}=5$, so this is an AP
with $a=10, d=5$, hence

$$
\begin{aligned}
T_{n} & =10+5(n-1) \\
& =5+5 n
\end{aligned}
$$

When $n=10$

$$
T_{n}=5+5.10
$$

$$
=55
$$

ii. $\quad S_{n}=\frac{n}{2}(2 a+(n-1) d)$, so radius will be

$$
\begin{aligned}
r & =5+S_{n}, \text { so } \\
S_{n} & =455-5 \\
& =450
\end{aligned}
$$

Marking

Comments
Well done.
(1) answer

Mostly good. A few tried to find the area of a segment or triangle.

Students who could expand y^{2} correctly
(1) y^{2} correct generally got full marks.
A few made
horrible
integration
attempts : :
$\int e^{2 x} d x=\left[\frac{e^{x^{2}}}{x^{2}}\right]$
(1) int \& limits

Some mistakes substituting:
$e^{0}-e^{0}$
i) Was poorly set out - when a question says "Show that..." you must show yout thinking, theory used and calculations!
For full marks, students needed to show that they
(1) radius correct recognised an AP and then substituted.
A good answer would have proved an AP (as shown in solns).

$$
\begin{aligned}
450 & =\frac{n}{2}(2 \times 10+5(n-1)) \\
900 & =n(15+5 n) \\
0 & =5 n^{2}+15 n-900 \\
& =n^{2}+3 n-180 \\
0 & =(n+15)(n-12) \\
n & =-15,12
\end{aligned}
$$

As $n>0$, there are 12 strips needed.
d) $4 e^{2 x}-e^{x}=0$, let $u=e^{x}$, then

$$
\begin{aligned}
0 & =4 u^{2}-u \\
& =u(4 u-1)
\end{aligned}
$$

$$
e^{x}=\frac{1}{4}
$$

$$
=-2 \ln 2
$$

(1) forms quadratic
(1) answer justified solution was
(1) resolves quad

For full marks, students needed to give the two expressions for e^{x} and state that $e^{x}=0$ has no solution.
(1) answer justified
full marks, justification for the positive needed.
Students needed to recognise the extra 5 cm centre and deduct it; for

$$
u=0, \frac{1}{4} \quad \text {, hence }
$$

$$
e^{x}=0, e^{x}=\frac{1}{4}
$$

$$
e^{x}=0 \text { has no solution. }
$$

$$
x=\ln \left(\frac{1}{4}\right)
$$

(=-1.386294361)

Question Nine:

a) $y \leq 4-x^{2}$
i. (1) shading below parabola,
(1) shading between y -axis and line.

ii. Solving $y=3 x$ and $y=4-x^{2}$
simultaneously:

$$
\begin{aligned}
3 x & =4-x^{2} \\
0 & =x^{2}+3 x-4 \\
& =(x+4)(x-1) \\
x & =-4,1
\end{aligned}
$$

Hence intersection at $(1,3)$
So volume of solid to y-axis is $V=\pi \int_{a}^{b} x^{2} d y$
$y=4-x^{2}$ becomes $x^{2}=4-y$
$y=3 x$ becomes $x=\frac{y}{3}$ or $x^{2}=\frac{y^{2}}{9}$
$V=\pi \int_{0}^{3} \frac{y^{2}}{9} d y+\pi \int_{3}^{4} 4-y d y$

Marking

Comments

Poorly done.
Most students failed to establish the equation in terms of y, and hence did not find the correct y values for the integration. Many also did not recognise the need to split the
(1) both x^{2} eqns integral into two parts.
(1) int \& limits

$$
\begin{aligned}
& =\pi \int_{0}^{3} \frac{y^{2}}{9} d y+\int_{3}^{4} 4-y d y \\
& =\pi\left(\left[\frac{y^{3}}{27}\right]_{0}^{3}+\left[4 y-\frac{y^{2}}{2}\right]_{3}^{4}\right) \\
& =\pi\left(\left(\frac{27}{27}-0\right)+\left(\left(16-\frac{16}{2}\right)-\left(12-\frac{9}{2}\right)\right)\right) \\
& =\pi\left(1+8-\frac{15}{2}\right) \\
& =\frac{3 \pi}{2} \text { cu.units }
\end{aligned}
$$

(1) answer
b) $A B=x$, hence $C D, C Y$ and $X Y$ are all also x.
i. Total length of fencing is given by:

$$
700=A B+C D+C Y+X Y+B C
$$

$B C=700-4 x$
(1) Perim link

For rhombus $C D X Y$:

$$
\begin{aligned}
A & =2 \times \frac{1}{2} C D \cdot D Y \cdot \sin 30^{\circ} \\
& =\frac{x^{2}}{2}
\end{aligned}
$$

For rectangle $A B C D$:

$$
\begin{aligned}
A & =A B . B C \\
& =x(700-4 x) \\
& =700 x-4 x^{2}
\end{aligned}
$$

Total area is therefore:

$$
\begin{aligned}
A & =700 x-4 x^{2}+\frac{1}{2} x^{2} \\
& =700 x-\frac{7 x^{2}}{2} \quad \text { as reqd. }
\end{aligned}
$$

ii. For a possible maximum, $\frac{d A}{d x}=0$:
$\therefore \frac{d A}{d x}=700-7 x ; \frac{d A}{d x}=0$ gives
$0=700-7 x$
$x=100$
(1) x-value
$\frac{d^{2} A}{d x^{2}}=-7 \Rightarrow c c d$, or a max tp.
(1) max shown

Hence max area is

$$
\begin{aligned}
A & =700 \times 100-\frac{7 \times 100^{2}}{2} \\
& =35000 \mathrm{sq} . \mathrm{m}
\end{aligned}
$$

iii. Paddock is therefore 100 m by 300 m .
(1) answer
(1) answer
(1) areas \& alg

Poorly done. Most students did not use the sine version of the area of a triangle.

Question Ten:

a) $\$ P$ invested at 9% p.a.
i. First Year: $A_{1}=P(1+0.09)$

$$
\text { or } A_{1}=1.09 P
$$

Marking

(1) answer
ii. Second Year: $A_{2}=\left(A_{1}+P\right)(1+0.09)$

$$
\text { or } \begin{aligned}
A_{2} & =(1.09 P+P)(1.09) \\
& =1.09^{2} P+1.09 P \\
& =P\left(1.09^{2}+1.09\right)
\end{aligned}
$$

iii. After n years: $A_{n}=\left(A_{n-1}+P\right)(1+0.09)$

Using the above pattern, this becomes:

$$
A_{n}=P\left(1.09^{n}+1.09^{n-1}+\ldots+1.09\right)
$$

Now, this is a GP with
$a=1.09, r=1.09, n=n$, thus
$S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
(1) GP \& values

- anown
(1) answer

$$
=\frac{1.09\left(1.09^{n}-1\right)}{1.09-1}
$$

$$
=\frac{1.09\left(1.09^{n}-1\right)}{0.09}
$$

$$
=\frac{1.09}{0.09}\left(1.09^{n}-1\right)
$$

$$
=\frac{109\left(1.09^{n}-1\right)}{9}
$$

(GP resolved

Need to state this is a GP and write the formula

This step 'fudged’ by many.

Check degree of accuracy required (no marks lost if gave to nearest 4 .
b)
i.
(1) diagram

ii. Given $6 A D+B C=5 A C$, expressions for $A D, B C$ and $A C$ in terms of θ :
$\cos \theta=\frac{A D}{A B} \quad$ (from $\triangle A D B$)

$$
A D=A B \cos \theta
$$

$\tan \theta=\frac{B C}{A B} \quad$ and $\cos \theta=\frac{A B}{A C} \quad$ (from

$$
B C=A B \tan \theta \quad A C=\frac{A B}{\cos \theta}
$$

If students saw the common connection of AB, they generally did well with the question.
$\triangle A B C$)
(1) exp for each

Substituting these into the expression above:
$6 A B \cos \theta+A B \tan \theta=5 \frac{A B}{\cos \theta}$
(1) correct subst \& alg

Hence, $6 \cos \theta+\tan \theta=5 \sec \theta$ as reqd.
iii. $6 \cos \theta+\tan \theta=5 \sec \theta$, becomes

$$
\begin{aligned}
6 \cos \theta+\frac{\sin \theta}{\cos \theta} & =\frac{5}{\cos \theta} & & \\
6 \cos ^{2} \theta+\sin \theta & =5 & & \text { (1 } \sin / \text { cos resolved } \\
6\left(1-\sin ^{2} \theta\right)+\sin \theta & =5 & & \\
6-6 \sin ^{2} \theta+\sin \theta-5 & =0 & & \text { subst } \& \text { alg } \\
\text { Hence } 6 \sin ^{2} \theta-\sin \theta & -1=0 \text { as reqd. } & &
\end{aligned}
$$

Many poor with Trig identities!
iv. Let $u=\sin \theta$

$$
\begin{aligned}
0 & =6 u^{2}-u-1 \\
& =6 u^{2}-3 u+2 u-1 \\
& =3 u(2 u-1)+1(2 u-1) \\
& =(2 u-1)(3 u+1) \quad \text { (1) quad resolved }
\end{aligned}
$$

Hence
$0=2 \sin \theta-1$
$0=3 \sin \theta+1$
$\frac{1}{2}=\sin \theta \quad \frac{-1}{3}=\sin \theta$
$\theta=30^{\circ} \quad$ or $\quad \theta \simeq 199^{\circ} 28^{\prime}$
Reject $199^{\circ} 28^{\prime}$, as θ is in a right triangle, so $\theta=30^{\circ}$
(1) θ correct

Need to solve 2 eqns (a negative angle was not acceptable need the reflex angle.
Need to give both solutions and reject the invalid one with correct reasoning given.

