

Name:									

Teacher: _____

Class: _____

FORT STREET HIGH SCHOOL

2010

HIGHER SCHOOL CERTIFICATE COURSE

ASSESSMENT TASK 3: TRIAL HSC

Mathematics

TIME ALLOWED: 3 HOURS (PLUS 5 MINUTES READING TIME)

Outcomes Assessed	Questions	Marks
Chooses and applies appropriate mathematical techniques in order to	1, 2, 3	
solve problems effectively		
Manipulates algebraic expressions to solve problems from topic areas	4, 5, 7, 8	
such as functions, quadratics, trigonometry, probability and		
logarithms		
Demonstrates skills in the processes of differential and integral	6, 9	
calculus and applies them appropriately		
Synthesises mathematical solutions to harder problems and	10	
communicates them in appropriate form		

Question	1	2	3	4	5	6	7	8	9	10	Total	%
Marks	/12	/12	/12	/12	/12	/12	/12	/12	/12	/12	/120	

Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used
- Each new question is to be started in a new booklet

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$$

$$\int \cot x = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE :
$$\ln x = \log_e x, \ x > 0$$

Question One: (Start a NEW BOOKLET)

a) Evaluate
$$\frac{\pi}{\sqrt{e^2 - 1}}$$
 correct to 3 decimal places. [2]

b) Solve
$$\frac{3-2x}{x} = 4$$
. [2]

c) Rationalise the denominator of
$$\frac{2}{1+\sqrt{3}}$$
. [2]

- d) Factorise $4 + 11x 3x^2$. [2]
- e) Sketch the graph of x + 2y 6 = 0, showing the intercepts on both axes. [2]
- f) Find the equation (in General Form) of the line perpendicular to 4x-3y-1=0 that passes through the point (2,-3). [2]

Question Two: (Start a NEW BOOKLET)

- a) Differentiate with respect to *x*:
 - i. $x^2 e^x$ [2]
 - ii. $(1 + \tan x)^2$ [2]
- b) Find

i.
$$\int 4x - \sin x \, dx$$
 [2]

ii.
$$\int_{1}^{3} \frac{1}{x^2} dx$$
 [3]

c) Find the equation of the tangent to the curve $y = x - \frac{1}{x}$ at the point (-1,0). [3]

Question Three: (Start a NEW BOOKLET)

a) Triangle ABC is isosceles with AB=AC. AB and AC are extended to D and E respectively, with BD=CE, as shown in the diagram below.

i. Copy the diagram into you answer booklet showing the information given. [1]

ii. Prove that
$$\triangle ABE \equiv \triangle ACD$$
. [4]

b) Using Simpson's Rule with five function values to find and approximate value for the integral $\int_{0}^{2} e^{x^2} dx$, to 2 decimal places. [3]

c) A geometric series has a
$$3^{rd}$$
 term of $\frac{1}{12}$ and an eighth term of $\frac{-1}{384}$. For this series:

- i. Find an expression for T_n . [2]
- ii. Find the sum of the first 8 terms. [1]
- iii. Find the limiting sum. [1]

<u>Question Four</u>: (Start a NEW BOOKLET)

a) Solve $2\cos x = \sqrt{3}$ for $-\pi \le x \le \pi$. [2]]
--	---

b) For the parabola $x^2 = 6(y+1)$:

c)

	i.	Write down the coordinates of the vertex.	[1]	
	ii.	Find the coordinates of the focus.	[1]	
	iii.	Draw a neat sketch of the parabola.	[1]	
	iv.	Calculate the area bounded by the parabola and the line $y = 5$.	[3]	
Two ordinary dice are rolled and the score is the sum of the numbers on the top faces.				
	i.	What is the probability that the score is 5?	[2]	
	ii.	What is the probability that the score is not 5?	[1]	
	iii.	What is the probability that the dice show "doubles" (i.e. that both numbers on the top faces are the same)?	[1]	

Question Five: (Start a NEW BOOKLET)

a) A 10m long ladder (AB) rests against a wall, with its foot (B) 6m from the base (C) of the wall (AC) as shown in the diagram below (Not drawn to Scale). D is a point on the ladder AB.

i. How far up the wall does the ladder reach? [1]

ii.	Explain why DF BC.	[1]
-----	---------------------	-----

- iii. Prove $\triangle ADF \parallel \triangle ABC$. [2]
- iv. Felix climbs the ladder to point D so that he is 3m directly above the ground (E).How far along the ladder (BD) has he climbed? [2]
- b) Find the equation of the normal to the curve y = x(x-2) when x = 2. [2]
- c) Given $g(x) = ax^2 + bx + c$ and that g(0) = 4, g(1) = 23, g(-1) = 1, determine the values of *a*, *b* and *c*. [2]

Question Six: (Start a NEW BOOKLET)

a) For the function $y = x^3 - 3x^2 - 9x + 6$:

i. At what point does this curve cut the <i>y</i> -axis?	[1]
--	-----

ii.	Find the coordinates of any stationary points and determine their nature.	[3]
iii.	Find the coordinates of any points of inflection.	[1]

- For what values of x is the curve concave up? iv. [1]
- Sketch the curve, showing the information above. [2] v.

b) If
$$\sin \theta = -\frac{2}{3}$$
 and $\cos \theta > 0$, find the value of $\tan \theta$ (in surd form). [2]

c) Show that the derivative of xe^x is $e^x + xe^x$, and hence find $\int xe^x dx$. [2]

Question Seven: (Start a NEW BOOKLET)

- a) If α and β are the roots of $4x^2 + 8x 1 = 0$, find the value of
 - i. [1] $\alpha + \beta$
 - ii. $\alpha\beta$ [1]

iii.
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$$
 [2]

- b) For the curve $y = 3\sin 2x$:
 - State the amplitude. i. [1]
 - ii. Find the period. [1]
 - iii. Draw a neat sketch of the curve for $0 \le x \le \pi$. [2]
- c) Find the value of:

i.	$\log_2 45$, given that $\log_2 3 = 1.585$ and $\log_2 5 = 2.322$, without using the change of base law.	[1]
		[1]
ii.	$\log_7 0.3$, using change of base law.	[1]

d) Find p so that
$$9x^2 - 3x + p = 0$$
 has only one root. [2]

<u>Question Eight</u>: (Start a NEW BOOKLET)

a) In the diagram, XY is an arc of a circle with centre O and radius 12cm. The length of the arc XY is 4π cm.

- i. Find the exact size of θ in radians. [1]
- ii. Find the area of the sector OXY

[1]

- b) The region bounded by the curve $y = e^x + e^{-x}$, the *x*-axis and the lines x = 0 and x = 2 is rotated about the *x*-axis. Find the volume of the solid formed. (Answer in terms of *e*). [3]
- c) Beginning with a circular piece of fabric of radius 5cm, Lynn sewed together circular strips of different coloured fabrics which increased in width to make a circular tablecloth. The finished width of the first strip was 10cm, the second was 15cm, the third 20cm, and so on, as shown opposite.
 - i. Show that the width of the 10^{th} strip was 55cm. [2]
 - ii. The radius of the Tablecloth was 455cm. How many strips were sewn onto the edge of the first circular piece? [3]
- d) Solve for *x*: $4e^{2x} e^x = 0$.

<u>Question Nine</u>: (Start a NEW BOOKLET)

- a) For the inequality $y \le 4 x^2$:
 - i. Shade the region bounded simultaneously by the inequality above, and the inequalities $x \ge 0$ and $y \ge 3x$.
 - ii. Find the volume of the solid of revolution formed when the region defined in (i) above is rotated about the *y*-axis. [4]

[2]

b) A farmer needs to construct two holding paddocks, one rectangular (ABCD) and one a rhombus (CDXY) for horses and cattle respectively. The diagram below shows an aerial view of the paddocks, including the use of an existing fence as part of the boundary.

The farmer has only 700m of fencing. We also know that $\angle CDX = 30^{\circ}$.

- i. By letting AB = x, show that the area A of the two paddocks is given by $A = 700x - \frac{7x^2}{2}$. [2]
- ii. Hence find the maximum area that can be enclosed. [3]
- iii. Calculate the dimensions for the rectangular paddock, when the overall area is a maximum. [1]

<u>Question Ten</u>: (Start a NEW BOOKLET)

a)	Jerry joins a Superannuation fund, investing \$P at the beginning of every year at 9% p.a. compounding annually.					
	i.	Write an expression for the value of his investment A_1 at the end of the first year.	[1]			
	ii.	Write an expression for the value of his investment A_2 at the end of the second year.	[1]			
	iii.	Show that, after n years, the value of his investment A_n is given by				
		$A_n = \frac{109P}{9} (1.09^n - 1)$	[2]			
	iv.	If, after 30 year, he wishes to collect \$1,000,000, calculate the value of \$P to the nearest dollar.	[1]			
b)		ngle is right-angled at <i>B</i> . <i>D</i> is the point on <i>AC</i> such that <i>BD</i> is perpendicular to et $\angle BAC = \theta$.				
	i.	Draw a diagram showing this information.	[1]			
	Yo	but are given that $6AD + BC = 5AC$:				
	ii.	Show that $6\cos\theta + \tan\theta = 5\sec\theta$	[2]			
	iii.	Deduce that $6\sin^2\theta - \sin\theta - 1 = 0$	[2]			
	iv.	Find θ .	[2]			

Question Two: a) i) $u = x^2$ $v = e^x$ du = 2x $dv = e^x$ $\therefore \frac{d(x^2 e^x)}{dx}$ $=x^2e^x+2xe^x$ $= xe^{x}(x+2)$ ii) $\frac{d(1+\tan x)^2}{dx}$ $= 2(1 + \tan x)^{1} \times \frac{d(\tan x)}{dx}$ $= 2\sec^{2} x(1 + \tan x)$ b) i) $\int 4x - \sin x \, dx$ $= 2x^2 + \cos x + c$ ii) $\int_{-\infty}^{3} \frac{1}{x^2} dx$ $=\left[-\frac{1}{x}\right]_{1}^{3}$ $=\frac{-1}{3}-\frac{-1}{1}$ $=\frac{2}{3}$ c) $\frac{dy}{dx} = 1 + \frac{1}{x^2}$, so when x = -1 $\frac{dy}{dx} = 2$

Hence y - 0 = 2(x + 1)

or y = 2x + 2

Marking	Comments
• product rule	Mostly good
1 answer	
Ochain rule	Some struggled with structure of the Chain Rule.
0 answer	Some did not know the derivative of tanx.
• answer	Quite a few
0 for '+ <i>c</i> '	integration errors, and some forgot "+c"
	Many 2 Unit candidates got a
1 int & limits	log or
1 subst	differentiated. Many also made
• answer	sign errors in substitution.
• derivative	Some could not
O gradient	find derivative. Many errors to find "m=2"
0 answer	("m=0" was popular). More seriously, not
	finding an "m"
	value but using
	algebra:
	$y = \left(1 + \frac{1}{x^2}\right)(x+1)$

is meaningless!

Fort Street High School

 $\frac{T_8}{T_3} = \frac{-1}{384} \div \frac{1}{12}$ $\frac{ar^{7}}{ar^{2}} = \frac{-1}{384} \times \frac{12}{1}$ $r^5 = \frac{-1}{32}$ $r = \frac{-1}{2}$ $a \cdot \left(\frac{-1}{2}\right)^2 = \frac{1}{12}$ $a = \frac{1}{3}$ $T_n = ar^n$ $=\frac{1}{3}\cdot\left(\frac{-1}{2}\right)^n$ $S_n = \frac{a(1-r^n)}{1-r}$ ii. $S_8 = \frac{\frac{1}{3} \left(1 - \left(\frac{-1}{2}\right)^8 \right)}{1 - \frac{-1}{2}}$ $=\frac{\frac{1}{3}\left(1-\frac{1}{256}\right)}{\frac{3}{2}}$ $=\frac{1}{3}\cdot\frac{2}{3}\cdot\frac{255}{256}$ $=\frac{85}{384}$ $S_{\infty} = \frac{a}{1-r}$ iii. $=\frac{\frac{1}{3}}{1-\frac{-1}{2}}$ $=\frac{1}{3}\cdot\frac{2}{3}$ $=\frac{2}{9}$

This part done well provided the correct ratio of $\frac{-1}{2}$ found (some

used
$$\frac{\pm 1}{2}$$
 or $\frac{1}{2}$.

O S_8 correct

This answer best left as a fraction.

2010 HSC Trial	Fort Street High School	2 Unit Math	ematics - Solutions
Question Four:		Marking	Comments
a) $\cos x = \frac{\sqrt{3}}{2}$			
$x = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$			Monu did not mod
$=\frac{\pi}{6}$	but with	• base angle	Many did not read the requirements of the question:
$\cos x \text{ positive in Q1 \& Q4,} \\ \pi -\pi$, but with $-\pi \leq x \leq \pi$,		$-\pi \le x \le \pi$ also
$x = \frac{\pi}{6}, \frac{-\pi}{6}$		• answers	implies radians!
b) i. Vertex is $(0, -1)$		1 answer	
ii. $4a = 6$			
Hence $a = \frac{3}{2}$, so focus is (0)	(-1+a) or		
$\left(0,\frac{1}{2}\right)$		O answer	
iii.			
			Sketch was poorly
			done by many –
40			must show vertex, focus, intercepts.
3.0			-
2.0			Use a ruler to draw axes!
-4.0 -3.0 -2.0 -1.0	1.0 20 3.0 4.0 5		
		1 graph	
iv. $y = 5$ and $x^2 = 0$	6(y+1)	• eqn for Int	Poorly done.
$x^2 = 6(5+1)$ $y+1 = -$	$\frac{x^2}{6}$		Students need to review area
= 36	x^2		between two
iv. $y=5$ and $x^2=6$ $x^2=6(5+1)$ =36 y=-1 $x=\pm 6$ hence	$\frac{1}{6}$ -1		curves.
$x = \pm 6$, hence		• boundaries	

Page 5

c)

$$A = \int_{-6}^{6} 5 - \left(\frac{x^2}{6} - 1\right) dx$$

$$= 2 \int_{0}^{6} 5 - \left(\frac{x^2}{6} - 1\right) dx$$

$$= 2 \left[6x - \frac{x^3}{18} \right]_{0}^{6}$$

$$= 2 \left[\left(6^2 - \frac{6^3}{18} \right) - 0 \right]$$

$$= 48$$

$$0 \text{ answer}$$
i. First die 1 to 4 must correspond to 2nd die
4 to 1, so 4 outcomes give a total of 5
$$P(5) = \frac{4}{36}$$

$$= \frac{1}{9}$$

$$0 \text{ answer}$$
ii. $P(not 5) = 1 - P(5)$

$$= 1 - \frac{1}{9}$$

$$= \frac{8}{9}$$

$$0 \text{ answer}$$
iii. $P(doubles) = \frac{1}{6}$

$$0 \text{ answer}$$

2010 HS	SC Trial		Fort Street High School	2 Unit Math	nematics - Solutions
Question Five:			Marking	Comments	
a)	i.	By Pythagoras: AC = 64	$x^2 = 10^2 - 6^2$		
	ii.	in a corresponding p	DFA and $\angle BCA$ are	• answer	Some students failed to recognise corresponding
	iii.	Hence $BC \parallel DF$. In Δ 's ADF, ABC		• reasoning	angles, or failed to write that fact
		$\angle DFA = \angle BCA = 9$ $\angle A$ is common. Hence all angles are $\triangle AFD \parallel \mid \triangle ABC$	0° (given in diagram) e equal so	1 reasons1 conclusion	down!
	iv.	Similarly, $\Delta BDE \parallel A$ $\frac{DE}{AC} = \frac{DB}{AB}$	ΔABC , hence		
		$\frac{3}{8} = \frac{DB}{10}$		• subst	
b)		DB = 3.75 $x^{2} - 2x; x = 2, y = 0$		• answer	
	$\frac{dy}{dx} =$	-2x, x = 2, y = 0 $2x - 2; x = 2, \frac{dy}{dx} = 2, s$	so normal gradient is		Parts b) and c) generally well done.
	$\frac{-1}{2}$			• gradient	
	y-0	$=\frac{-1}{2}(x-2)$ $=1-\frac{x}{2}$			
		= x + 2y - 2 = 4:4 = a.0 ² + b.0 + c		• answer	
,	0	$= 4 : 4 = a \cdot 0 + b \cdot 0 + c$ $= 23 : 23 = a \cdot 1^2 + b \cdot 1 + c$	C		
	g(-1)	$a = 1:1 = a.(-1)^2 + b.(-1)^2$	(1) + c, giving the eqns		
		$\langle 1 \rangle$			
		$ \begin{array}{c} a+b+c & \langle 2 \rangle \\ -b+c & \langle 3 \rangle \end{array} $		O set-up	
		$\langle 2 \rangle$ and $\langle 3 \rangle$ gives:			
	a+b				
		= -3, then adding giv 6; back-substitution			
	a = 3	8	b=11	A are	
	непсе	a = 8, b = 11, c = 4		O answers	

2010 HSC Trial	Fort Street High School	2 Unit Math	ematics - Solutions
Question Six a)	:	Marking	Comments
i.	y-intercept at (0,6).	• answer	
ii.	$y'=3x^2-6x-9$		
	y'' = 6x - 6		
	Stat Pts when $y' = 0$:		
	$0=3x^2-6x-9$		
	$=x^2-2x-3$		
	= (x-3)(x+1)		
	$\therefore x = -1, 3$	• x values	
	$x = -1 \qquad \qquad x = 3$		
	$y = (-1)^3 - 3(-1)^2 - 9(-1) + 6$ $y = (3)^3 - 3(3)^3 -$	$(3)^2 - 9(3) + 6$	
	=11 =-21		
	Pts are (-1,11) and (3,-21)		
	$x = -1 \qquad x = 3$		Make sure co-
	y'' = -12 $y'' = 12$	•	ordinates are
	$\Rightarrow ccd \Rightarrow ccu$	• test	stated when the
	:. $(-1,11)$ is a max t.p. and $(3,-21)$ is a min t.p.	O points	question asks for them
iii.	y'' = 0:0 = 6x - 6, hence possible	• points	uiciii
	inflection pt when $x = 1$.		
	when $x < 1, y'' < 0 \Rightarrow ccd$		
	when $x > 1, y'' > 0 \Longrightarrow ccu$		<u>Must</u> test the
	hence concavity changes, so $(1, -5)$ is a		nature of Stat. Pts
iv.	point of inflexion. Concave up when $y'' > 0$	O point & test	and Inflexion Pts!
1	6x-6>0		
	6 <i>x</i> > 6		
	i.e. when $x > 1$	• answer	
V.	Av		Sketch very
			poorly done.
			Use:
			• a ruler for axes
			• a suitable scale Show the
			information
			requested:
	-12		• turning points
	-18		• inflexion point
			• intercepts (x and
	• 	0 t.p's	y)
		• intercepts	

b) $\sin\theta = \frac{-2}{3}$ Some students did not know the ASTC results. 3 2 R Hence $x^2 = 3^2 - 2^2$, or $x = \sqrt{5}$ $\sin\theta < 0 \Longrightarrow Q_3, Q_4$ $\cos\theta > 0 \Rightarrow Q_1, Q_4 \Rightarrow \tan\theta in Q_4; \tan\theta < 0$ **O** quadrant Hence $\tan \theta = \frac{-2}{\sqrt{5}}$ **1** answer c) $\frac{d(xe^x)}{dx}$ u = x $v = e^x$ u' = 1 $v' = e^x$ • product rule Showing a result – you must clearly $= xe^{x} + 1.e^{x}$ demonstrate the $=e^{x}+xe^{x}$ as reqd. link for each step. Hence $\frac{d(xe^x)}{dx} = e^x + xe^x$, so integrating gives: $xe^{x} = \int (e^{x} + xe^{x}) dx$ $= \int e^x \, dx + \int x e^x \, dx$ $\therefore \int x e^x \, dx = x e^x - \int e^x \, dx$ $= xe^{x} - e^{x} + c$ $=e^{x}(x-1)+c$ **1** answer

Fort Street High School

 $=\frac{1}{4}$

c

c)
i.
$$\log_2 45$$

 $= \log_2 (5 \times 9)$
 $= \log_2 5 + \log_2 3^2$
 $= \log_2 5 + 2\log_2 3$
 $= 2.322 + 2 \times 1.585$
 $= 5.492$
ii. $\log_7 0.3$
 $= \frac{\ln 0.3}{\ln 7}$
 $= -0.6187196284$
 $= -0.619$
d) $9x^2 - 3x + p = 0$
For only one root, $\Delta = 0$
 $\therefore b^2 - 4ac = 0$
 $0 = 9 - 4.9.p$
 $36p = 9$
 $p = \frac{1}{4}$
To many had $\Delta > 0$ for one real root!
 $\therefore b^2 - 4ac = 0$
 $0 = 9 - 4.9.p$
 $36p = 9$
 $p = \frac{1}{4}$
Characterized by sums and products of roots by many:
 $a + \beta = -\frac{-3}{9}, \ \alpha\beta = \frac{p}{9} \ \alpha = \beta$, giving:
 $2\alpha = \frac{1}{3}$
 $\alpha = \frac{1}{6}(=\beta)$
 $\left(\frac{1}{6}\right)^2 = \frac{p}{9}$
 $p = \frac{9}{36}$
 $p = \frac{9}{36}$

O answer

Fort Street High School

2 Unit Mathematics - Solutions

shown in solns).

<u>Question Eight</u> : a)	Marking	Comments
i. $l = r\theta$ $4\pi = 12\theta$		Well done.
$\therefore \theta = \frac{\pi}{2}$	1 answer	
ii. $A = \frac{1}{2}r^{2}\theta$ $= \frac{1}{2}.12^{2}.\frac{\pi}{3}$ $= 24\pi \ cm^{2}$	• answer	Mostly good. A few tried to find the area of a segment or triangle.
b) $y = e^x + e^{-x}$, so		Students who
$y^{2} = (e^{x} + e^{-x})^{2}$ = $e^{2x} + 2e^{x}e^{-x} + e^{-2x}$ = $e^{2x} + e^{-2x} + 2$	• y^2 correct	could expand y^2 correctly
Volume is given by: $\frac{2}{2}$	v y correct	generally got full marks. A few made
$v = \int_{0}^{2} \pi y^{2} dx$		horrible integration attempts 🔅:
$=\pi \int_{0}^{\infty} e^{2x} + e^{-2x} + 2 dx$		$\int e^{2x} dx = \left[\frac{e^{x^2}}{x^2}\right]$
$= \pi \left[\frac{1}{2} e^{2x} - \frac{1}{2} e^{-2x} + 2x \right]_{0}^{2}$ $= \pi \left[\left(\frac{1}{2} e^{4} - \frac{1}{2} e^{-4} + 4 \right) - \left(\frac{1}{2} e^{0} - \frac{1}{2} e^{0} + 0 \right) \right]$	• int & limits	Some mistakes substituting: $e^0 - e^0$
$=\frac{\pi}{2}(e^{4} - e^{-4} + 8)cu.units$	• answer	
c) i. $T_1 = 10, T_2 = 15, T_3 = 20$ $T_2 - T_1 = 5; T_3 - T_2 = 5$, so this is an AP with $a = 10, d = 5$, hence $T_n = 10 + 5(n - 1)$ = 5 + 5n	• justifies AP	 i) Was poorly set out – when a question says "Show that" you must show yout thinking,
When $n = 10$ $T_n = 5 + 5.10$	then shows subst	theory used and calculations!
= 55 ii. $S_n = \frac{n}{2}(2a + (n-1)d)$, so radius will be	• to get answer	For full marks, students needed to <u>show</u> that they
$r = 5 + S_n, \text{ so}$ $S_n = 455 - 5$ $= 450$	• radius correct	recognised an AP and then substituted. A good answer would have proved an AP (as

$$450 = \frac{n}{2} (2 \times 10 + 5(n-1))$$

$$900 = n(15 + 5n)$$

$$0 = 5n^{2} + 15n - 900$$

$$= n^{2} + 3n - 180$$

$$0 = (n+15)(n-12)$$

$$n = -15, 12$$
As $n > 0$, there are 12 strips needed.
$$0 = 4u^{2} - u$$

$$= u(4u - 1)$$

$$u = 0, \frac{1}{4}$$
, hence
$$e^{x} = 0$$
 has no solution.
$$e^{x} = \frac{1}{4}$$

$$e^{x} = 0$$
 has no solution.
$$e^{x} = \frac{1}{4}$$

$$x = \ln\left(\frac{1}{4}\right)$$

$$= -2\ln 2$$

$$(= -1.386294361)$$
Students needed to recognise the extra 5cm centre and deduct it; for full marks, justification for the positive solution was needed.
$$0 \text{ forms quadratic}$$

$$f \text{ for full marks, students needed to give the two expressions for e^{x} and state that e^{x} = 0 has no solution.$$

$$f \text{ for answer justified}$$

Question Nine:

Marking

Comments

b)

2010 HSC 1	rial	Fort Street High School		2 Unit Mathematics - Solutions	
Question			Marking	Comments	
a) \$P i.	invested at 9% p.a. First Year: $A_1 = P(1 + or A_1 = 1.09P$	0.09)	• answer		
ii.	Second Year: $A_2 = (A_2)^2$ or $A_2 = (1.09P + P)(1.200)^2$ $= 1.09^2 P + 1.09P^2$.09)			
iii.	$= P(1.09^{2} + 1.09)$ After <i>n</i> years: $A_{n} = (A$ Using the above patter $A_{n} = P(1.09^{n} + 1.09^{n-1})$	$(A_{n-1} + P)(1+0.09)$ rm, this becomes: $(A_{n-1} + + 1.09)$	1 answer	Need to state this is a GP and write	
	Now, this is a GP with a = 1.09, r = 1.09, n = r $S_n = \frac{a(r^n - 1)}{r - 1}$ $= \frac{1.09(1.09^n - 1)}{1.09 - 1}$ $= \frac{1.09(1.09^n - 1)}{0.09}$		• GP & values	the formula	
	$= \frac{1.09}{0.09}(1.09^{n} - 1)$ $= \frac{109(1.09^{n} - 1)}{9}$ Hence $A_{n} = \frac{109P}{9}(1.09^{n} - 1)$	$10^{n} - 1$), as reqd.	• GP resolved	This step 'fudged' by many.	
iv.	For $A_n = \$1,000,000$ and $1,000,000 = \frac{109P}{9}(1.00)$ $\frac{9000000}{109} = P(1.09^{30} - 0)$	09 ³⁰ -1) -1)			
	$P = \frac{90000}{109(1.09^3)}$ $= 6730.597$ $= 6731	,	• answer	Check degree of accuracy required (no marks lost if gave to nearest ¢.	

iv. Let $u = \sin \theta$ $0 = 6u^2 - u - 1$ $= 6u^2 - 3u + 2u - 1$ = 3u(2u - 1) + 1(2u - 1) = (2u - 1)(3u + 1) Hence	• quad resolved	Need to solve 2 eqns (a negative angle was not acceptable – need the reflex angle.
$0 = 2\sin\theta - 1 \qquad 0 = 3\sin\theta + 1$ $\frac{1}{2} = \sin\theta \qquad \frac{-1}{3} = \sin\theta$ $\theta = 30^{\circ} \qquad or \qquad \theta \approx 199^{\circ}28'$ Reject 199°28', as θ is in a right triangle, so $\theta = 30^{\circ}$	0 θ correct	Need to give both solutions and reject the invalid one with correct reasoning given.