

Name: \qquad

Teacher: \qquad

Class: \qquad

FORT STREET HIGH SCHOOL

2012
 HIGHER SCHOOL CERTIFICATE COURSE ASSESSMENT TASK 3: TRIAL HSC

Mathematics

Time allowed: 3 hours
(plus 5 minutes reading time)

Outcomes Assessed	Questions
Chooses and applies appropriate mathematical techniques in order to solve problems effectively	$1-10$
Manipulates algebraic expressions to solve problems from topic areas such as geometry, co-ordinate geometry, quadratics, trigonometry, probability and logarithms	11,13
Demonstrates skills in the processes of differential and integral calculus and applies appropriate techniques to solve problems	12,14
Synthesises mathematical solutions to harder problems and communicates them in appropriate form	15,16

Total Marks 70

Section I 10 marks

Multiple Choice, attempt all questions,
Allow about 15 minutes for this section
Section II
90 Marks
Attempt Questions 11-16,
Allow about 2 hours 45 minutes for this section

General Instructions:

- Questions 11-16 are to be started in a new booklet
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board - approved calculators may be used

Section I	Total 10	Marks
Q1-Q10		
Section II	Total 90	Marks
Q11	$/ 15$	
Q12	$/ 15$	
Q13	$/ 15$	
Q14	$/ 15$	
Q15	$/ 15$	
Q16	$/ 15$	
	Percent	

SECTION I Multiple Choice (10 marks)

CIRCLE CORRECT RESPONSE

1. What is the value of $\frac{(1.49)^{2}-1.98}{\sqrt{11.62+8.34 \times 2.72}}$ correct to three significant figures?
A. 0.040
B. 0.0409
C. 0.041
D. 0.0410
2. Find the values that satisfy $x^{2}-x<6$
A. $x<-2, x>3$
B. $x<-3, x>2$
C. $-3<x<2$
D. $-2<x<3$
3. If $\log _{a} 5=1.03$ and $\log _{a} 2=0.64$ then the value of $\log _{a} 10$ is:
A. 2.06
B. 1.67
C. 0.6592
D. 3.2
4. $\sum_{n=5}^{14} 17-2 n=$
A. -11
B. -20
C. -18
D. -28
5. Expressed in radian measure, 235^{0} is:
A. $\frac{\pi}{235}$
B. $\frac{235}{\pi}$
C. $\frac{47 \pi}{36}$
D. $\frac{36 \pi}{47}$
6. The third and seventh terms of a geometric series are 1.25 and 20 respectively. What is the first term?
A. ± 2
B. $\frac{5}{16}$
C. ± 4
D. $\frac{5}{1024}$
7. State which point on the sketch fits the description $y<0, \frac{d y}{d x}>0, \frac{d^{2} y}{d x^{2}}<0$

A. A
B.
B
C. C
D.
D
8. What is the greatest value of the function $y=4-2 \cos x$?
A. 2
B.
4
C. 6
D. 8
9. A game is played in which two coloured dice are thrown once. The six faces of the red die are numbered $3,5,7,8,9$ and 11 . The six faces of the white die are numbered $1,2,4,6,10$ and 12 . The player wins if the number on the white die is larger than the number on the red die. What is the probability that the player wins once in two successive games?
A. $\frac{7}{18}$
B. $\frac{11}{18}$
C. $\quad \frac{77}{162}$
D. $\frac{77}{324}$
10. What is the centre and radius of the circle with the equation $x^{2}+y^{2}+6 x-8 y-11=0$?
A. Centre $(-3,-4)$ and radius 36
B. Centre $(-3,4)$ and radius 36
C. \quad Centre $(-3,-4)$ and radius 6
D. \quad Centre $(-3,4)$ and radius 6

Question 11 (15 marks) Begin a NEW booklet

(a) Evaluate $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x-3}$

2
(b) If $\sqrt{50}-3 \sqrt{75}+\sqrt{18}=a \sqrt{2}-b \sqrt{3}$, find the value for a and b.
(c) State the domain and range of the function: $f(x)=2 \sqrt{x-1}+3$
(d) Evaluate a, in simplest exact form, if $\int_{1}^{3} \frac{a}{1+x} d x=\log _{e} 16$.
(e) Solve for x : $|2 x-1|=3 x-4$
(f) For what values of k will $x^{2}-(k-3) x+k=0$ have equal roots?

$A B\|E F\| D C$. Find the value of x and y, giving reasons.
(a) Differentiate with respect to x :
i) $y=\sqrt{1-x^{2}} \quad 1$
ii) $y=\frac{\cos x}{x}$

1
(b) Find:
i) $\quad \int \frac{1}{e^{3 x}} d x$

1
ii) $\quad \int\left(1+3 \sec ^{2} \frac{x}{2}\right) d x$

1
(c) The gradient of a curve is given by $f^{\prime}(x)=6 x^{2}-6 x+5$. If the curve passes through the point $(2,13)$, find its equation.

2
(d) Find the equation of the normal to the curve $y=\ln \left(\frac{2 x-1}{x+1}\right)$, at the point

3 where $x=2$.
(e)

The points A, B and C have coordinates $(4,0),(0,10)$ and $(6,5)$ respectively as shown on the diagram. Copy the diagram into your booklets.
(i) Find the gradient of the line AB .
(ii) Show that the equation of the line through point C perpendicular to AB is given by
$2 x-5 y+13=0$. Label this line q.
(iii) Find the perpendicular distance of B from the line CD, giving your answer in surd form with rational denominator.
(iv) If the line q meets the x-axis at D , calculate the size of angle $A D C$, correct to the nearest degree.
(a) A party of walkers leave their base camp A at noon and walk in the direction $150^{\circ} \mathrm{T}$ until they reach a point B on the bank of the river. Unable to cross the river, they follow it on a bearing of $015^{\circ} \mathrm{T}$ and retire at 2 pm when they reach point C . The bearing and distance of C from A are $120^{\circ} \mathrm{T}$ and 2.5 km respectively.
i) In your booklet, draw a diagram and mark on it the given information, in the correct positions.
ii) Find the distances AB and BC .
iii) Hence, calculate the average speed, correct to one decimal place, of these walkers from A to C.
(b)

Dani and Chris used the spinner shown above to play a game. Dani spun the spinner twice and added the results of the two spins to get his score. Chris then took his turn. The player with the highest score won the game.
i) Use a tree diagram or a sample space to show all the possible scores Dani could have achieved when he played the game.
ii) What is the probability that Dani scored 6 in the game?
iii) Dani's score was 6 . What is the probability that Chris won the game?
(c)

In the diagram above, $A B=10 \mathrm{~cm}, A D=D C=x \mathrm{~cm}$ and $\angle A B D=\angle B C D$.
i) Prove $\triangle A B D\|\| \triangle A C B$
ii) Hence find the exact value of x.
iv) If α and β are the roots of the quadratic equation $5 x^{2}-3 x-2=0$, find the value of: 4
i) $\quad \alpha+\beta$
ii) $\quad \alpha \beta$
iii) $\quad \alpha^{2}+\beta^{2}$
iv) $(3-\alpha)(3-\beta)$
(a) Rapunzel has discovered something interesting about the way her hair grows. When she was imprisoned in her tower (on the $1^{\text {st }}$ of January) her hair was 9 metres long. She measured her hair every year on the $1^{\text {st }}$ of January, and made a note of its length. She recorded the following lengths on her cell wall for the first 4 years of her imprisonment:

$$
9 \mathrm{~m}, \quad 10 \mathrm{~m}, \quad 11.05 \mathrm{~m}, \quad 12.15 \mathrm{~m}, \quad 13.3 \mathrm{~m}
$$

i) How much did Rapunzel's hair grow in the second year?
ii) Write a series showing the amount her hair had grown in each of the first 4 years.
iii) Using the series in part (ii), find how much Rapunzel's hair grew in the eighteenth year.
iv) Prince Charming arrived to rescue Rapunzel after she had been in the tower for 21 years. If the tower is 40 metres high, and assuming that her hair continues to grow according to the series in (ii), will Rapunzel's hair be long enough to reach the ground ? Justify your answer by finding the length of Rapunzel's hair at this time.
(b)

The diagram shows parts of the curves $y=\sin x$ and $y=\cos 2 x$.
i) Show that the curves intersect at $x=\frac{5 \pi}{6}$ and $x=\frac{3 \pi}{2}$.
ii) Calculate the area between the curves from $x=\frac{5 \pi}{6}$ to $x=\frac{3 \pi}{2}$. Leave the answer in exact form.
c) The region enclosed by the y axis, the line $y=x-1$ and the line $y=3$ is rotated about the y axis.
i) Sketch the region
ii) Show that the volume of the resulting solid of revolution is given by

$$
\mathrm{V}=\pi \int_{-1}^{3}\left(y^{2}+2 y+1\right) d y
$$

iii) Hence, calculate this volume correct to two decimal places.
(a)

The diagram shows the graph of the curve $y=\log _{e} x$, not drawn to scale.
(i) Find the equation of the tangent (I) at $x=e$ to the curve and show that it passes through the origin.
(ii) Show that the area bounded by the curve, the y-axis and the lines $y=0$ and $y=1$ is ($e-1$) square units.
(iii) Using the results of part (ii) or otherwise, find the area of the shaded region between $y=\log _{e} x$, the tangent (l) and the x-axis as shown in the diagram below.

Question 15 is continued over
b) A river 60 m wide is measured for depth every 10 m across its width.

The measurements from bank to bank are given in the table. By using
Simpson's Rule, estimate the cross-sectional area of the river at this point.

Measurement number	1	2	3	4	5	6	7
Depth in metres	0	5.5	11.0	13.2	8.5	4.5	0

(c) (i) Expand $e^{-x}\left(1-e^{-x}\right)$
(ii) For the curve $y=e^{-x}-e^{-2 x}$:
(α) find where it cuts the axes.
(β) find the co-ordinates of the stationary points and determine their nature.
(γ) determine the values of x for which the curve is monotonic decreasing and hence, or otherwise, discuss the behaviour of the curve for large values of x.
(δ) sketch the curve.
(a) A water spout reaches a maximum height of 40 m at a point 20 m away from its source on the ground. It lands on the roof of a building 25 m away. How high is the building? (A water spout traces out a parabola.)

(b) Fabio and Su Lin worked out that they would save $\$ 50000$ in 5 years by depositing all their combined monthly salary of $\$ S$ at the beginning of each month into a savings account and withdrawing $\$ 1600$ at the end of each month for living expenses. The savings account paid interest at the rate of 3\% p.a. compounding monthly.
(i) Show that at the end of the second month, the balance in their savings account, immediately after making their withdrawal of $\$ 1600$, would be given by $\$\left[\left(1.0025^{2}+1.0025\right) S-1600(1.0025+1)\right]$.
(ii) Hence write down an expression for the balance in their account at the end of the $60^{\text {th }}$ month.
(iii) Calculate their combined monthly salary.

Question 16 continued

(c)

$A B C$ is a sector of centre A and radius $A B$.
ACD is a right-angled triangle with $\angle \mathrm{ADC}=90^{\circ}$.
AED is a semi-circle of radius 2 r . $C D=3 \mathrm{r}$. The perimeter of ABCDE is 24 m .
(i) Show that $\theta=\frac{24-2 \pi r-8 r}{5 r}$
(ii) Show that the total Area $=60 \mathrm{r}-14 \mathrm{r}^{2}-3 \pi \mathrm{r}^{2}$
(iii) Show that the total area is a maximum when $\mathrm{r}=\frac{30}{3 \pi+14}$
(iv) Find the maximum area to the nearest m^{2}.

$1 . D$	$Q 2 . D$	$Q 3 . B$	$Q 4 . B$
$25 . C$	$Q 6 . B$	$Q 7 . A$	$Q 8 . C$
$29 . C$	$Q 10 . D$		$($ lomaks $)$

111 - Students factorised this incorrectly

$$
\begin{aligned}
& \lim _{x \rightarrow 3} \frac{x^{3}-27}{x-3} x^{3}-27=(x \\
& =\lim _{x \rightarrow 3} \frac{(x-3)\left(x^{2}+3 x+9\right)}{x} \\
& =9+9+9 \\
& =27
\end{aligned}
$$

$$
\begin{aligned}
\sqrt{50}-3 \sqrt{75}+\sqrt{18} & =a \sqrt{2}-b \sqrt{3} \\
5 \sqrt{2}-15 \sqrt{3}+3 \sqrt{2} & =a \sqrt{2}-b \sqrt{3} \\
8 \cdot \sqrt{2}-15 \sqrt{3} & =a \sqrt{2}-b \sqrt{3} \\
a=8 \text { and } b & =15
\end{aligned}
$$

$\Rightarrow f(x)=2 \sqrt{x-1}+3$

$$
\begin{aligned}
& D: \quad x \geqslant 1 \\
& R: \quad y \geqslant 3
\end{aligned}
$$

students used \geqslant
instead of \geqslant
many simple mathe errors.
errors.

$$
\checkmark
$$

$$
\begin{aligned}
& \text { - } \operatorname{mn} \cdot 1=5 x-4 \\
& 2 x-1=3 x-4 \text {, } \\
& 3=x \\
& \text { necte: } \operatorname{CHS}=5 \\
& \text { RHo }=5
\end{aligned}
$$

\therefore The only sold is $x=3$
P) $x^{2}-(k-3) x+k=0$
for equal roots $\Delta=0$ ie $b^{2}-4 a c=0$

$$
\begin{aligned}
& {[-(k-3)]^{2}-4 \times 1 \times k=0} \\
& k^{2}-6 k+9-4 k=0 \\
& k^{2}-10 k+9=0 \\
& (k-9)(k-1)=0 \\
& \therefore k=1 \text { or } 9
\end{aligned}
$$

$$
\begin{array}{r}
\text { RUS }=-1 \\
\therefore \text { not aloin }
\end{array}
$$

$$
\begin{aligned}
& \int_{1}^{3} \frac{a}{1+x} d x=\log _{e} 16 \cdot \text { strodents took } \\
& a[\ln (1+x)]_{1}=\log _{e} 16 \quad \frac{1}{a} \text { put of the } \\
& a(\ln 4-\ln 2)=\ln 16 \quad \text { integral instead }
\end{aligned}
$$

$$
a \ln \left(\frac{4}{2}\right)^{\prime}=\ln 16
$$

$$
a=\frac{b \sim 16}{b \sim 2} \text { answer as in } 16 \text {. students left the }
$$

$$
=\frac{4 \ln \not L_{2}}{\ln }
$$

$$
a=4
$$

i)

$$
\begin{aligned}
& y=\sqrt{1-x^{2}} \\
& y=\left(1-x^{2}\right)^{\frac{1}{2}} \\
& \frac{d y}{d x}=\frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}} \times-\not x x \\
& \frac{d y}{d x}=\frac{-x}{\sqrt{1-x^{2}}}
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
y & =\frac{\cos x}{x} 4 \\
\frac{d y}{d x} & =\frac{v \frac{d y}{d x}-u \cdot d v}{d x} \\
& =\frac{x \cdot-\sin x-\cos x \cdot 1}{x^{2}} \\
\frac{d y}{d x} & =\frac{-x \sin x-\cos x}{x^{2}}
\end{aligned}
$$

) i) $\int \frac{1}{e^{3 x}} d x=\int e^{-3 x} d x$

$$
\text { ii) } \begin{aligned}
& \int\left(1+3 \sec ^{2} \frac{x}{2}\right) d x \\
= & x+\frac{3 \tan \frac{x}{2}}{\frac{1}{2}}+c \\
= & x+6 \tan ^{\frac{x}{2}}+c
\end{aligned}
$$

Well

$$
\begin{aligned}
\Rightarrow \quad f^{\prime}(x) & =6 x^{2}-6 x+5 \\
f(x) & =\frac{6 x^{3}}{3}-\frac{6 x^{2}}{2}+5 x+c \\
f(x) & =2 x^{3}-3 x^{2}+5 x+c
\end{aligned}
$$

$h_{0}(2,13) \quad 13=16-12+10+c$

$$
\begin{aligned}
& x^{\prime}(2,13) \quad 13=16-12+10+c \\
& \therefore\left|f(x)=2 x^{3}-3 x^{2}+5 x-1\right|
\end{aligned}
$$

Well

Wide range
-1

$$
\begin{aligned}
\because y & =\ln \left(\frac{1}{x+1}\right) \cdot \\
y & =\ln (2 x-1)-\ln (x+1) \\
y^{\prime} & =\frac{2}{2 x-1}-\frac{1}{x+1} \\
\text { xt } x & =2: y^{\prime}=\frac{2}{3}-\frac{1}{3} \\
& =\frac{1}{3} \quad \Longrightarrow
\end{aligned}
$$

some
then $x=2: y=b^{n} 1 \Rightarrow(2,0)$

$$
\begin{aligned}
y-4 & =m\left(x-x x_{1}\right) \\
4-0 & =-3(x-2) \\
y & =3 x+6
\end{aligned}
$$

not to scale
or $3 x+y-6=0$

i)

$$
\begin{aligned}
& m_{A B}=\frac{10-0}{0-4} \\
& m_{A B}=\frac{-5}{2}
\end{aligned}
$$

ii) $\perp m=\frac{2}{5} \cdot c(6,5)$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=2
\end{aligned}
$$

$$
4-5=\frac{2}{5}(x-6)
$$

$$
\begin{aligned}
& 5 y-25=2 x-12 \\
& 2 x-513-13-0
\end{aligned}
$$

for of constants.

$$
2 x-5 y+13=0
$$

$$
a=2 \quad b=-5 c=13
$$

$$
\begin{aligned}
\text { rp. dist. } & =\left|\frac{a x+b y+c}{\sqrt{a^{2}+b^{2}}}\right| \\
& =\left|\frac{0-50+13}{\sqrt{4+25}}\right| \\
& =\left|\frac{37}{\sqrt{29}}\right| \\
& =\frac{37}{\sqrt{29}} \times \frac{\sqrt{29}}{\sqrt{29}} \\
& =\frac{37 \sqrt{29}}{29} . \text { units }
\end{aligned}
$$

Some people didnt rationalised as aced
v) ${ }_{2 x} \quad$ (q) ants x axis $\Rightarrow y=0$)

$$
\begin{aligned}
& 2 x=-13 \\
& x=-6 D D(-60,0) \text { nnfeeded. }
\end{aligned}
$$

now $m=\frac{2}{5}$ from ii)
$\therefore \quad \tan \theta=m$
$\tan \angle A D C=\frac{2}{5}$

$$
\angle A D C=\frac{2}{5} 2^{\circ} \text { (nearest deg.) } \frac{21.8^{\circ}}{O K}
$$

a)

ii) $\frac{A B}{\sin 105^{\circ}}=\frac{2.5}{\sin 45}$

$$
\begin{aligned}
A B & =\frac{25 \sin 105}{\sin 45} \\
& =3 \cdot 4+5063509 \\
A B & =3 \cdot 42 \mathrm{~km}(2 d p) \\
\frac{B C}{\sin 30} & =\frac{2.5}{\sin 45}
\end{aligned}
$$

$$
B C=\frac{2 \cdot 5 \times \frac{1}{2}}{\frac{1}{\sqrt{2}}}
$$

$$
=1.767766953
$$

$$
B C=1.77 \mathrm{~km}(2 d p)
$$

ii 1)
ar.
ope

$$
\begin{aligned}
\partial= & \frac{D}{T} \\
= & \frac{A B+B C}{2} \\
& =2.593415231 \\
& =2.6 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Correct tolap.

* OR $2.6 \mathrm{~km} / \mathrm{h}$ if using full display onfealculator

1	2	3	4	5
2	3	4	5	6
3	4	5	6	7
4	5	6	7	8

＊pour ip cure
many students
or can us rebounded the
a treediagtam outcomes，not the sores as asked in the question．

$\angle A$ is common $\angle A B D=\angle A C B(=\alpha)$ given $\therefore \quad \triangle A B D||\mid \triangle A B C$ equiangular
$\therefore \frac{A D}{A B}=\frac{A B}{A C}$（cares．sides of $\quad \rightarrow$ reason should $\frac{x}{10}=\frac{10}{2 x}$

$$
\begin{aligned}
& \text { Setting up the } \\
& \text { the proportion } \\
& \text { statement }
\end{aligned}
$$ $2 x^{2}=100$

statenjent

$$
x^{2}=50
$$

$5 x^{2}-3 x-2=0$
$a=5 \quad 6=-3=-1$$\quad(x>0)$

1） $\begin{aligned} \alpha+\beta & =\frac{-b}{a} \\ \alpha+\beta & =\frac{3}{5}\end{aligned}$

ii） $\begin{aligned} & \alpha \beta=\frac{c}{a} \\ & \alpha \beta=\frac{-2}{5}\end{aligned}$

＊generally very some students some students main expressions $\alpha+\beta, \alpha \beta,(\alpha+\beta)^{2}$

$$
16
$$

シールールいやい 14
（a） $9 m_{2} 10 \mathrm{~m}, 11.05 \mathrm{~m}, 12.15 \mathrm{~m}, 13.3 \mathrm{~m}$ i） 1.05 m
ii） $1+1.05+1010+1.15$
\checkmark
iii）$T_{n}=a+(n-1) d$
AP：$a=1, d=0.05$ $T_{18}=1+17 \times 0.05$ $=1.85$ grew 1.85 m in the $18^{\text {th }}$ year
iv）$\quad S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$$
S_{21}=\frac{21}{2}[2+20 \times \cdot 05]
$$

$$
S_{21}=31.5
$$

Length of haw offer al yrs

$$
\begin{aligned}
& =4+521 \\
& =40.5 \mathrm{~m}
\end{aligned}
$$

Since The tower is 40 m high，her
hair will be longenough．her
b）$y=\sin x$

$$
x=\frac{5 \pi}{6}: \begin{aligned}
y & =\sin \frac{5 \pi}{6} \\
y & =\frac{1}{2}
\end{aligned} \quad \begin{aligned}
y & =\cos 2 x \\
& =\cos 2\left(\frac{5 \pi}{6}\right. \\
& =\cos \frac{5 \pi}{3} \\
& =\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& x=\frac{3 \pi}{2}: \begin{aligned}
y & =\sin \frac{3 \pi}{2}: \begin{aligned}
y & =\cos 2\left(\frac{3 \pi}{7}\right) \\
& =-1
\end{aligned} \quad=-1
\end{aligned} \\
& x=\frac{3 \pi}{2}: \begin{aligned}
& y=\sin \frac{3 \pi}{2}: \begin{aligned}
y & =\cos 2\left(\frac{3 \pi}{7}\right) \\
& =-1
\end{aligned} \\
&=-1
\end{aligned} \\
& \text { ii) } A=\int_{\frac{5 \pi}{6}}^{3 \pi}(\cos 2 x-\sin x) d x \\
& \left.=\frac{\frac{5 \pi}{6}}{\frac{1}{2}} \sin 2 x+\cos x\right] \frac{\frac{5 \pi}{2}}{\frac{3 \pi}{2}} \\
& =\left(\frac{1}{2} \sin 3 \pi+\cos \frac{3 \pi}{2}\right)-\left(\frac{1}{2} \sin \frac{5 \pi}{3}\right. \\
& \begin{aligned}
&=\left.(0+0)-\left(-\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{2}\right)+\cos \frac{5 \pi}{6}\right) \\
&= \frac{\sqrt{3}}{1}+\sqrt{3} \\
&=3 \sqrt{3}
\end{aligned} \\
& \text { - curves intersect at } x=\frac{3 \pi}{2}
\end{aligned}
$$

＊Most students are notreadu the requirements of the quistio ie（i） $2^{n d}$ gear，not $1^{\text {at }}$ ！
（ii）＂Write a series．．．＂
（iii）＂．．．in the $\frac{18^{\text {th }} \text { year．．．＂}}{}$
－many did not know the
definition of a series．
－Several students found
T_{21} instead of S_{21}
－many forgot tu add the 31.5 m growth to the initial 9_{m} length，thus forever trapping Rapunzel unjustly in her tower forever？
－While many made and solved
the equation $\cos 2 x=\sin x$ ，
too many used an equation to
show．Solve or show，don＇t
mus the methods！
show．
substitutions

15 continued. comments
引) i) $e^{-x}\left(1-e^{-x}\right)$

$$
=e^{-x}-e^{-2 x}
$$

(1) for expanding correctly
i) $y=e^{-x}-e^{-2 x}$
x) sub $x=0: \quad$ sub $y=0$

$$
\begin{array}{rlrl}
y & =e^{0}-e^{0} & 0=e^{-x}\left(1-e^{-x}\right) \\
& =1-1 & e^{-x} \neq 0, e^{-x}=1
\end{array}
$$

$$
y=0 \quad \text { when } x=0
$$

\therefore cuts x \& y axes at $e^{-x} \neq 0$ and
some errors in not recognising when $e^{-x}=1 \quad x=0$
3) $\frac{d y}{d x}=-e^{-x}+2 e^{-2 x}$
at stationary pts., $\frac{d y}{d x}=0$

$$
\begin{aligned}
& \therefore-e^{-x}+2 e^{-2 x}=0 \\
& e^{-x}\left(2 e^{-x}-1\right)=0 \\
& e^{-x} \neq 0, e^{-x}=\frac{1}{2} \\
& \ln \left(\frac{1}{2}\right)=-x \\
& x=-\ln \left(\frac{1}{2}\right) \\
& x=(\ln 1-\ln 2) \\
& x=\ln 2 \\
& \hline \begin{aligned}
y & =e^{-\ln 2}-e^{-2 \ln 2} \\
& =\frac{1}{2}-\frac{1}{4} \\
& =\frac{1}{4}
\end{aligned}
\end{aligned}
$$

\therefore stationary pt is at $\left(\ln 2, \frac{1}{4}\right)$
$\left(\div 0.69, \frac{1}{4}\right)$.
(1) for stat.

$$
\frac{d^{2} y}{d x^{2}}-e^{-x}-4 e^{-2 x}
$$

at $x=\ln 2, \frac{d^{2} y}{d x^{2}} \leq 0$
$\therefore\left(\ln 2, \frac{1}{4}\right)$ is a maximum turning pt.
(1) for nature of stat. pt.
many students had trouble solving

$$
2 e^{-x}-1=0
$$

$\downarrow k$

$$
x=\ln 2
$$

Question 15 continued
comments
C) ii) X) since there is only one
turning point and it is a
maximum turning point, then
curve is monotonically decreasing
for $x>\ln 2$.
(1) for $x>\ln 2$

OR

$$
\begin{aligned}
& \frac{d y}{d x}=-e^{-x}+2 e^{-2 x}<0 \\
& \text { i.e. } e^{-x}\left(2 e^{-x}-1\right) \leq 0
\end{aligned}
$$

when $2 e^{-x}-1<0$ as $e^{-x}>0$
$\therefore e^{-x}<\frac{1}{2}$ for all neal x
i.e. $\ln e^{-x}<\ln \frac{1}{2}$

$$
\begin{aligned}
-x & <\ln \frac{1}{2} \\
x & >-\ln \frac{1}{2} \\
\text { i.e. } x & >\ln 2 .
\end{aligned}
$$

反)
poorly answered
many students found their answer to be

$$
x<\ln 2
$$

instead of $x>\ln$:
as $x \rightarrow+\infty, y=e^{-x}\left(1-e^{-x}\right) \rightarrow 0$
(because $e^{-x} \rightarrow 0$)
(1) for $y \rightarrow 0$
well answered
(1) for sketch
poorly answered and otter contradicted previous working.
i) eq of parabola is in farm:

$$
\begin{aligned}
& (x-b)^{2}=-4 a(y-k) \\
& \text { e. }(x-20)^{2}=-4 a(y-1 \\
& \text { Find ' } a^{\prime}: \\
& (0-20)^{2}=-4 a(0-40) \\
& 400=160 a \\
& a=2.5
\end{aligned}
$$

$$
\text { ie: }(x-20)^{2}=-4 a(y-40) \quad(h, k)=
$$

$$
\begin{aligned}
& \text { vertex } \\
& (h, k)=(20,40) \text { externs }
\end{aligned}
$$ tried to use projectile

(1) for ' α ' . sty louts used

- eqn. of parabola:

$$
(x-20)^{2}=-10(y-40)
$$

when $x=25$.

$$
\begin{gathered}
(25-20)^{2}=-10(y-40) \\
25=-10 y+400 \\
-375=-10 y \\
\therefore y=37.5
\end{gathered}
$$

(1) for height of
\therefore height of building building.
is 37.5 metres.
2) $r=3 \%$ pr $=0.25 \% / m o n t h$.
$A_{n}=$ balance in savings account after n months; after withdrawal

$$
\begin{aligned}
\mid A_{1} & =s(1.0025)-1600 \leftarrow(\text { mark } \\
A_{2} & =\left(A_{r}+5\right) 1.0025-1600 \\
& =A_{1}(1.0025)+s(1.0025)-1600 \\
& =[s(1.0025-1600)] 1.0025+s(1.0025)-1600 \\
& =s(1.0025)^{2}-1600(1.0025)+s(1.0025)-1600 \\
& =s\left[1.0025+1.0025^{2}\right]-1600[1+1.0025]
\end{aligned}
$$

(1) mack for deriving A_{2}
i) $A_{60}=S\left[1.0025+1.0025^{2}+\cdots+1.0025^{60}\right]-1600\left[1+1.0025+.0 .00+1.0025^{59}\right]$
\Rightarrow (1) mark for $A 60$

Question 16_ct'd
comments
b) iii) $A_{60}=50000$
$50000=s\left(1.0025+\ldots+1.0025^{60}\right)-1600\left(1+1.0025+\cdots+1.0025^{59}\right)$
$\left.\left.50000=s\left[\frac{1.0025\left(1.0025^{60}-1\right)}{0.0025}\right]-1600\left[\frac{1(1.00250}{0.0025}\right] 1\right)\right] \leqslant(1)$ mark -
$50000=s\left[401\left(1.0025^{60}-1\right)\right]-1600\left[400\left(1.0020^{60}-1\right]\right.$

$$
S \doteq
$$

$2367.56 \leqslant(1)$ mark

- students made the second geometric som una 59 terms.
- students made $S_{60}=0$
\qquad
\qquad
\qquad
\qquad
\qquad

Question 16 ot'd
c) i) In right $\triangle A D C$:
$A C=5 r$ (Pythagoras'Thm)
$\therefore A B=5 r$
$A B+B C+C D+D E A=24$ (given)
$\therefore 5 r+(5 r) \theta+3 r+\frac{1}{2} \times \pi \times 4 r=24 \leftarrow 0$ mark. many wrote a

$$
8 r+5 r \theta+2 \pi r=24
$$

$$
5 r \theta=24-2 \pi r-8 r
$$

$$
\theta=\frac{24-2 \pi r-8 r}{5 r}
$$

ii) $A=A$ of sector $A B C+A$ of $\triangle A D C+A$ of semicircle

$$
\left.=\frac{25 r}{2 r}\left(\frac{24-2 \pi r-8 r}{5 r}\right)+6 r^{2}+2 \pi r^{2}\right)
$$

$$
=\frac{5 r}{\overline{2}}(24-2 \pi r-8 r)+6 r^{2}+2 \pi r^{2}
$$

$$
=60 r-5 \pi r^{2}-20 r^{2}+6 r^{2}+2 \pi r^{2}
$$

$A=60 r-14 r^{2}-3 \pi r^{2}$.
iii) A is maximum when $A^{\prime}=0$ and $A^{\prime \prime} \angle 0$

$60-28 r-6 \pi r=0$
$60=6 \pi r+28 r$
$60=r(6 \pi+28)$
$r=\frac{60}{6 \pi+28} \div 2$
$r=\frac{30}{3+14}$

$$
A^{\prime \prime}=-28-6 \pi<0
$$

$\therefore A$ is maximum when
As above. mark
(1) mark working
$Q 16$ continued
iv)

$$
\begin{aligned}
A \doteqdot 60(1.28)-14(1.28)^{2}- & r=\frac{30}{3 \pi+14} \\
3 \times \pi \times(1.28)^{2} & \doteqdot 1.28
\end{aligned}
$$

(1) mark for 4 and
R (1) mark for answer. working for then just wrote the anguses

- Students dent not show working Vague "equation and 1 - regularly

Calculator es
regularly

- Calculator error occurred —_

