

Teacher: _____

Class: _____

FORT STREET HIGH SCHOOL

2012 higher school certificate course ASSESSMENT TASK 3: TRIAL HSC

Mathematics

Time allowed: 3 hours

(plus 5 minutes reading time)

Outcomes Assessed	Questions
Chooses and applies appropriate mathematical techniques in order to solve	1-10
problems effectively	
Manipulates algebraic expressions to solve problems from topic areas such	11,13
as geometry, co-ordinate geometry, quadratics, trigonometry, probability	
and logarithms	
Demonstrates skills in the processes of differential and integral calculus and	12, 14
applies appropriate techniques to solve problems	
Synthesises mathematical solutions to harder problems and communicates	15, 16
them in appropriate form	

Total Marks 70

Section I10 marksMultiple Choice, attempt all questions,Allow about 15 minutes for this sectionSection II90 MarksAttempt Questions 11-16,Allow about 2 hours 45 minutes for this section

General Instructions:

- Questions 11-16 are to be started in a new booklet
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used

Section I	Total 10	Marks
Q1-Q10		
Section II	Total 90	Marks
Q11	/15	
Q12	/15	
Q13	/15	
Q14	/15	
Q15	/15	
Q16	/15	
	Percent	

SECTION I Multiple Choice (10 marks)

CIRCLE CORRECT RESPONSE

- 1. What is the value of $\frac{(1.49)^2 1.98}{\sqrt{11.62 + 8.34 \times 2.72}}$ correct to three significant figures?
 - A. 0.040 B. 0.0409
 - C. 0.041 D. 0.0410
- 2. Find the values that satisfy $x^2 x < 6$
 - A. x < -2, x > 3 B. x < -3, x > 2
 - C. -3 < x < 2 D. -2 < x < 3
- 3. If $\log_a 5 = 1.03$ and $\log_a 2 = 0.64$ then the value of $\log_a 10$ is:
 - A. 2.06B. 1.67C. 0.6592D. 3.2

4.
$$\sum_{n=5}^{14} 17 - 2n =$$

- A. -11 B. -20
- C. -18 D. -28

5. Expressed in radian measure, 235° is:

A.
$$\frac{\pi}{235}$$
 B. $\frac{235}{\pi}$

C.
$$\frac{47\pi}{36}$$
 D. $\frac{36\pi}{47}$

6. The third and seventh terms of a geometric series are 1.25 and 20 respectively. What is the first term?

A.
$$\pm 2$$

B. $\frac{5}{16}$
C. ± 4
D. $\frac{5}{1024}$

7. State which point on the sketch fits the description $y < 0, \frac{dy}{dx} > 0, \frac{d^2y}{dx^2} < 0$

- 8. What is the greatest value of the function $y = 4 2\cos x$?
 - A. 2 B. 4 C. 6 D. 8
- 9. A game is played in which two coloured dice are thrown once. The six faces of the red die are numbered 3, 5, 7, 8, 9 and 11. The six faces of the white die are numbered 1, 2, 4, 6, 10 and 12. The player wins if the number on the white die is larger than the number on the red die. What is the probability that the player wins once in two successive games?
- A. $\frac{7}{18}$ B. $\frac{11}{18}$ C. $\frac{77}{162}$ D. $\frac{77}{324}$
- 10. What is the centre and radius of the circle with the equation $x^2 + y^2 + 6x 8y 11 = 0$?
- A. Centre (-3, -4) and radius 36
- B. Centre (-3, 4) and radius 36
- C. Centre (-3, -4) and radius 6
- D. Centre (-3, 4) and radius 6

SECTION II All necessary working must be shown

Question 11 (15 marks) Begin a NEW booklet

(a) Evaluate
$$\lim_{x \to 3} \frac{x^3 - 27}{x - 3}$$
 2

(b) If
$$\sqrt{50} - 3\sqrt{75} + \sqrt{18} = a\sqrt{2} - b\sqrt{3}$$
, find the value for *a* and *b*. 2

(c) State the domain and range of the function: $f(x) = 2\sqrt{x-1} + 3$ 2

(d) Evaluate *a*, in simplest exact form, if
$$\int_{1}^{3} \frac{a}{1+x} dx = \log_{e} 16$$
. 2

- (e) Solve for x: |2x 1| = 3x 4 2
- (f) For what values of k will $x^2 (k-3)x + k = 0$ have equal roots? 2

 $AB \parallel EF \parallel DC.$ Find the value of3x and y, giving reasons.

Marks

Question12 (15 marks) Begin a NEW booklet

Marks

2

(a) Differentiate with respect to *x*:

i)
$$y = \sqrt{1 - x^2}$$
 1

ii)
$$y = \frac{\cos x}{x}$$
 1

(b) Find:

(e)

i)
$$\int \frac{1}{e^{3x}} dx$$
 1

ii)
$$\int (1 + 3sec^2 \frac{x}{2}) dx$$
 1

- (c) The gradient of a curve is given by $f'(x) = 6x^2 6x + 5$. If the curve passes through the point (2, 13), find its equation.
- (d) Find the equation of the normal to the curve $y = \ln\left(\frac{2x-1}{x+1}\right)$, at the point 3 where x = 2.

The points A, B and C have coordinates (4, 0), (0, 10) and (6, 5) respectively as shown on the diagram. Copy the diagram into your booklets.

- (i) Find the gradient of the line AB.
- (ii) Show that the equation of the line through point C perpendicular to AB is given by

2x - 5y + 13 = 0. Label this line q.

- (iii) Find the perpendicular distance of B from the line CD, giving your answer in surd form with rational denominator.
- (iv) If the line q meets the x-axis at D, calculate the size of angle ADC, correct to the nearest degree.

Question 13 (15 marks) Begin a NEW booklet

- (a) A party of walkers leave their base camp A at noon and walk in the direction 150°T until 4 they reach a point B on the bank of the river. Unable to cross the river, they follow it on a bearing of 015°T and retire at 2 pm when they reach point C. The bearing and distance of C from A are 120°T and 2.5 km respectively.
 - i) In your booklet, draw a diagram and mark on it the given information, in the correct positions.
 - ii) Find the distances AB and BC.
 - iii) Hence, calculate the average speed, correct to one decimal place, of these walkers from A to C.

(b)

Dani and Chris used the spinner shown above to play a game. Dani spun the spinner twice and added the results of the two spins to get his score. Chris then took his turn. The player with the highest score won the game.

- i) Use a tree diagram or a sample space to show all the possible scores Dani could have achieved when he played the game.
- ii) What is the probability that Dani scored 6 in the game?
- iii) Dani's score was 6. What is the probability that Chris won the game?

Question 13 is continued over

In the diagram above, $AB = 10 \ cm$, $AD = DC = x \ cm$ and $\angle ABD = \angle BCD$.

- i) Prove $\Delta ABD \parallel\mid \Delta ACB$
- ii) Hence find the exact value of *x*.
- iv) If α and β are the roots of the quadratic equation $5x^2 3x 2 = 0$, find the value of: 4

4

- i) $\alpha + \beta$
- ii) $\alpha\beta$

(c)

- iii) $\alpha^2 + \beta^2$
- iv) $(3 \alpha)(3 \beta)$

Question14 (15 marks) Begin a NEW booklet

(b)

(a) Rapunzel has discovered something interesting about the way her hair grows.

When she was imprisoned in her tower (on the 1st of January) her hair was

9 metres long. She measured her hair every year on the 1st of January, and made a note of its length. She recorded the following lengths on her cell wall for the first 4 years of her imprisonment:

- i) How much did Rapunzel's hair grow in the second year?
- ii) Write a series showing the amount her hair had grown in each of the first 4 years.
- iii) Using the series in part (ii), find how much Rapunzel's hair grew in the eighteenth year.
- iv) Prince Charming arrived to rescue Rapunzel after she had been in the tower for 21 years. If the tower is 40 metres high, and assuming that her hair continues to grow according to the series in (ii), will Rapunzel's hair be long enough to reach the ground ? Justify your answer by finding the length of Rapunzel's hair at this time.

The diagram shows parts of the curves y = sinx and y = cos2x.

- i) Show that the curves intersect at $x = \frac{5\pi}{6}$ and $x = \frac{3\pi}{2}$.
- ii) Calculate the area between the curves from $x = \frac{5\pi}{6}$ to $x = \frac{3\pi}{2}$. Leave the answer in exact form.

c) The region enclosed by the y axis, the line y = x - 1 and the line y = 3 is rotated about the y axis.

- i) Sketch the region 1
- ii) Show that the volume of the resulting solid of revolution is given by $V = \pi \int_{-1}^{3} (y^2 + 2y + 1) dy$
- iii) Hence, calculate this volume correct to two decimal places.

6

6

(a)

The diagram shows the graph of the curve $y = \log_e x$, not drawn to scale.

- (i) Find the equation of the tangent (*l*) at x = e to the curve and show that it passes through the origin.
- (ii) Show that the area bounded by the curve, the y-axis and the lines y = 0 and y = 1 is (e 1) square units.
- (iii) Using the results of part (ii) or otherwise, find the area of the shaded region between $y = \log_e x$, the tangent (*l*) and the *x*-axis as shown in the diagram below.

Question 15 is continued over

b) A river 60m wide is measured for depth every 10m across its width.
 The measurements from bank to bank are given in the table. By using
 Simpson's Rule, estimate the cross-sectional area of the river at this point.

Measurement number	1	2	3	4	5	6	7
Depth in metres	0	5.5	11.0	13.2	8.5	4.5	0

(c) (i) Expand
$$e^{-x}(1-e^{-x})$$

(ii) For the curve
$$y = e^{-x} - e^{-2x}$$
:

- (α) find where it cuts the axes.
- (β) find the co-ordinates of the stationary points and determine their nature.
- (γ) determine the values of *x* for which the curve is monotonic decreasing and hence, or otherwise, discuss the behaviour of the curve for large values of *x*.
- (δ) sketch the curve.

1

Question 16 (15 marks) Begin a NEW booklet

(a) A water spout reaches a maximum height of 40m at a point 20m away from its source on the ground. It lands on the roof of a building 25 m away. How high is the building? (A water spout traces out a parabola.)

- (b) Fabio and Su Lin worked out that they would save \$50000 in 5 years by depositing all their combined monthly salary of \$*S* at the beginning of each month into a savings account and withdrawing \$1600 at the end of each month for living expenses. The savings account paid interest at the rate of 3% p.a. compounding monthly.
 - (i) Show that at the end of the second month, the balance in their savings account, immediately after making their withdrawal of \$1600, would be given by $[(1.0025^2 + 1.0025)S 1600(1.0025+1)]$.
 - (ii) Hence write down an expression for the balance in their account at the end of the 60^{th} month.
 - (iii) Calculate their combined monthly salary.

Question 16 continued

(c)

ABC is a sector of centre A and radius AB.

ACD is a right-angled triangle with $\angle ADC = 90^{\circ}$.

AED is a semi-circle of radius 2r. CD = 3r. The perimeter of ABCDE is 24m.

(i) Show that
$$\theta = \frac{24 - 2\pi r - 8r}{5r}$$

(ii) Show that the total Area =
$$60r - 14r^2 - 3\pi r^2$$

(iii) Show that the total area is a maximum when $r = \frac{30}{3\pi + 14}$

(iv) Find the maximum area to the nearest m^2 .

END OF EXAMINATION

- y y= In (==:). y = ln(2x-1) - ln(x+1) $y' = \frac{2}{2x-1} - \frac{1}{x+1}$ z+z=2; $y'=\frac{2}{3}-\frac{1}{3}$ =) $m = \frac{1}{3}$ Some then x=2: y= (1) (2,0) log differen Problem $Y - Y_i = m(x - x_i)$ 4-0 =-3(x-2) [y =3x+6 37c+y-6=0 ۳) B(0,P) not to scale ່ເຮົ A(4,0)>x D(-6.5,0)) $M_{AB} = \frac{10 - 0}{0 - 4}$ ii) 1 m= 2 (6,5) MAB - 5 $Y - Y_1 = m(x - x_1)$ 4-5=2 (x-6) for working 5y-25=2x-122x-5y+13=0 (ao reg'd)

$$a = 2 b = -5 c = 13$$

$$p det. = \left[\frac{2xc + bu + c}{\sqrt{a^2 + b^2}}\right]$$

$$= \left[\frac{0 - 50 + 13}{\sqrt{a^2 + b^2}}\right]$$

$$= \left[\frac{-231}{\sqrt{a^2}}\right]$$

$$= \left[\frac{-231}{\sqrt{a^2}}\right$$

$$\frac{1}{4} \frac{3}{2} \frac{4}{5} \frac{1}{6}$$

$$\frac{3}{4} \frac{4}{5} \frac{1}{6} \frac{1}{7}$$

$$\frac{1}{4} \frac{3}{5} \frac{4}{6} \frac{1}{7} \frac{1}{6}$$

$$\frac{1}{4} \frac{3}{5} \frac{4}{6} \frac{1}{7} \frac{1}{6}$$

$$\frac{1}{7} \frac{1}{6} \frac{1}{7} \frac{1}$$

"Sketch the region - 4. you must indicate the 3 Question 15 (15 marks) comments region somehows shading = x-1 10 the standard way to do a) i) y=lax x = y + 1 $x^2 = (y + 1)^2$ $x^2 = y^2 + 2y + 1$ this. Simply drawing all い__ 늪 at x=e, y'= e, y=lne=1 the lines does not fulfil the requirements of the well Eqn. of tangent : answered question! 1) markfor eqn. y-1== == (x-e) 4 of tangent ** = π (>c2 dy . As the integral is already <u>ey-e = x-e</u> 2 - ey = 0. given, you must make the many forgot to $= \Pi \left[\left(y^{2} + 2y + 1 \right) \right]$ d. link between (i) as the sub (0:0) into read the g care starting point and thus integral! Too many wrote fully and did not $= \pi \left[\frac{1}{3} + \frac{1}{3}$ $\frac{x-ey}{x-ey}=0$ attempt this part. V=T(x2dy <u>0-e(0)=0</u> 1 mark for $= \pi \int_{1}^{3} y^{2} + 2y + 1 dy$ $\Theta = \Theta$ (9+9+3) - (-13+1 -1) is on tangent. (this scored no marks) LHS = RHS tangent passes through the origin ঝঠ ii) A = [e'dy A O mark for y=lnx common mistake $r = \frac{64}{3}\pi \sqrt{3}$ · too many stopped at integral was to try and $V = \frac{64}{3}\pi$ (these that ey could at least get the (\$) Inx dx O mark for = 67.02 u3 (2019) = e'-e° working. and did not fulfil the $= (e - i) units^2$ requirements of the question . IT also had a habit of More CARE iii) A = (e-i) - A of Anysteriously disappearing needed teaving 213 as a common \odot answer <u>units</u>² < 0 mark Many students b) h = 1010 20 30 40 50 60 did not recognise 5.5 11 13.2 8.5 4.5 0 h=10 from q. 73 74 72 76 32 $+ y_{7} + + + (y_{2} + y_{4} + y_{6}) + a(y_{3} + y_{5})$ {0+0+4(5,5+13.2+4.5)+2(11+8.5)} ← ① mark = 439.3 units2 + O mark

		Question is continued.	comments
15 continued.	<u>comments</u>	(())) V) Sizes there is only and	1
$(2);) e^{-x}(1-e^{-x})$			
$= e^{-x} - e^{-2x}$ () for expanding)	1, furning peint and this a	
correctly		' maximum turning point, then	
$() = e^{-x} e^{-2x}$		curve is monotonically decreasing	· · · · · · · · · · · · · · · · · · ·
		i for z>1n2. O for z>1n2	
\underline{x} <u>sub $\underline{x} = 0$</u> <u>sub $\underline{y} = 0$</u>	some errors	<u>OR</u>	poorly answered
$-\underline{y} = \underline{e}^{-\underline{e}} = \underline{o} = \underline{e} (\underline{i} - \underline{e})$	is not recombine	$dy = -e^{-x} + 2e^{-2x} < 0$	
$= 1 - 1 \qquad e \neq 0, e^{-z} = 1$	-Y la d	alse	many students
-y=0 when $x=0$	e = 0 and	i.e. $e^{-x}(2e^{-x}-1) < 0$	found their
i cuts x & y ares at	when e =1 x=0	when $2e^{-x} - 1 < 0$ as $e^{-x} > 0$	answer to be
origin. (1) for origin.		for all years	v.sln2
			i shad al val
$3) dy = -e^{-x} + 2e^{-2x}$		$\frac{1}{100}$ $\frac{1}{100}$	Instead of Arm
de			
at stationary ats, du =0		$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	
dx			
$-e^{-3C} + 2e^{-23C} = 0$		i.e. IDinz.	· · ·
$\frac{-\pi}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$			
	many students	$\left(\begin{array}{c} as x \rightarrow +\infty \\ y = e^{-x} (1 - e^{-x}) \rightarrow 0 \\ \hline \\ o + or y \rightarrow 0 \end{array}\right)$	well answered
<u>e</u> =	I ad double	$(\text{because } e^{-x} \rightarrow 0)$	·
	had house		
$x = -\ln(\frac{1}{2})$	solutre	(s)	
$\underline{x} = (nl - lnz)$	2e -1-0	10	· ·
z = ln 2.			poply answered
$If x = \ln 2, y = e^{-\ln 2} e^{-2\ln 2}$	x=1-2	O P collabo	pod offer
= = - 4		-1	and briefed
= \			CONTROCILCIECT
() stationary st. is at (In 2, 4) () for stat.			previous working
(≠0.69, 4)			
$\frac{d^2y}{dz^2} = \frac{1}{2} + \frac{1}{2}$	· · · · · · · · · · · · · · · · · · ·		
$\frac{2tx=\ln 2}{dx^2}$			
			· · ·
· (In 2, 4) is a maximum turning pt nature.			· · · · · · · · · · · · · · · · · · ·
of stat.pt			

Suestion 16 (15 marks) comments i) eqn. of parabola is in form: D mark comments Question 16 ct'd $(x-h)^2 = -4a(y-k)$ * vertex (h,k)= (20,40) extension 1 students b)iii) A = 50000 $e(\alpha - 20)^2 = -4a(y - 40)$ tried to use projectile Find 'a': 50000 = 5 (1.0025+...+1.0025")-1600 (1+1.0025+...+110025") motion formulae $(0 - 20)^2 = -4a(0 - 40)$ 50000 = 5 [1.0025(1.002500-1)] - 1600 [1(1.00260-1)] - mark-400 = 1600O for 'a' . stydents used 0.0034 0,0025 0-2.5 H=av2 +bx+C which 50000 = 3 [401 (1.0025 -1)] - 1600 [400 (1.0025 -1 : eqn. of parabola: time out to be much $(z - 20)^2 = -10(4 - 40)$ S = 50000 + 640000 [1.0025 -1] more difficult. when x = 25 ! 401 (1,002560-1) $(25-20)^2 = -10(y-40)$ 5 = 2367.56 () mark · calculation error. 25 = -104 + 400was common - 375 = -104 . students made the second 1) for height of , y=37.5 geometric sum with 59 terms. building · height of building is 37.5 makes 2) r= 3%pp.a= 0.25%/month A = balance in savings account after n months, after withdrawal [A = 5(1.0025)-1600 ← () mark A = (A + 5)1:0025 - 1600 = A (1,0025) + S (1,0025) - 1600 = [s(1,0025-1600)]10025 + s(1,0025)-1600 $= \frac{1}{5(1.0025)^2 - 1600(1.0025) + 5(1.0025) - 1600}$ = 5[1.0025+1.00252] - 1600[1+1.0025] shdents made S60=0 Omack for deriving 597 $\frac{1}{10}A = 5[1.0025 + 1.0025^{2} + + 1.0025^{0}] - 1600[1 + 1.0025^{1} + 1.0025^{1}]$ > 1) mark for Aco

Quection 16 stid		a o mmeats			
			Callo continued		Comments
<u>c)</u> to cight AADC:			$(1) A = 60(1\cdot 28) - 14(1\cdot 28$		
AC=5r (Pythagaras' Thm)	· · · · · ·			3π+ιμ	·
	8	fudentis dua noi	= $38 \text{ m}^2 (\text{nearest m}^2)$.	÷ 1.28	
_AB + BC + CD + OEA = 24 (given)	5	how working	R Dmark	for answer,	
1.5r+ (5r)0+3r+ = × T1×4r=24	← ① mark ·	many wrote a		1	
<u>8r + 5rθ + 2πr= 24</u>		Vaque equation	and	· Calculator es	ror occurred
$5r\theta = 24 - 2\pi r - 8r$	2 (1) mark for f	then just wrote the	answer.	regularly	
$\Theta = 24 - 2\pi r - 8r$		1 L		0 9	· · · · · · · · · · · · · · · · · · ·
50					
(i) A = A of sector ABC + A of AADC +	t A of semicircle	As above.			
$= 1/(E_{-})^{2} \Theta + 4/(x^{3})^{-} + 1$	\times \pm \times $(2 c)^2 \leftarrow (1)$				
$-\frac{1}{2}$	mark				
5r	2 ²)			· · · · · · · · · · · · · · · · · · ·	· ·
$\frac{351}{2} \left(\frac{37-3117-51}{57} \right)^{+} 57^{+}$					
5-(-)	-2 (Dmark				
$\frac{=0!(\alpha 4 - \alpha \pi r - \delta r) + \delta r + \alpha}{\alpha}$	for				
	2				
$= 60r - 5\pi r - 20r + 6r + 2\pi$				······································	
$A = 60r - 14r^2 - 3\pi r^2$	J				
(iii) A is maximum when A'=0	and A"20		· · · · · · · · · · · · · · · · · · ·		
A = 60-28-611	mostly	well done _			
A'=0 when	<u> </u>		·		
$60 - 28r - 6\pi r = 0$	• .				
$60 = 6\pi r + 28r$	· · · · · · · · · · · · · · · · · · ·				
$60 = r(6\pi + 28)$					
$r = 60 \div 2$	p mark for	· · · · · · · · · · · · · · · · · · ·			
6π+28 ÷2	tinaling :	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
$r = \frac{BO}{2}$. students did	not		
2 11 41 4		test their an	swers.		
$A'' = -28 - 6\pi < 0$)				
	O mark f	pr .			
A 15 MOXIMUM When F= 30	+14, testing fo	-			
· · · · · · · · · · · · · · · · · · ·	J noximu				