\qquad

Teacher: \qquad

Class: \qquad
FORT STREET HIGH SCHOOL

2019

HIGHER SCHOOL CERTIFICATE COURSE

ASSESSMENT TASK 4

Mathematics

Time allowed: $\mathbf{3}$ hours
(plus 5 minutes reading time)

Syllabus Outcomes	Assessment Area Description and Marking Guidelines	Questions
	Chooses and applies appropriate mathematical techniques in order to solve problems effectively	$1-10$
H2, H3, H4, H5	Manipulates algebraic expressions to solve problems from topic areas such as geometry, co-ordinate geometry, quadratics, trigonometry, probability and logarithms	$11,12,13$
H6, H7, H8	Demonstrates skills in the processes of differential and integral calculus and applies them appropriately	14,15
H9	Synthesises mathematical solutions to harder problems and communicates them in appropriate form	16

Total Marks 100

Section I 10 marks

Multiple Choice, attempt all questions
Allow about 15 minutes for this section
Section II 90 Marks
Attempt Questions 11-16
Allow about 2 hours 45 minutes for this section

General Instructions:

- Questions 11-16 are to be started in a new booklet
- The marks allocated for each question are indicated
- In Questions 11-16, show relevant mathematical reasoning and/or calculations.
- Marks may be deducted for careless or badly arranged work.
- Board - approved calculators may be used

Section I	Total 10	Marks
Q1-Q10		
Section II	Total 90	Marks
Q11	$/ 15$	
Q12	$/ 15$	
Q13	$/ 15$	
Q14	$/ 15$	
Q15	$/ 15$	
Q16	$/ 15$	
	Percent	

Section I

10 marks

Attempt Questions 1 to 10
Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 to 10

1. Find the value of e^{8} correct to four significant figures.
(A) 2980
(B) 2980.9580
(C) 2981
(D) 21.75
2. Differentiate $(2 x+1)^{5}$
(A) $\quad 5(2 x+1)^{4}$
(B) $10(2 x+1)^{4}$
(C) $\frac{5}{2}(2 x+1)^{4}$
(D) $\frac{(2 x+1)^{6}}{12}$
3. Find $\int(2 x+1)^{\frac{1}{3}} d x$
(A) $\quad-\frac{2}{3}(2 x+1)^{-\frac{1}{3}}+C$
(B) $\frac{3}{4}(2 x+1)^{\frac{4}{3}}+C$
(C) $\frac{3}{8}(2 x+1)^{\frac{4}{3}}+C$
(D) $\frac{8}{3}(2 x+1)^{\frac{4}{3}}+C$
4. Differentiate $y=\frac{\tan x}{x}$ with respect to x
(A) $\frac{d y}{d x}=\frac{\sec x^{2}-\tan x}{x^{2}}$
(B) $\frac{d y}{d x}=\frac{\tan x-\sec ^{2} x}{x^{2}}$
(C) $\frac{d y}{d x}=\frac{\sec ^{2} x-\tan x}{x^{2}}$
(D) $\frac{d y}{d x}=\frac{x \sec ^{2} x-\tan x}{x^{2}}$
5. Solve $\cos x=\frac{\sqrt{3}}{2}$ for $-\pi \leq x \leq \pi$
(A) $x=-\frac{\pi}{3}, \frac{\pi}{3}$
(B) $x=-\frac{2 \pi}{3}, \frac{2 \pi}{3}$
(C) $x=-\frac{\pi}{6}, \frac{\pi}{6}$
(D) $x=-\frac{5 \pi}{6}, \frac{5 \pi}{6}$
6. Factorise $x^{2} y-x y^{2}-x+y$
(A) $(x y-1)(x+y)$
(B) $(x y-1)(x-y)$
(C) $(x y+1)(x+y)$
(D) $(x y+1)(x-y)$
7. $A B, C D$ and $E F$ are parallel lines. $\angle A B E=75^{\circ}$ and $\angle D C E=125^{\circ}$

Calculate the size of $\angle B E C$
(A) 55°
(B) 50°
(C) 25°
(D) 20°
8. Which of the following could be the equation of the curve below?

(A) $y=-4 e^{-x}$
(B) $y=3-e^{x}$
(C) $y=-4 e^{x}$
(D) $y=-4-e^{x}$
9. Two ordinary dice are rolled. What is the probability that the sum of the numbers on the top faces is at least 6 ?
(A) $\frac{5}{18}$
(B) $\frac{13}{18}$
(C) $\frac{27}{36}$
(D) $\frac{28}{36}$
10. What are the coordinates of the focus of the parabola $x^{2}=-6(y+1)$?
(A) $\left(0,-2 \frac{1}{2}\right)$
(B) $(0,-1)$
(C) $\left(0, \frac{1}{2}\right)$
(D) $(0,-7)$

Section II

90 marks
 Attempt Questions 11 to 16
 Allow about $\mathbf{2}$ hours $\mathbf{4 5}$ minutes for this section

Start each question in a new writing booklet. Extra writing booklets are available.
In Questions $11-16$, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

Start a new writing booklet.

(a) Solve $|4 x+1|=5$
(b) Evaluate $\sum_{n=2}^{4} n^{2}$
(c) The fourth term of a geometric series is 1 and the ninth term is 32 . Find the common ratio
(d) A market gardener plants cabbages in rows. The first row has 35 cabbages. The second row has 39 cabbages. Each succeeding row has 4 more cabbages than the previous row.
i) Calculate the number of cabbages in the $12^{\text {th }}$ row
ii) Which row would be the first to contain more than 200 cabbages
iii) The farmer plants only 945 cabbages. How many rows are needed?
(e) In the series $y+y^{2}+y^{3}+\ldots$
i) For what values of y does a limiting sum exist?
ii) If $y=\frac{2}{3}$, find the limiting sum
(f) $A O B$ is a sector of a circle, centre O and radius 6 cm . The length of the arc $A B$ is $5 \pi \mathrm{~cm}$.

Calculate the exact area of the sector $A O B$.
(a)
i) State the period and amplitude of $y=3 \sin 2 x$
ii) On the same diagram in the domain $0 \leq x \leq 2 \pi$, draw $\frac{1}{3}$ page graphs of $y=3 \sin 2 x$ and $y=1-\cos x$
iii) For the equation $3 \sin 2 x=1-\cos x$, how many solutions are there in the domain $0 \leq x \leq 2 \pi$
(b) Find the exact gradient of the tangent to the curve $y=\sin x$ at the point where $x=\frac{\pi}{6}$.
(c) Find the indefinite integral of $2 \sin (\pi+3 x)$
(d) Find the area bounded by the curve $y=\cos 2 x$, the x-axis and the lines $x=\frac{\pi}{4}$ and $x=\frac{\pi}{3}$. Answer to 2 decimal places.
(e) Solve $\sqrt{2} \sin \theta=1$ for $0 \leq \theta \leq 2 \pi$

Question 13 (15 marks)

Start a new writing booklet.

(a) In the diagram, the shaded region is bounded by the curve $y=2 \sec x$, the coordinate axes and the line $x=\frac{\pi}{3}$. The shaded region is rotated about the x-axis. Calculate the exact volume of the solid of revolution formed.

(b) Find the exact value of $\int_{\frac{\pi}{3}}^{\frac{2 \pi}{3}} \cos \frac{x}{2} d x$
(c) What is the equation of the tangent to $y=x+e^{2 x}$ at the point $x=0$
(d) By first finding the points of intersection, find the area of the region enclosed by the line $y=2 x+3$ and the parabola $y=x^{2}$
(e) In the diagram $A B C D$ is a rhombus, and $B H E C$ and $D C F G$ are squares.

i) Show that $\triangle A G D$ is congruent to $\triangle A H B$
ii) Hence, show that $\angle A G F=\angle A H E$

Question 14 (15 marks)

Start a new writing booklet.

(a) The position $x \mathrm{~cm}$ of an object moving in a straight line at time t seconds, is given by: $x=6 t^{2}-t^{3}+4$
i) Find the times at which the object is at rest 2
ii) Find the distance travelled between these stationary times
iii) Find the total distance travelled in the first six seconds
iv) Find the velocity when the acceleration is zero
(b) A function $f(x)$ is defined by $f(x)=x^{3}+6 x^{2}+15 x$
i) Evaluate $f(-3)$ and $f(1)$
ii) Show that the curve of $y=f(x)$ is always increasing
iii) Show that there is a point of inflexion at $(-2,-14)$
iv) Sketch the curve $y=f(x)$, clearly indicating the intercepts and the point of inflexion

Question 15 (15 marks)

Start a new writing booklet.

(a) Find $\int \frac{6}{3 x+1} d x$
(b) Use Simpson's Rule, with 5 function values, to find an approximation to $\int_{0}^{4} x e^{x} d x$ to 2 decimal places
(c) Air pressure P, measured in kilopascals ($k P a$), at an altitude of h metres above sea level can be approximated using the formula $P=101 e^{-k h}$, where k is a constant. The air pressure is 90 kPa at an altitude of 1000 m .
i) Find the air pressure at an altitude of 5000 m to 2 decimal places
ii) Find the altitude above sea level, where the air pressure is 53 kPa , to the nearest m
(d) A particle moves along the x-axis . Initially it is at rest at the origin. The graph shows its velocity v in $m s^{-1}$ as a function of time t for $0 \leq t \leq 12$.

i) Given that the velocity $v=t^{2}-4 t$ for $0 \leq t \leq 3$, find the displacement of the particle during this time.
ii) Find the time at which the particle returns to the origin.
iii) Sketch the graph of the displacement of this particle for $0 \leq t \leq 12$

Question 16 (15 marks)

Start a new writing booklet.

(a) The line $3 x+4 y+32=0$ is a tangent to a circle centre $(2,-3)$. Find the exact diameter of the circle. 2
(b) A concrete arch is constructed over a river. The arch is symmetrical in shape with maximum height occurring at $x=2 p$ as shown in the diagram.
The shape of the arch can be expressed as part of the curve $y=f(x)$, where

$$
f^{\prime \prime}(x)=-e^{10 p}\left(e^{x-2 p}+e^{2 p-x}\right) \quad f^{\prime}(0)=-f^{\prime}(4 p) \quad \text { and } \quad f(0)=0
$$

i) Find $f^{\prime}(x)$ in terms of x and p
ii) Find the height of the arch $y=f(x)$ in terms of x and p
(c)
$\triangle P Q R$ is a right angled triangle inscribed in a semi circle such that R is a variable point on the circumference.
The point S lies on $P Q$ such that $S Q=k Q R$, where k is a positive constant. Let $P Q=d c m$ and $\angle P Q R=\alpha$ radians

i) Show that the area of $\triangle S Q R$ is $A=\frac{1}{2} k d^{2} \cos ^{2} \alpha \sin \alpha$
ii) Show that $\frac{d A}{d \alpha}=\frac{1}{2} k d^{2}\left(3 \cos ^{3} \alpha-2 \cos \alpha\right)$
iii) Find the greatest possible area of $\triangle S Q R$ in terms of k and d ?

Student Number: \qquad

Teacher: \qquad

Class: \qquad
FORT STREET HIGH SCHOOL

2019

HIGHER SCHOOL CERTIFICATE COURSE

ASSESSMENT TASK 4

Mathematics

Syllabus Outcomes	Assessment Area Description and Marking Guidelines	Questions
	Chooses and applies appropriate mathematical techniques in order to solve problems effectively	$1-10$
H2, H3, H4, H5	Manipulates algebraic expressions to solve problems from topic areas such as geometry, co-ordinate geometry, quadratics, trigonometry, probability and logarithms	$11,12,13$
H6, H7, H8	Demonstrates skills in the processes of differential and integral calculus and applies them appropriately	14,15
H9	Synthesises mathematical solutions to harder problems and communicates them in appropriate form	16

SOLUTIONS

Section I

10 marks

Attempt Questions 1 to 10
 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 to 10

1. Find the value of e^{8} correct to four significant figures.
(A) 2980
(B) 2980.9580
(C) 2981
(D) 21.75
2. Differentiate $(2 x+1)^{5}$
(A) $\quad 5(2 x+1)^{4}$
(B) $\quad 10(2 x+1)^{4}$
(C) $\frac{5}{2}(2 x+1)^{4}$
(D) $\frac{(2 x+1)^{6}}{12}$
3. Find $\int(2 x+1)^{\frac{1}{3}} d x$
(A) $\quad-\frac{2}{3}(2 x+1)^{-\frac{1}{3}}+C$
(B) $\frac{3}{4}(2 x+1)^{\frac{4}{3}}+C$
(C) $\frac{3}{8}(2 x+1)^{\frac{4}{3}}+C$
(D) $\frac{8}{3}(2 x+1)^{\frac{4}{3}}+C$

$$
\begin{array}{rlr}
e^{8} & =2980.957 \\
& \approx 2981 & \Rightarrow C
\end{array}
$$

$$
\frac{d(2 x+1)^{5}}{d x}
$$

$$
=5(2 x+1)^{4} \times 2 \quad \Rightarrow B
$$

$$
=10(2 x+1)^{4}
$$

$$
\begin{aligned}
\int(2 x+1)^{\frac{1}{3}} d x & =\frac{(2 x+1)^{\frac{4}{3}}}{\frac{4}{3} \times 2}+c \\
& =\frac{3}{8}(2 x+1)^{\frac{4}{3}}+c
\end{aligned} \quad \Rightarrow C
$$

4. Differentiate $y=\frac{\tan x}{x}$ with respect to x
(A) $\frac{d y}{d x}=\frac{\sec x^{2}-\tan x}{x^{2}}$
(B) $\frac{d y}{d x}=\frac{\tan x-\sec ^{2} x}{x^{2}}$
(C) $\frac{d y}{d x}=\frac{\sec ^{2} x-\tan x}{x^{2}}$
(D) $\frac{d y}{d x}=\frac{x \sec ^{2} x-\tan x}{x^{2}}$
5. Solve $\cos x=\frac{\sqrt{3}}{2}$ for $-\pi \leq x \leq \pi$
(A) $x=-\frac{\pi}{3}, \frac{\pi}{3}$
(B) $x=-\frac{2 \pi}{3}, \frac{2 \pi}{3}$
(C) $x=-\frac{\pi}{6}, \frac{\pi}{6}$
(D) $x=-\frac{5 \pi}{6}, \frac{5 \pi}{6}$
6. Factorise $x^{2} y-x y^{2}-x+y$
(A) $(x y-1)(x+y)$
(B) $(x y-1)(x-y)$
(C) $(x y+1)(x+y)$
(D) $(x y+1)(x-y)$
$\frac{d\left(\frac{\tan x}{x}\right)}{d x}$
$=\frac{x \cdot \frac{d(\tan x)}{d x}-\tan x \cdot \frac{d(x)}{d x}}{(x)^{2}} \quad \Rightarrow D$
$=\frac{x \cdot \sec ^{2} x-\tan x}{x^{2}}$
$\cos x=\frac{\sqrt{3}}{2}$

$$
\begin{aligned}
x & =\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
& =\frac{\pi}{6}\left(\text { in } Q^{\prime} s 1 \& 4\right) \\
& =\frac{\pi}{6}, \frac{-\pi}{6}
\end{aligned}
$$

$$
\begin{aligned}
& x^{2} y-x y^{2}-x+y \\
& =x y(x-y)-1(x-y) \quad \Rightarrow B \\
& =(x-y)(x y-1)
\end{aligned}
$$

7. $A B, C D$ and $E F$ are parallel lines.
$\angle A B E=75^{\circ}$ and $\angle D C E=125^{\circ}$

Calculate the size of $\angle B E C$
(A) 55°
(B) 50°
(C) 25°
(D) 20°
8. Which of the following could be the equation of the curve below?

(A) $y=-4 e^{-x}$
(B) $y=3-e^{x}$
(C) $y=-4 e^{x}$
(D) $y=-4-e^{x}$

$$
\begin{aligned}
\angle B E C & =75-(180-125) \\
& =20^{\circ} \quad \Rightarrow D
\end{aligned}
$$

$y=k e^{x}$
At $x=0, y=-4$, hence
$-4=k e^{0} \quad \Rightarrow C$
$k=-4$
$\therefore y=-4 e^{x}$
9. Two ordinary dice are rolled. What is the probability that the sum of the numbers on the top faces is at least 6 ?
(A) $\frac{5}{18}$
(B) $\frac{13}{18}$
(C) $\frac{27}{36}$
(D) $\frac{28}{36}$
10. What are the coordinates of the focus of the parabola $x^{2}=-6(y+1)$?
(A) $\left(0,-2 \frac{1}{2}\right)$
(B) $(0,-1)$
(C) $\left(0, \frac{1}{2}\right)$
(D) $(0,-7)$

$$
\begin{aligned}
P(\geq 6) & =\frac{1+2+3+4+5+6+5}{36} \\
& =\frac{26}{36} \\
& =\frac{13}{18}
\end{aligned}
$$

$$
\begin{aligned}
4 a & =-6 \\
a= & \frac{-3}{2} \\
& V \text { is }(0,-1) \\
& \therefore S=(0,-1+a) \\
& =\left(0, \frac{-5}{2}\right)
\end{aligned} \Rightarrow A
$$

Section II

90 marks

Attempt Questions 11 to 16
Allow about $\mathbf{2}$ hours $\mathbf{4 5}$ minutes for this section

Start each question in a new writing booklet. Extra writing booklets are available.
In Questions $11-16$, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

Marking Criteria.
Markers Comments
(a) Solve $|4 x+1|=5$

$$
\begin{aligned}
& \text { Soln: } \\
& \begin{array}{rlrl}
4 x+1 & =5 & 4 x+1 & =-5 \\
4 x & =4 & 4 x & =-6 \\
x & =1 & x & =\frac{-3}{2}
\end{array}
\end{aligned}
$$

2 Provides correct solution

1 Provides one correct x value

Students should be aware there are two cases.
(b) Evaluate $\sum_{n=2}^{4} n^{2}$

Soln:

$$
\begin{aligned}
\sum_{n=2}^{4} n^{2} & =2^{2}+3^{2}+4^{2} \\
& =4+9+16 \\
& =29
\end{aligned}
$$

Some students were unaware of how to evaluate sigma notation.
(c) The fourth term of a geometric series is 1 and the ninth term is 32 . Find the common ratio

\[

\]

2 Provides correct solution

1 Correctly obtains geometric term equations

Well answered.
(d) A market gardener plants cabbages in rows. The first row has 35 cabbages.

The second row has 39 cabbages. Each succeeding row has 4 more cabbages than the previous row.
i) Calculate the number of cabbages in the $12^{\text {th }}$ row

$$
\begin{aligned}
& \text { Soln } \\
& \begin{aligned}
d & =4 \\
T_{12} & =a+(n-1) d \\
& =35+4(12-1) \\
& =79
\end{aligned}
\end{aligned}
$$

1 Provides correct solution

ii) Which row would be the first to contain more than 200 cabbages

Soln
$T_{n} \geq 200$
$35+4(n-1) \geq 200$
$35+4 n-4 \geq 200$
$4 n \geq 169$
$n \geq 42.25$
$\therefore 43$ rd row exceeds 200

2 Provides correct solution

1 Correctly obtains the inequality $35+4(n-1) \geq 200$

Care needs to be exercised in stating what row would contain more than 200 cabbages.
iii) The farmer plants only 945 cabbages. How many rows are needed?

Soln		$\mathbf{2}$ Provides correct solution		
S_{n}	$=\frac{n}{2}[2 a+(n-1) d]$			
945	$=\frac{n}{2}[2 \times 35+4(n-1)]$			
1890	$=n(70+4 n-4)$			
	$=n(66+4 n)$			
0	$=4 n^{2}+66 n-1890$			
n	$=\frac{-66 \pm \sqrt{66^{2}-4 \times 35 \times(-1890)}}{2 \times 35}$			
Correctly obtains the				
quadratic				
$0=4 n^{2}+66 n-1890$			\quad	Many students did not recognise
:---				
the question was summating the				
cabbages.				
Students should be aware that T_{n}				
had already been asked in part (ii)				
and it would be unlikely the same				
concept would be repeated.				

(e) In the series $y+y^{2}+y^{3}+\ldots$
i) For what values of y does a limiting sum exist?

Soln
For convergence:
1 Provides correct solution
$-1<y<1$
ii) If $y=\frac{2}{3}$, find the limiting sum

Soln

$$
\begin{aligned}
S_{\infty} & =\frac{a}{1-r} \\
& =\frac{2 / 3}{1-2 / 3} \\
& =\frac{2 / 3}{1 / 3} \\
& =2
\end{aligned}
$$

1 Provides correct solution

(f) $A O B$ is a sector of a circle, centre O and radius 6 cm . The length of the arc $A B$ is $5 \pi \mathrm{~cm}$.

Calculate the exact area of the sector $A O B$.

$$
\begin{aligned}
& \text { Soln } \\
& \begin{aligned}
l & =r \theta \\
5 \pi & =6 \theta \\
\theta & =\frac{5 \pi}{6} \\
A & =\frac{1}{2} r^{2} \theta \\
& =\frac{1}{2} \cdot 6^{2} \cdot \frac{5 \pi}{6} \\
& =15 \pi \text { units }^{2}
\end{aligned}
\end{aligned}
$$

$\left|\begin{array}{l}3 \text { Provides correct solution } \\ 2 \text { Obtains correct } \theta \text { value and } \\ \text { substitutes all values into area } \\ \text { formula correctly } \\ 1 \text { Obtains correct } \theta \text { value } \\ \end{array}\right|$
(a)
i) State the period and amplitude of $y=3 \sin 2 x$

Soln
$\begin{aligned} & \text { Amplitude }=3 \\ & \text { Period }\end{aligned}=\frac{2 \pi}{2}$
$=$ $\left\lvert\, \begin{aligned} & 2 \text { Provides correct solution } \\ & 1 \text { One of amplitude or period } \\ & \text { correct }\end{aligned}\right.$ Mostly done well.
ii) On the same diagram in the domain $0 \leq x \leq 2 \pi$, draw $\frac{1}{3}$ page graphs of $y=3 \sin 2 x$ and $y=1-\cos x$

3 Graphs drawn correctly, showing endpoints and intercepts. Domain and range correct.

2 Correct domain and range, and one graph with correct shape, endpoints and intercepts.

1 Either correct domain and range, or one correct graph showing shape, endpoints and intercepts

Mostly done well.
iii) For the equation $3 \sin 2 x=1-\cos x$, how many solutions are there in the domain $0 \leq x \leq 2 \pi$

| Soln
 From graphs, there are 5. | 1 Provides correct solution |
| :--- | :--- | :--- |\quad| Some students neglected the end |
| :--- |
| points. Otherwise done well. |

(b) Find the exact gradient of the tangent to the curve $y=\sin x$ at the point where $x=\frac{\pi}{6}$.

$$
\begin{aligned}
& \text { Soln } \\
& \qquad \begin{aligned}
y & =\sin x \\
\frac{d y}{d x} & =\cos x \\
\text { At } x & =\frac{\pi}{6} \\
\frac{d y}{d x} & =\cos \frac{\pi}{6} \\
& =\frac{\sqrt{3}}{2}
\end{aligned}
\end{aligned}
$$

2 Provides correct solution

1 Correctly differentiates $y=\sin x$

Some students didn't read the question properly. Make sure you don't waste time finding the equation of the line if it only wants the gradient.
(c) Find the indefinite integral of $2 \sin (\pi+3 x)$

$$
\begin{aligned}
& \text { Soln } \\
& \qquad 2 \sin (\pi+3 x) d x \\
& =\frac{-2}{3} \cos (\pi+3 x)+c
\end{aligned}
$$

2 Provides correct solution
1 Partially correct answer

Mostly done well. Very few students forgot their constant of integration.
(d) Find the area bounded by the curve $y=\cos 2 x$, the x-axis and the lines $x=\frac{\pi}{4}$ and $x=\frac{\pi}{3}$.

Answer to 2 decimal places.
Soln:

$A=\left|\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cos 2 x d x\right|$
$=\left|\left[\frac{1}{2} \sin (2 x)\right]_{\frac{\pi}{4}}^{\frac{\pi}{3}}\right|$
$=\left|\frac{1}{2}\left(\sin \frac{2 \pi}{3}-\sin \frac{2 \pi}{4}\right)\right|$
$\approx|-0.06698729811|$
$\approx 0.07(2 \mathrm{dp})$

3 Provides correct solution
2 Expression in terms of π
$\mathbf{1}$ correct integral and correct limits
(e) Solve $\sqrt{2} \sin \theta=1$ for $0 \leq \theta \leq 2 \pi$

$$
\begin{aligned}
& \text { Soln: } \\
& \begin{aligned}
& \sqrt{2} \sin \theta=1 \\
& \qquad \begin{aligned}
\sin \theta & =\frac{1}{\sqrt{2}} \\
\theta & =\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right) \\
& =\frac{\pi}{4}
\end{aligned}
\end{aligned} . \begin{array}{l}
\end{array}
\end{aligned}
$$

2 Provides correct solution
1 Partial correct answer

Sin positive in Q1 \&2, hence $\theta=\frac{\pi}{4}, \frac{3 \pi}{4}$

Students were still awarded the mark if they found the exact value. Recall that area cannot be negative.

Mostly done well but some students provided 1 or 4 solutions instead of 2. Recall your ASTC rule. Sin is positive in the first and second quadrant.
(a) In the diagram, the shaded region is bounded by the curve $y=2 \sec x$, the coordinate axes and the line $x=\frac{\pi}{3}$. The shaded region is rotated about the x-axis. Calculate the exact volume of the solid of revolution formed.

Soln:

$$
\begin{aligned}
V & =\pi \int_{0}^{\frac{\pi}{3}}(2 \sec x)^{2} d x \\
& =\pi \int_{0}^{\frac{\pi}{3}} 4 \sec ^{2} x d x \\
& =4 \pi[\tan x]_{0}^{\frac{\pi}{3}} \\
& =4 \pi\left(\tan \frac{\pi}{3}-\tan 0\right) \\
& =4 \pi(\sqrt{3}-0) \\
& =4 \sqrt{3} \pi
\end{aligned}
$$

Some students didn't square 2 and many forgot π
(b) Find the exact value of $\int_{\frac{\pi}{3}}^{\frac{2 \pi}{3}} \cos \frac{x}{2} d x$
Soln:

$$
\begin{aligned}
I & =\left[2 \sin \frac{x}{2}\right]_{\frac{\pi}{3}}^{\frac{2 \pi}{3}} \\
& =2\left(\sin \frac{2 \pi}{6}-\sin \frac{\pi}{6}\right) \\
& =2\left(\frac{\sqrt{3}}{2}-\frac{1}{2}\right) \\
& =\sqrt{3}-1
\end{aligned}
$$

2 Provides correct solution
1 integral in terms of x and correct limits
(c) What is the equation of the tangent to $y=x+e^{2 x}$ at the point $x=0$

Soln:

$$
\begin{aligned}
y & =x+e^{2 x} \\
\frac{d y}{d x} & =1+2 e^{2 x} \\
\text { At } x & =0: \\
y & =0+e^{0} \\
& =1, \text { and } \\
\frac{d y}{d x} & =1+2 e^{0} \\
& =3 \\
y-1 & =3(x-0) \\
y & =3 x+1
\end{aligned}
$$

2 Provides correct solution
1 Partial correct answer
(d) By first finding the points of intersection, find the area of the region enclosed by the line $y=2 x+3$ and the parabola $y=x^{2}$
Soln:

$$
\begin{aligned}
x^{2} & =2 x+3 \\
0 & =x^{2}-2 x-3 \\
& =(x-3)(x+1) \\
x & =-1,3 \\
y & =1,9
\end{aligned}
$$

\therefore Intersection points are

$$
(-1,1) \&(3,9)
$$

$A=\int_{-1}^{3} 2 x+3-x^{2} d x$
$=\left[x^{2}+3 x-\frac{1}{3} x^{3}\right]_{-1}^{3}$
$=\left(3^{2}+3 \times 3-\frac{3^{3}}{3}\right)-\left((-1)^{2}+3 \times(-1)-\frac{(-1)^{3}}{3}\right)$
$=9-\left(-1 \frac{2}{3}\right)$
$=10 \frac{2}{3}$ units 2

3 Provides correct solution

2 Integral in terms of x and correct limits

1 Partial correct answer

Many students split the integral into two parts unnecessarily
(e) In the diagram $A B C D$ is a rhombus, and $B H E C$ and $D C F G$ are squares.

i) Show that $\triangle A G D$ is congruent to $\triangle A H B$

Soln:
$D C=B C$ (eq.sides of Rhombus)
Thus squares $D C F G \& B C E H$
are congruent.
Hence $\angle G D C=90$ and
$\angle C B H=90$.
$\angle C D A=\angle A B C$ (opp. \angle 's Rhomb.eq.)
$\angle A D G=\angle G D C+\angle C D A$
$=\angle C B H+\angle A B C$
$=\angle A B H$
In $\angle ' s A G D, A H B$
$A D=A B$ (eq. sides of Rhombus)
$D G=B H$ (sides of cong.squares)
$\angle A D G=\angle A B C$ (shown above)
$\therefore \triangle A G D \equiv \triangle A H B(\mathrm{SAS})$
$\left|\begin{array}{l}3 \text { Provides correct solution } \\ 2 \text { Solution contains one error } \\ \\ \\ \\ \\ \end{array}\right|$

Many students assumed that isosceles triangles with the same side lengths have equal base angles
ii) Hence, show that $\angle A G F=\angle A H E$

Soln:
$\angle A G D=\angle A H B(\operatorname{corr} \angle '$ s cong. Δ 's $)$
$\angle D G F=\angle B H E\left(=90^{\circ}\right)$
$\angle A G F=\angle D G F-\angle A G D$
$\angle A H E=\angle B H E-\angle A H B$
$\therefore \angle A G F=\angle A H E$

2 Provides correct solution
1 Partially correct solution

3 Provides correct solution
2 Solution contains one error
1 Partially correct solution
$\left|\begin{array}{l}2 \text { Provides correct solution } \\ 1 \text { Partially correct solution } \\ \end{array}\right|$
(a) The position $x \mathrm{~cm}$ of an object moving in a straight line at time t seconds, is given by: $x=6 t^{2}-t^{3}+4$
i) Find the times at which the object is at rest

Soln:
$\frac{d y}{d x}=12 t-3 t^{2}$
At rest when
$\frac{d y}{d x}=0$
$0=12 t-3 t^{2}$
$=3 t(4-t)$
$t=0,4$

2 Provides correct solution

1 Correct derivative

Well answered.

Some careless errors.
Some students who used integration did not realise that two separate definite integrals needed to be added and evaluated. Students lost 1 mark for not including absolute value from the beginning of their working when they calculated the distance travelled from $t=4$ to $t=6 \mathrm{~s}$. Wrong setting out resulted in loss of marks.
iv) Find the velocity when the acceleration is zero

Soln:

$$
\begin{aligned}
\frac{d^{2} x}{d t^{2}} & =12-6 t \\
0 & =12-6 t \\
t & =2 \\
\frac{d y}{d x} & =12 \times 2-3 \times 2^{2} \\
& =12 \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

2 Provides correct solution
1 Calculates time when acceleration is zero

Well answered. However, some students forgot to include units.
(b) A function $f(x)$ is defined by $f(x)=x^{3}+6 x^{2}+15 x$
i) Evaluate $f(-3)$ and $f(1)$

$$
\begin{aligned}
& \text { Soln: } \\
& \begin{aligned}
f(-3) & =(-3)^{3}+6(-3)^{2}+15(-3) \\
& =-18 \\
f(1) & =(1)^{3}+6(1)^{2}+15(1) \\
& =22
\end{aligned}
\end{aligned}
$$

ii) Show that the curve of $y=f(x)$ is always increasing

Soln:
Show $f^{\prime}(x)>0$ for all x.

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}+12 x+15 \\
\Delta & =12^{2}-4 \times 3 \times 15 \\
& =-36 \\
& <0
\end{aligned}
$$

Leading co-efficient >0, thus $f^{\prime}(x)>0$ for all x .
Hence the curve is always increasing.

2 Provides correct solution

1 Calculates $f^{\prime}(x)$ and discriminant of $f^{\prime}(x)$

Well answered

Poorly answered. Students need to learn that there are 2 conditions that must be satisfied to prove $\mathrm{f}^{\prime}(\mathrm{x})$ is a positive definite function: $\Delta<0$ AND leading coefficient of quadratic expression
' $a>0$.
iii) Show that there is a point of inflexion at $(-2,-14)$

Soln:
$f^{\prime \prime}(x)=6 x+12$
Possible POI when
$f^{\prime \prime}(x)=0$
$0=6 x+12$
$x=-2$
Testing nature:

$$
\begin{array}{cccc}
x & -2.5 & -2 & -1.5 \\
f^{\prime \prime}(x) & -3 & 0 & 3 \\
& <0 & & >0
\end{array}
$$

Hence change in concavity

$$
\begin{aligned}
f(-2) & =(-2)^{3}+6(-2)^{2}+15(-2) \\
& =-14
\end{aligned}
$$

Thus $(-2,14)$ is a POI.

2 Provides correct solution

1 Tests change in concavity

One mark was deducted for failing to test for concavity changing about the point of inflexion. Another mark was deducted for not evaluating the y coordinate of the point of inflexion. This is a SHOW question!
iv) Sketch the curve $y=f(x)$, clearly indicating the intercepts and the point of inflexion
Soln:
(a) Find $\int \frac{6}{3 x+1} d x$

Soln:
$=2 \ln (3 x+1)+c$

2 Provides correct solution including the constant

1 Partially correct solution

Some students omitted the constant.
(b) Use Simpson's Rule, with 5 function values, to find an approximation to $\int_{0}^{4} x e^{x} d x$ to 2 decimal places
Soln:

$$
\begin{aligned}
A & \approx \frac{h}{3}\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+. .\right)+2\left(y_{2}+y_{4}+\ldots\right)\right] \\
h & =\frac{4-0}{4} \\
& =1 \\
y_{0} & =0, y_{1}=e, y_{2}=2 e^{2}, y_{3}=3 e^{3}, y_{4}=4 e^{4} \\
A & =\frac{1}{3}\left[\left(0+4 e^{4}\right)+4\left(e+3 e^{3}\right)+2.2 e^{2}\right] \\
& \approx 166.62
\end{aligned}
$$

3 Provides correct solution

2 Calculates h and y values correctly

1 Substitution into correct Simpson's Rule

Generally well answered.
(c) Air pressure P, measured in kilopascals ($k P a$), at an altitude of h metres above sea level can be approximated using the formula $P=101 e^{-k h}$, where k is a constant.
The air pressure is 90 kPa at an altitude of 1000 m .
i) Find the air pressure at an altitude of 5000 m to 2 decimal places

Soln:

$$
\begin{aligned}
& P=90, h=1000 \\
& 90=101 e^{-1000 k} \\
& \frac{90}{101}=e^{-1000 k} \\
&-1000 k=\ln \left(\frac{90}{101}\right) \\
& k=\frac{-1}{1000} \ln \left(\frac{90}{101}\right) \\
& P=101 e^{-5000 \times \frac{-1}{1000} \ln \left(\frac{90}{101}\right)} \\
&=101 e^{5 \ln \left(\frac{90}{101}\right)} \\
&=56.74
\end{aligned}
$$

Very well answered but students should remember to use the exact value of k and not an approximation when evaluating.
ii) Find the altitude above sea level, where the air pressure is 53 kPa , to the nearest m .

Soln:

$$
\begin{aligned}
53 & =101 e^{-\frac{-1}{1000} \ln \left(\frac{90}{101}\right)^{h}} \\
\frac{53}{101} & =e^{\frac{1000}{100\left(\frac{90}{101}\right)} h^{h}} \\
\ln \left(\frac{53}{101}\right) & =\frac{1}{1000} \ln \left(\frac{90}{101}\right) h \\
h & =\frac{1000 \ln \left(\frac{53}{101}\right)}{\ln \left(\frac{90}{101}\right)} \\
& =5592.09 \\
& \approx 5592 m
\end{aligned}
$$

2 Provides correct solution
1 Partially correct solution

As above.
(d) A particle moves along the x-axis . Initially it is at rest at the origin. The graph shows its velocity v in $m s^{-1}$ as a function of time t for $0 \leq t \leq 12$.

i) Given that the velocity $v=t^{2}-4 t$ for $0 \leq t \leq 3$, find the displacement of the particle during this time.

Soln:
Displacement is given by

$$
\begin{aligned}
x(t) & =\int v d t \\
& =\int t^{2}-4 t d t \\
& =\frac{1}{3} t^{3}-2 t^{2}+c \\
t & =0, x=0 \\
0 & =c \\
x(t) & =\frac{1}{3} t^{3}-2 t^{2}
\end{aligned}
$$

Alt: $x(3)=\frac{1}{3} \times 3^{3}-2 \times 3^{2}$

$$
=-9
$$

Technically displacement during this time is given as an equation while the displacement after 3 seconds would be -9 m . No penalty was applied for stating the displacement after 3 seconds.

Many students who provided a numerical value were confused with distance and incorrectly stated the displacement is +9 m .

Do not use absolute value for displacement.
ii) Find the time at which the particle returns to the origin.

Soln:
When the area under the curve
equal the area above the curve, the particle will return to the origin.
For $3 \leq t \leq 9$, the areas (above/below) cancel out.
For $0 \leq t \leq 3$, (i) Alt gives $A=-9$ and for $9 \leq t \leq 12$ there is a 3×3 square above the x axis, so these cancel out. Hence the particle returns to the origin at $t=12$.

1 Provides correct solution
Many students tried to use the formula from part (i) to answer this question. However the formula only applies to the first 3 seconds and not all the graph.
iii) Sketch the graph of the displacement of this particle for $0 \leq t \leq 12$

3 Graphs drawn with correct shape, labels, intercepts and the points where the equations change.
2 Graphs drawn with correct shape, some points shown.

1 Partial correct solution

1 mark was awarded to students who could demonstrate 1 element of the solution. This may have been a correct shape of one of the sections or the correct points shown above.

Many students were unable to identify when the particle returned to the origin.
(a) The line $3 x+4 y+32=0$ is a tangent to a circle centre $(2,-3)$. Find the exact diameter of the circle. 2

Soln:
Perpendicular distance is:

$$
\begin{aligned}
d & =\frac{|3(2)+4(-3)+32|}{\sqrt{3^{2}+4^{2}}} \\
& =\frac{26}{5}
\end{aligned}
$$

Diameter:
$=\frac{26}{5} \times 2$
$=\frac{52}{5}$
$=10 \frac{2}{5}$

2 Provides correct solution

1 Correct substitution into perpendicular distance formula
(b) A concrete arch is constructed over a river. The arch is symmetrical in shape with maximum height occurring at $x=2 p$ as shown in the diagram.
The shape of the arch can be expressed as part of the curve $y=f(x)$, where

$$
f^{\prime \prime}(x)=-e^{10 p}\left(e^{x-2 p}+e^{2 p-x}\right) \quad f^{\prime}(0)=-f^{\prime}(4 p) \quad \text { and } \quad f(0)=0
$$

i) Find $f^{\prime}(x)$ in terms of x and p

Soln:
$f^{\prime \prime}(x)=-e^{10 p}\left(e^{x-2 p}+e^{2 p-x}\right)$
$=-e^{10 p+x-2 p}-e^{10 p+2 p-x}$
$=-e^{8 p+x}-e^{12 p-x}$
$\therefore f^{\prime}(x)=-e^{8 p+x}+e^{12 p-x}+c$
$f^{\prime}(0)=-e^{8 p}+e^{12 p}+c$
$f^{\prime}(4 p)=-e^{12 p}+e^{8 p}+c$
(Continued over)
$\left|\begin{array}{l}2 \text { Provides correct solution } \\ \\ \\ \\ \end{array}\right|$

$$
\begin{aligned}
-e^{8 p}+e^{12 p}+c & =-\left(-e^{12 p}+e^{8 p}+\mid c\right) \\
2 c & =e^{12 p}-e^{12 p}-e^{8 p} \\
& =0 \\
c & =0
\end{aligned}
$$

$\therefore f^{\prime}(x)=-e^{8 p+x}+e^{12 p-x}$
ii) Find the height of the arch $y=f(x)$ in terms of x and p

Soln:

$$
\begin{aligned}
& \int f^{\prime}(x) d x \\
&=\int-e^{8 p+x}+e^{12 p-x} d x \\
&=-e^{8 p+x}-e^{12 p-x}+k \\
& x=0, f(0)=0: \\
& 0=-e^{8 p}-e^{12 p}+k \\
& k=e^{8 p}+e^{12 p} \\
& f(x)=-e^{8 p+x}-e^{12 p-x}+e^{8 p}+e^{12 p}
\end{aligned}
$$

$\mid 2$ Provides correct solution

1 Partial correct solution
(c)
$\triangle P Q R$ is a right angled triangle inscribed in a semi circle such that R is a variable point on the circumference.
The point S lies on $P Q$ such that $S Q=k Q R$, where k is a positive constant. Let $P Q=d c m$ and $\angle P Q R=\alpha$ radians

i) Show that the area of $\triangle S Q R$ is $A=\frac{1}{2} k d^{2} \cos ^{2} \alpha \sin \alpha$

Soln:

$$
\begin{align*}
A_{\triangle S Q R} & =\frac{1}{2} \cdot Q R \cdot S R \cdot \sin \alpha \\
& =\frac{1}{2} \cdot Q R \cdot k \cdot Q R \cdot \sin \alpha \\
& =\frac{k}{2} \cdot(Q R)^{2} \cdot \sin \alpha \tag{Continuedover}
\end{align*}
$$

$\left|\begin{array}{l}3 \text { Provides correct solution } \\ \mathbf{2} \text { Correct expression for } \cos \alpha \text { in } \\ \text { terms of } Q R \text { and } P Q \text { (or d) amd } \\ \text { correct area equation in terms of } \\ \sin \alpha \\ \mathbf{1} \text { Correct area equation in terms } \\ \text { of } \sin \alpha\end{array}\right|$

From $\triangle P Q R$:

$$
\begin{aligned}
\cos \alpha & =\frac{Q R}{P Q} \\
& =\frac{Q R}{d} \\
Q R & =d \cos \alpha
\end{aligned}
$$

Hence

$$
\begin{aligned}
A_{\triangle S Q R} & =\frac{k}{2} \cdot(d \cos \alpha)^{2} \cdot \sin \alpha \\
& =\frac{k d^{2}}{2} \cdot \cos ^{2} \alpha \cdot \sin \alpha
\end{aligned}
$$

Soln:

$$
\begin{aligned}
A & =\frac{k d^{2}}{2} \cdot \cos ^{2} \alpha \cdot \sin \alpha \\
\frac{d A}{d \alpha} & =\frac{k d^{2}}{2}\left[\cos ^{3} \alpha+\sin \alpha \cdot 2 \cos \alpha \cdot(-\sin \alpha)\right] \\
& =\frac{k d^{2}}{2}\left(\cos ^{3} \alpha-2 \cos \alpha \sin ^{2} \alpha\right) \\
& =\frac{k d^{2}}{2}\left(\cos ^{3} \alpha-2 \cos \alpha\left(1-\cos ^{2} \alpha\right)\right) \\
& =\frac{k d^{2}}{2}\left(\cos ^{3} \alpha-2 \cos \alpha+2 \cos ^{3} \alpha\right) \\
& =\frac{k d^{2}}{2}\left(3 \cos ^{3} \alpha-2 \cos \alpha\right)
\end{aligned}
$$

$\mid 3$ Provides correct solution
2 Correct product rule expression for $\frac{d A}{d \alpha}$
1 Substitutes $1-\cos ^{2} \alpha$ for $\sin ^{2} \alpha$
iii) Find the greatest possible area of $\triangle S Q R$ in terms of k and d ?

Soln:

$$
\begin{aligned}
& \frac{d A}{d \alpha}=0 \\
& 0=\frac{k d^{2}}{2}\left(3 \cos ^{3} \alpha-2 \cos \alpha\right) \\
& =\cos \alpha\left(3 \cos ^{2} \alpha-2\right) \\
& \cos \alpha=0 \quad 3 \cos ^{2} \alpha-2=0 \\
& \begin{array}{c}
\alpha=\cos ^{-1} 0 \\
\pi
\end{array} \quad \cos ^{2} \alpha=\frac{2}{3} \\
& =\frac{\pi}{2} \quad \cos \alpha= \pm \sqrt{\frac{2}{3}}
\end{aligned}
$$

2 correct calculation of $\cos \alpha$ and $\sin \alpha$.
1 Solving $A^{\prime}=0$ and stating $\cos \alpha=0$ and $\cos \alpha= \pm \sqrt{\frac{2}{3}}$

But $0<\alpha<\frac{\pi}{2}$, so $\alpha=\frac{\pi}{2}$ and $\alpha=\cos ^{-1}\left(-\sqrt{\frac{2}{3}}\right)$ fall outside this range.
Hence $\alpha=\cos ^{-1}\left(\sqrt{\frac{2}{3}}\right)$ is the only solution.

So $\sin \alpha=\frac{1}{\sqrt{3}}$.
Hence:

$$
\begin{aligned}
A & =\frac{k d^{2}}{2} \cdot\left(\frac{\sqrt{2}}{\sqrt{3}}\right)^{2} \cdot \frac{1}{\sqrt{3}} \\
& =\frac{k d^{2}}{2} \cdot \frac{2}{3} \cdot \frac{1}{\sqrt{3}} \\
& =\frac{k d^{2}}{3 \sqrt{3}}
\end{aligned}
$$

