\qquad

FRENSHAM
 2014
 YEAR 12
 TRIAL HSC EXAMINATION

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working in Questions 11-16

Total marks - 100

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

90 marks

- Attempt Questions 11-16
- Allow about 2 hour 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10

1 What is the primitive of $\frac{2}{x}-\cos x$?
(A) $\frac{-2}{x^{2}}+\sin x+C$
(B) $\frac{-2}{x^{2}}-\sin x+C$
(C) $2 \ln x+\sin x+C$
(D) $2 \ln x-\sin x+C$

2 What are the values of x for which $|4-3 x|<13$?
(A) $x<-3$ or $x<\frac{17}{3}$
(B) $x>-3$ or $x>\frac{17}{3}$
(C) $x>-3$ or $x<\frac{17}{3}$
(D) $x<-3$ or $x>\frac{17}{3}$

3 What is the simultaneous solution to the equations $2 x+y=7$ and $x-2 y=1$?
(A) $x=3$ and $y=1$
(B) $x=-1$ and $y=9$
(C) $x=2$ and $y=3$
(D) $x=5$ and $y=1$

4 Factorise $2 x^{2}-7 x-15$.
(A) $(2 x-3)(x-5)$
(B) $(2 x+3)(x-5)$
(C) $(2 x-5)(x-3)$
(D) $(2 x+5)(x-3)$

5 The value of $\frac{5.79+0.55}{\sqrt{4.32-3.28}}$ is closest to:
(A) 4
(B) 6
(C) 9
(D) 10

6 What are the values of p and q given $(3 \sqrt{12}+\sqrt{75})(2+\sqrt{48})=p+q \sqrt{3}$?
(A) $p=132$ and $q=15$
(B) $p=396$ and $q=15$
(C) $p=132$ and $q=22$
(D) $p=396$ and $q=22$

7 The line $6 x-k y=8$ passes through the point $(3,2)$. What is the value of k ?
(A) -13
(B) -5
(C) 5
(D) 15

8 The semi-circle $y=\sqrt{4-x^{2}}$ is rotated about the x-axis. Which of the following expressions is correct for the volume of the solid of revolution?
(A) $V=\pi \int_{0}^{2}\left(4-x^{2}\right) d x$
(B) $\quad V=2 \pi \int_{0}^{2}\left(4-x^{2}\right) d x$
(C) $\quad V=\pi \int_{0}^{2}\left(4-y^{2}\right) d y$
(D) $\quad V=2 \pi \int_{0}^{2}\left(4-y^{2}\right) d y$

9 A circle has the equation $4 x^{2}-4 x+4 y^{2}+24 y+21=0$. What is the radius and centre?
(A) Centre $\left(\frac{1}{2},-3\right)$ and radius of 2 .
(B) Centre $\left(\frac{1}{2}, 3\right)$ and radius of 2 .
(C) Centre $\left(\frac{1}{2},-3\right)$ and radius of 4 .
(D) Centre $\left(\frac{1}{2}, 3\right)$ and radius of 4 .

10 An infinite geometric series has a first term of 12 and a limiting sum of 15 . What is the common ratio?
(A) $\frac{1}{5}$
(B) $\frac{1}{4}$
(C) $\frac{1}{3}$
(D) $\frac{1}{2}$

Section II

90 marks

Attempt Questions $11 \square 16$
Allow about 2 hours and 45 minutes for this section
Answer each question in the appropriate writing booklet.
All necessary working should be shown in every question.

Question 11 (15 marks)
Marks
(a)

The coordinates of O, D and C are $(0,0),(0,4)$ and $(3,0)$ respectively. Point E lies on $C D$. Copy the diagram onto your workbook.
(i) Show that the equation of $C D$ is $4 x+3 y-12=0$

The equation of $O E$ is $3 x-4 y=0$. Explain why $O E$ is perpendicular to $C D$.
(iii) Prove that $\triangle D O E$ is similar to $O C E$.
(iv) Give a reason why $\frac{O E}{D E}=\frac{C E}{O E}=\frac{3}{4}$.
(v) Find the ratio of the areas of triangles $D O E$ and $O C E$.
(b) Find the equation of the tangent to the curve $y=\log _{e} x-1$ at the point $(e, 0)$.
(c) The equation of a parabola is given by $y=x^{2}-2 x+5$.
(i) Find the coordinates of its vertex.
(ii) What is its focal length? 1
(iii) Find the equation of the normal at the point $P(2,5)$.
(iv) For what values of x is the parabola concave upwards?
(a) Find the value of k for which $(k-2) x^{2}-2 k x-1=0$ has real and distinct roots.
(b) Differentiate with respect to x.
(i) $e^{3 x} \tan x$
2
(ii) $\frac{\sin x}{5-x}$
2
(c) Find
(i) $\int \frac{d x}{e^{4 x}}$

2
(ii) $\int_{0}^{\pi} \sec ^{2} \frac{x}{3} d x$
(d) The roots of the equation $2 x^{2}-x-15=0$ are α and β. Find the value of:
(i) $\alpha+\beta$
(ii) $\alpha \beta$
1
(iii) $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$
(a) The sum of the first n terms of a certain arithmetic series is given by:

$$
S_{n}=\frac{3 n^{2}+n}{2}
$$

(i) Calculate S_{1} and S_{2}.
(ii) Find the first three terms of the series.
(iii) Find an expression for the nth term.
(b) Let $f(x)=x^{3}-3 x^{2}-9 x+22$
(i) Find the coordinates of the stationary points and determine their nature.
(ii) Find the coordinates of the point of inflexion.
(iii) Sketch the graph of $y=f(x)$, indicating where the curve meets the y-axis, stationary points and points of inflexion.
(iv) For what values of x is the graph of $y=f(x)$ concave down?
(c) Alex and Bella leave from point O at the same time. Alex travels at $20 \mathrm{~km} / \mathrm{h}$ along a straight road in the direction $085^{\circ} \mathrm{T}$. Bella travels at $25 \mathrm{~km} / \mathrm{h}$ along another straight road in the direction $340^{\circ} \mathrm{T}$.
Draw a diagram to represent this information.
(i) Show that $\angle A O B$ is 105° where $\angle A O B$ is the angle between the directions taken by Alex and Bella.
(ii) Find the distance Alex and Bella are apart to the nearest kilometre after two hours.

3

Question 14 (15 marks)
(a)

ABCD is a rhombus, $B E$ is perpendicular to $A D$ and intersects $A C$ at F.
Copy the diagram onto your workbook.
(i) Explain why $\angle B C A=\angle D C A$. 1
(ii) Prove that the triangles $B F C$ and $D F C$ are congruent. 3
(iii) Show that $\angle F B C$ is a right angle. $\quad \mathbf{1}$
(iv) Hence or otherwise find the size of $\angle F D C$. $\mathbf{1}$
(b) A scientist grows the number of bacteria according to the equation

$$
N(t)=A e^{0.15 t}
$$

where t is measured in days and A is a constant.
(i) Show that the number of bacteria increases at a rate proportional to the number present.
(c) The speed of a car at intervals of two minutes is shown below.

$t(\mathrm{~h})$	0	$\frac{1}{30}$	$\frac{1}{15}$	$\frac{1}{10}$	$\frac{2}{15}$
$v(\mathrm{~km} / \mathrm{h})$	0	35	45	50	60

Use Simpson's rule with these five function values to estimate $\int_{0}^{\frac{2}{15}} \mathrm{v} d t$.

2
Answer correct to 3 significant figures.
(d) Solve the equation $(\cos x+2)(2 \cos x+1)=0$ in the domain $0 \leq x \leq 2 \pi$.

Question 15 (15 marks)
Marks
(a)

The diagram shows the graphs of $y=e^{x}-2$ and $y=e^{-x}$.
(i) Find the area between the curves from $x=1$ and $x=2$. Leave your
answer in terms of e.
(ii) Show that the curves intersect when $e^{2 x}-2 e^{x}-1=0$.
(iii) Show that the x-coordinate of the point of intersection of the curves is approximately 0.881 .
(i) When is the object at rest?
(iii) Find the maximum velocity of the object for this period.
(iv) When is the object travelling in the negative direction during this period?
(v) Calculate the total distance travelled by the object in the period $\pi \leq t \leq 2 \pi$.

Question 16 (15 marks)
Marks
(a) George is saving for a holiday. He opens a savings account with an interest rate of 0.4% per month compounded monthly at the end of each month. George decides to deposit $\$ 450$ into the account on the first of each month. He makes his first deposit on the $1^{\text {st }}$ December 2011 and his last on the $1^{\text {st }}$ June 2014. George withdraws the entire amount, plus interest, immediately after his final interest payment on the $30^{\text {th }}$ June 2014.
(i) How much did George deposit into his saving account? Answer correct to the nearest dollar.
(ii) How much did George withdraw from his account on the $30^{\text {th }}$ June 2014? Answer correct to the nearest dollar.
(iii) George's holiday is postponed due to family illness. He decides to deposit $\$ 12000$ into a different account with an interest rate of 5% p.a. compounded quarterly for 2 years. How much will George receive at the end of the investment period? Answer correct to the nearest dollar.
(b)

$A B C D$ is a rectangle with $C D=3 \mathrm{~cm}$ and $A D=2 \mathrm{~cm} . F$ and E lie on the lines $B C$ and $B A$, so that F, D and E are collinear. Let $C F=x \mathrm{~cm}$ and $A E=y \mathrm{~cm}$.
(i) Show that $F C D$ and $D A E$ are similar.
(ii) Show that $x y=6$.
(iii) Show that the area (A) of $F B E$ is given by $A=6+\frac{3}{2} x+\frac{6}{x}$.
(iv) Find the height and base of $F B E$ with minimum area. Justify your answer.

End of paper

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \\
& =\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \\
& =\ln x, x>0 \\
& \int e^{a x} d x \\
& =\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \\
& =\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x \quad=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right) x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Frensham 2014

Trial HSC Mathematics Examination

Worked solutions and marking guidelines

Section I		
	Solution	Criteria
1	$\int \frac{2}{x}-\cos x d x=2 \ln x-\sin x+C$	1 Mark: D
2		1 Mark: C
3	$\begin{align*} & 2 x+y=7 \tag{1}\\ & x-2 y=1 \tag{2} \end{align*}$ Multiply eqn (1) by 2 $\begin{equation*} 4 x+2 y=14 \tag{3} \end{equation*}$ Eqn (2) + (3) $5 x=15 \text { or } x=3$ Substitute $x=3$ into eqn (1) $6+y=7 \text { or } y=1$ Solution is $x=3$ and $y=1$.	1 Mark: A
4	$2 x^{2}-7 x-15=(2 x+3)(x-5)$	1 Mark: B
5	$\begin{aligned} \frac{5.79+0.55}{\sqrt{4.32-3.28}} & =6.216881484 \\ & \approx 6 \end{aligned}$	1 Mark: B
6	$\begin{aligned} (3 \sqrt{12}+\sqrt{75})(2+\sqrt{48}) & =(6 \sqrt{3}+5 \sqrt{3})(2+4 \sqrt{3}) \\ & =12 \sqrt{3}+72+10 \sqrt{3}+60 \\ & =132+22 \sqrt{3} \end{aligned}$ Therefore $p=132$ and $q=22$	1 Mark: C
7	The point $(3,2)$ satisfies the equation $6 x-k y=8$. $\begin{aligned} 6 \times 3-k \times 2 & =8 \\ 18-2 k & =8 \\ -2 k & =-10 \\ k & =5 \end{aligned}$	1 Mark: C

8	Now $y=\sqrt{4-x^{2}}$ or $y^{2}=4-x^{2}$ $\begin{aligned} V & =\pi \int_{-2}^{2} y^{2} d x \\ & =2 \pi \int_{0}^{2}\left(4-x^{2}\right) d x \end{aligned}$	1 Mark: B
9	$\begin{aligned} 4 x^{2}-4 x+4 y^{2}+24 y+21 & =0 \\ x^{2}-x+y^{2}+6 y & =-\frac{21}{4} \\ \left(x-\frac{1}{2}\right)^{2}-\frac{1}{4}+(y+3)^{2}-9 & =-\frac{21}{4} \\ \left(x-\frac{1}{2}\right)^{2}+(y+3)^{2} & =4 \end{aligned}$ Centre $\left(\frac{1}{2},-3\right)$ and radius of 2 .	1 Mark: A
10	$\begin{aligned} & a=12 \text { and } S=15 \\ & S=\frac{a}{1-r} \\ & 15=\frac{12}{1-r} \\ & 15-15 r=12 \\ & 15 r=3 \\ & r=\frac{1}{5} \end{aligned}$	1 Mark: A
Section II		
$\begin{gathered} 11(\mathrm{a}) \\ \text { (i) } \end{gathered}$	Gradient of $C D$ is $\frac{\text { rise }}{\text { run }}=-\frac{4}{3}$ and y intercept is, 4 so using $y=m x+b: \quad y=\frac{-4 x}{3}+4$ then multiplying by 3 $\begin{gathered} 3 y=-4 x+12 \\ 4 x+3 y-12=0 \end{gathered}$	1 Mark: Correct answer.
$\begin{gathered} \hline \text { 11(a) } \\ \text { (ii) } \end{gathered}$	$4 x+3 y-12=0, y=-\frac{4}{3} x+4 \quad$ Gradient is $-\frac{4}{3}$ $3 x-4 y=0, y=\frac{3}{4} x \quad$ Gradient is $\frac{3}{4}$ Perpendicular lines then $m_{1} m_{2}=-1$ $-\frac{4}{3} \times \frac{3}{4}=-1 \quad$ True	2 Marks: Correct answer. 1 Mark: Finds the gradient of $O E$ or recognises $m_{1} m_{2}=-1$.

$\begin{gathered} 11(\mathrm{a}) \\ \text { (iii) } \end{gathered}$	```In \(\triangle D O E\) and \(\triangle O C E\) Let \(x=\angle E C O\) \(\angle E C O+\angle C D O+\angle D O C=180^{\circ}\) (angle sum of triangle is 180) \(\angle C D O=180^{\circ}-90^{\circ}-x=90^{\circ}-x\) \(\angle D O E+\angle E D O+\angle D E O=180^{\circ}\) (angle sum of triangle is \(180^{\circ}\)) \(\angle D O E=180^{\circ}-\left(90^{\circ}-x\right)-90^{\circ}\) \(\angle D O E=x\) \(\angle D E O=\angle C E O=90^{\circ}\) (\(O E\) is perpendicular to \(C D\)) \(\angle D O E=\angle E C O\) (Both equal to \(x\)) \(\angle E O C=\angle E D O\) (Both equal to 90-x) \(\triangle D O E\) is similar to \(\triangle O C E\) (equiangular)```	2 Marks: Correct answer. 1 Mark: Shows some understanding
$\begin{gathered} \text { 11(a) } \\ \text { (iv) } \end{gathered}$	$\frac{O E}{D E}=\frac{C E}{O E}=\frac{O C}{O D}=\frac{3}{4}$ (corresponding sides in similar triangles)	1 Mark: Correct answer.
$\begin{gathered} \text { 11(a) } \\ \text { (v) } \end{gathered}$	$\begin{aligned} \frac{\Delta D O E}{\Delta O C E} & =\frac{\frac{1}{2} D E \times O E}{\frac{1}{2} C E \times O E} \\ & =\frac{D E}{O E} \times \frac{O E}{C E} \\ & =\frac{4}{3} \times \frac{4}{3}=\frac{16}{9} \end{aligned}$	1 Mark: Correct answer.
11(b)	$\begin{array}{ll} y=\log _{e} x-1 & \text { At the point }(e, 0) \frac{d y}{d x}=\frac{1}{e} \\ \frac{d y}{d x}=\frac{1}{x} & \end{array}$ Point slope formula $y-y_{1}=m\left(x-x_{1}\right)$ $\begin{aligned} & y-0=\frac{1}{e}(x-e) \\ & y=\frac{1}{e} x-1 \text { or } x-e y-e=0 \end{aligned}$	2 Marks: Correct answer. 1 Mark: Finds the gradient of the tangent
$\begin{gathered} \text { 11(c) } \\ \text { (i) } \end{gathered}$	$\begin{aligned} & y=x^{2}-2 x+5 \\ & y=(x-1)^{2}+4 \\ & y-4=(x-1)^{2} \end{aligned}$ Vertex is $(1,4)$	2 Marks: Correct answer. 1 Mark: Completes the square
$\begin{gathered} \text { 11(c) } \\ \text { (ii) } \end{gathered}$	$\begin{array}{ll} y-k=4 a(x-h)^{2} & \text { Focal length is } 1 / 4 \\ y-4=4 \times \frac{1}{4}(x-1)^{2} & \end{array}$	1 Mark: Correct answer.

$\begin{gathered} \text { 11(c) } \\ \text { (iii) } \end{gathered}$	$\begin{aligned} \frac{d y}{d x} & =2 x-2 \\ m_{1} m_{2} & =-1 \\ m_{1} \times 2 & =-1 \\ m & =-\frac{1}{2} \end{aligned}$	At the point $(2,5) \frac{d y}{d x}=2 \times 2-2=2$ Equation of the normal $y-y_{1}=m\left(x-x_{1}\right)$ $\begin{aligned} & y-5=-\frac{1}{2}(x-2) \\ & x+2 y-12=0 \end{aligned}$	2 Marks: Correct answer. 1 Mark: Finds gradient of the tangent
$\begin{gathered} \hline \text { 11(c) } \\ \text { (iv) } \end{gathered}$	$\frac{d^{2} y}{d x^{2}}=2>0$	Parabola is concave up for all real x	1 Mark: Correct answer.

12(a)	For real and distinct roots $\Delta>0$. $\begin{aligned} & b^{2}-4 a c>0 \\ & (-2 k)^{2}-4(k-2)(-1)>0 \\ & 4 k^{2}+4 k-8>0 \\ & k^{2}+k-2>0 \\ & (k+2)(k-1)>0 \\ & k<-2, k>1 \end{aligned}$	3 Marks: Correct answer. 2 Marks: factorises discriminant correctly or/\& recognises $\Delta>0$. 1 Mark: finds discriminant
$\begin{gathered} \text { 12(b) } \\ \text { (i) } \end{gathered}$	$\begin{aligned} \frac{d}{d x}\left(e^{3 x} \tan x\right) & =e^{3 x}\left(\sec ^{2} x\right)+\tan x 3 e^{3 x} \\ & =e^{3 x}\left(\sec ^{2} x+3 \tan x\right) \end{aligned}$	2 Marks: Correct answer. 1 Mark: Applies the product rule
$\begin{gathered} \text { 12(b) } \\ \text { (ii) } \end{gathered}$	$\begin{aligned} \frac{d}{d x}\left(\frac{\sin x}{5-x}\right) & =\frac{(5-x) \cos x-\sin x \times-1}{(5-x)^{2}} \\ & =\frac{(5-x) \cos x+\sin x}{(5-x)^{2}} \end{aligned}$	2 Marks: Correct answer. 1 Mark: Applies the quotient rule

$\begin{gathered} \text { 12(c) } \\ \text { (i) } \end{gathered}$	$\begin{aligned} \int \frac{d x}{e^{4 x}} & =\int e^{-4 x} d x \\ & =-\frac{1}{4} e^{-4 x}+C \end{aligned}$	2 Marks: Correct answer. 1 Mark: Shows some understanding.
$\begin{gathered} \text { 12(c) } \\ \text { (ii) } \end{gathered}$	$\begin{aligned} \int_{0}^{\pi} \sec ^{2} \frac{x}{3} d x & =3\left[\tan \frac{x}{3}\right]_{0}^{\pi} \\ & =3\left[\tan \frac{\pi}{3}-\tan \frac{0}{3}\right] \\ & =3 \sqrt{3} \end{aligned}$	2 Marks: Correct answer. 1 Mark: Finds the integral.
$\begin{gathered} \text { 12(d) } \\ \text { (i) } \end{gathered}$	$\begin{aligned} \alpha+\beta & =-\frac{b}{a} \\ & =-\frac{-1}{2}=\frac{1}{2} \end{aligned}$	1 Mark: Correct answer.
$\begin{gathered} \text { 12(d) } \\ \text { (ii) } \end{gathered}$	$\begin{aligned} \alpha \beta & =\frac{c}{a} \\ & =\frac{-15}{2} \end{aligned}$	1 Mark: Correct answer.
$\begin{gathered} \text { 12(d) } \\ \text { (iii) } \end{gathered}$	$\begin{aligned} \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}} & =\frac{\alpha^{2}+\beta^{2}}{\alpha^{2} \beta^{2}}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha^{2} \beta^{2}} \\ & =\frac{\left(\frac{1}{2}\right)^{2}-2 \times\left(\frac{-15}{2}\right)}{\left(\frac{-15}{2}\right)^{2}}=\frac{61}{225} \end{aligned}$	2 Marks: Correct answer. 1 Mark: Make significant progress
$\begin{gathered} \text { 13(a) } \\ \text { (i) } \end{gathered}$	$\begin{array}{ll} S_{n}=\frac{3 n^{2}+n}{2} & S_{n}=\frac{3 n^{2}+n}{2} \\ S_{1}=\frac{3 \times 1^{2}+1}{2}=2 & S_{2}=\frac{3 \times 2^{2}+2}{2}=7 \end{array}$	1 Mark: Correct answer.
$\begin{gathered} \text { 13(a) } \\ \text { (ii) } \end{gathered}$	$\begin{aligned} & a=T_{1}=S_{1}=2 \\ & T_{2}=S_{2}-S_{1}=7-2=5 \\ & d=T_{2}-T_{1}=5-2=3 \end{aligned}$ Sequence is $\{2,5,8, \ldots\}$	2 Marks: Correct answer. 1 Mark: Finds the first term or the common difference.
$\begin{gathered} \text { 13(a) } \\ \text { (iii) } \end{gathered}$	$\begin{aligned} T_{n} & =a+(n-1) d \\ & =2+(n-1) 3 \\ & =2+3 n-3 \\ & =3 n-1 \end{aligned}$	1 Mark: Correct answer.

$\begin{gathered} \text { 13(b) } \\ \text { (i) } \end{gathered}$	$\begin{aligned} f(x) & =x^{3}-3 x^{2}-9 x+22 & \text { Stationary points } & f^{\prime}(x)=0 \\ f^{\prime}(x) & =3 x^{2}-6 x-9 & & 3\left(x^{2}-2 x-3\right)=0 \\ & =3\left(x^{2}-2 x-3\right) & & 3(x-3)(x+1)=0 \\ f^{\prime \prime}(x) & =6 x-6 & & x=-1, x=3 \end{aligned}$ When $x=-1, y=27$ then $f^{\prime \prime}(x)=-12<0$ Maxima. When $x=3, y=-5$ then $f^{\prime \prime}(x)=12>0$ Minima. Maximum turning point at $(-1,27)$. Minimum turning point at $(3,-5)$.	3 Marks: Correct answer. 2 Marks: Finds the stationary points. 1 Mark: Correct differentiation to determine the stationary points.
$\begin{aligned} & \text { 13(b) } \\ & \text { (ii) } \end{aligned}$	Possible points of inflexion $f^{\prime \prime}(x)=0$ $\begin{aligned} 6 x-6 & =0 \\ 6(x-1) & =0 \\ x & =1 \end{aligned}$ When $x=1, y=11$ Check for change in concavity When $x=0.9$ then $f^{\prime \prime}(x)=6 \times 0.9-6<0$ (concave down) When $x=1.1$ then $f^{\prime \prime}(x)=6 \times 1.1-6>0$ (concave up) Concavity has changed, hence $(1,11)$ is a point of inflexion.	2 Marks: Correct answer. 1 Mark: Finds the point of inflexion.
$\begin{gathered} \text { 13(b) } \\ \text { (iii) } \end{gathered}$		2 Marks: Correct answer. 1 Mark: Correct shape or shows some understanding.
$\begin{gathered} \text { 13(b) } \\ \text { (iv) } \end{gathered}$	Function is concave down when $x<1$ (from the graph)	1 Mark: Correct answer.
$\begin{gathered} 13(\mathrm{c}) \\ \text { (i) } \end{gathered}$	$\begin{aligned} \angle A O B & =85^{\circ}+20^{\circ} \\ & =105^{\circ} \end{aligned}$	1 Mark: Correct answer.

13(c) (ii)	After 2 hours Alex travels 40 km and Bella travels 50 km.	2 Marks:
	$A B^{2}=40^{2}+50^{2}-2 \times 40 \times 50 \times \cos 105^{\circ}$	Correct answer.
	$A B^{2}=5135.27618 \ldots$	
$A B=71.66084133 \ldots$	1 Mark: Uses	
$A B \approx 72 \mathrm{~km}$	the cosine rule	
	with some	
correct values		
	Alex and Bella are 72 km apart after 2 hours.	

$\begin{gathered} \text { 14(a) } \\ \text { (i) } \end{gathered}$	$\angle B C A=\angle D C A$ (diagonals of a rhombus bisect the angles through which they pass)	1 Mark: Correct answer.
$\begin{gathered} \text { 14(a) } \\ \text { (ii) } \end{gathered}$	In $\triangle B F C$ and $\triangle D F C$ $\begin{aligned} & C F=C F(\text { common side }) \\ & \angle B C F=\angle D C F \text { (proven from part (i)) } \\ & B C=D C \text { (adjacent sides of a rhombus are equal) } \\ & \therefore \triangle B F C \equiv \triangle D F C \text { (SAS) } \end{aligned}$	3 Marks: Correct answer. 2 Marks: Makes significant progress. 1 Mark: One relevant statement and reason.
$\begin{gathered} \text { 14(a) } \\ \text { (iii) } \end{gathered}$	$\angle A E B=\angle E B C$ (alternate angles are equal, $A D / / B C$) Given $\angle A E B=90^{\circ} \therefore \angle F B C=90^{\circ}$	1 Mark: Correct answer.
$\begin{gathered} \text { 14(a) } \\ \text { (iv) } \end{gathered}$	$\angle F B C=\angle F D C$ (corresponding angles in congruent triangles are equal) $\therefore \angle F B C=90^{\circ}$	1 Mark: Correct answer.
14(b) (i)	$\begin{aligned} N(t) & =A e^{0.15 t} \\ \frac{d N}{d t} & =A \times 0.15 e^{0.15 t} \\ & =0.15 N \end{aligned}$ The number of bacteria increases at a rate proportional to the number present.	2 Marks: Correct answer. 1 Mark: Finds $\frac{d N}{d t}$.
$\begin{gathered} \text { 14(b) } \\ \text { (ii) } \end{gathered}$	We need to find A when $t=3$ and $N=1.5 \times 10^{8}$ $\begin{aligned} N(t) & =A e^{0.15 t} \\ 1.5 \times 10^{8} & =A e^{0.15 \times 3} \\ A & =\frac{1.5 \times 10^{8}}{e^{0.45}} \\ & =95644222.74 \\ & \approx 9.6 \times 10^{7} \end{aligned}$	1 Mark: Correct answer.

$\begin{gathered} 14(\mathrm{~b}) \\ (\mathrm{iii}) \end{gathered}$	When $t=x$ the number has doubled or i.e. $N=2 A$ $\begin{aligned} & N(t)=A e^{0.15 t} \\ & 2 A=A e^{0.15 t} \\ & 2=e^{0.15 t} \\ & \ln 2=0.15 t \\ & t=\frac{\ln 2}{0.15} \\ & t=4.6 \text { days } \end{aligned}$ Alternative solution: When $t=x+3 \quad N=2 \times\left(1.5 \times 10^{8}\right)$ $\begin{aligned} N(t) & =A e^{0.15 t} \\ 3.0 \times 10^{8} & =95644222.74 \times e^{0.15(3+x)} \\ e^{0.15(3+x)} & =\frac{3.0 \times 10^{8}}{95644222.74} \\ 0.15(3+x) & =\log _{e}\left(\frac{3.0 \times 10^{8}}{95644222.74}\right) \\ 3+x & =\log _{e}\left(\frac{3.0 \times 10^{8}}{95644222.74}\right) \div 0.15 \\ x & =\log _{e}\left(\frac{3.0 \times 10^{8}}{95644222.74}\right) \div 0.15-3 \\ & =4.620981204 \\ & \approx 4.6 \text { days } \end{aligned}$	2 Marks: Correct answer. 1 Mark: Makes some progress towards the solution.
14(c)	$\begin{aligned} \int_{0}^{\frac{2}{15}} v d t & =\frac{h}{3}\left[y_{0}+y_{4}+4\left(y_{1}+y_{3}\right)+2 y_{2}\right] \\ & =\frac{\frac{1}{30}}{3}[0+60+4 \times(35+50)+2 \times 45] \\ & =5.44444444 \ldots \\ & \approx 5.44 \end{aligned}$	2 Marks: Correct answer. 1 Mark: Uses Simpson's rule with one correct value.
14(d)	$\begin{array}{ll} 2 \cos x+1=0 & \\ \cos x=\frac{-1}{2} & \cos x+2=0 \\ \text { related } x \text { is } \frac{\pi}{3} & \cos x=-2 \\ \therefore x=\pi-\frac{\pi}{3}, \pi+\frac{\pi}{3} & \text { No solution } \end{array}$ In domain $0 \leq x \leq 2 \pi$ the solution is $x=\frac{2 \pi}{3}, \frac{4 \pi}{3}$	2 Marks: Correct answer. 1 Mark: Finds one solution or shows some understanding.

$\begin{aligned} & \text { 15(a) } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} A & =\int_{1}^{2}\left(e^{x}-2\right) d x-\int_{1}^{2} e^{-x} d x \\ & =\left[e^{x}-2 x+e^{-x}\right]_{1}^{2} \\ & =\left(e^{2}-4+e^{-2}\right)-\left(e-2+e^{-1}\right) \\ & =e^{2}+e^{-2}-e-e^{-1}-2 \text { square units } \end{aligned}$	3 Marks: Correct answer. 2 Marks:Makes significant progress. 1 Mark: Correctly sets up one integral
15(a (ii)	Solve the equations simultaneously $\begin{aligned} & e^{x}-2=e^{-x} \\ & e^{x}-2=\frac{1}{e^{x}} \\ & e^{2 x}-2 e^{x}-1=0 \end{aligned}$	1 Mark: Correct answer.
$\begin{aligned} & \text { 15(a) } \\ & \text { (iii) } \end{aligned}$	The x coordinate is the solution of the equation $e^{2 x}-2 e^{x}-1=0$ Let $m=e^{x}$ then $m^{2}-2 m-1=0$ $\begin{array}{rlr} m & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\ & =\frac{-(-2) \pm \sqrt{(-2)^{2}-4 \times 1 \times-1}}{2 \times 1} \\ & =\frac{2 \pm \sqrt{8}}{2} \\ & =1 \pm \sqrt{2} \\ & \therefore e^{x}=1+\sqrt{2} \quad \text { or } \quad \therefore e^{x}=1-\sqrt{2} \\ x & =\log _{e}(1+\sqrt{2}) \quad & x=\log _{e}(1-\sqrt{ } \\ & =0.881373587 & \text { No solution } \\ & \approx 0.881 & \end{array}$	3 Marks: Correct answer. 2 Marks: Solves the quadratic equation. 1 Mark: Recognises the quadratic equation.
$\begin{gathered} \text { 15(b) } \\ \text { (i) } \end{gathered}$	Particle at rest when $v=0$ $\begin{aligned} v & =2 \sin t+1 \\ 0 & =2 \sin t+1 \\ \sin t & =-\frac{1}{2} \\ t & =\frac{7 \pi}{6} \text { or } \frac{11 \pi}{6} \end{aligned}$	2 Marks: Correct answer. 1 Mark: Finds $2 \sin t+1=0$ or calculates one answer.
$\begin{gathered} \text { 15(b) } \\ \text { (ii) } \end{gathered}$		2 Marks: Correct answer. 1 Mark: Correct shape of the curve.

$\begin{gathered} \hline \text { 15(b) } \\ \text { (iii) } \end{gathered}$	Maximum velocity is 3 metres per second (from the graph)	1 Mark: Correct answer.
$\begin{gathered} \text { 15(b) } \\ \text { (iv) } \end{gathered}$	Negative direction occurs when $v<0$ $\frac{7 \pi}{6} \leq t \leq \frac{11 \pi}{6}$ (from the graph and $15(\mathrm{~b})(\mathrm{i})$)	1 Mark: Correct answer.
$\begin{gathered} 15(\mathrm{~b}) \\ \text { (v) } \end{gathered}$	Distance travelled is the area between the curve and the x-axis from $\pi \leq t \leq 2 \pi$. $\begin{aligned} d & =2 \int_{\pi}^{\frac{7 \pi}{6}}(2 \sin t+1) d t+\left\|\int_{\frac{7 \pi}{6}}^{\frac{11 \pi}{6}}(2 \sin t+1) d t\right\| \\ & =2[-2 \cos t+t]_{\pi}^{\frac{7 \pi}{6}}+\left\|[-2 \cos t+t]_{\frac{7 \pi}{6}}^{\frac{11 \pi}{6}}\right\| \\ & =2\left(\frac{\pi}{6}+\sqrt{3}-2\right)+\left\|\left(\frac{4 \pi}{6}-2 \sqrt{3}\right)\right\| \\ & =4 \sqrt{3}-4-\frac{\pi}{3} \end{aligned}$	2 Marks: Correct answer. 1 Mark: Makes some progress towards the solution.

$\begin{gathered} \text { 16(a) } \\ \text { (i) } \end{gathered}$	$\begin{aligned} & 31 \text { deposits between } 1^{\text {st }} \text { December } 2011 \text { and } 1^{\text {st }} \text { June } 2014 . \\ & \begin{aligned} \text { Total deposited } & =\$ 450 \times 31 \\ & =\$ 13950 \end{aligned} \end{aligned}$	1 Mark: Correct answer.
$\begin{gathered} \text { 16(a) } \\ \text { (ii) } \end{gathered}$	$\begin{aligned} & 1^{\text {st }} \text { deposit }-A=P(1+r)^{n} \\ & \quad=450(1+0.004)^{31} \\ & S=450(1.004)+450(1.004)^{2}+450(1.004)^{3}+\ldots+450(1.004)^{31} \\ & \text { G.P. with } a=450(1.004), r=1.004 \text { and } n=31 \\ & S=\frac{450(1.004)\left[1.004^{31}-1\right]}{1.004-1} \\ & = \end{aligned}$ George withdraws $\$ 14880$ from his account.	3 Marks: Correct answer. 2 Marks: Identifies G.P. with 31 terms. 1 Mark: Uses compound interest formula with one correct value.
	$\begin{aligned} P & =\$ 12000, r=\frac{0.05}{4}=0.0125 \text { and } n=2 \times 4=8 \\ A & =P(1+r)^{n} \\ & =12000(1+0.0125)^{8} \\ & =\$ 13253.83321 \\ & \approx \$ 13254 \end{aligned}$ George will receive $\$ 13254$ after 2 years.	2 Marks: Correct answer. 1 Mark: Uses compound interest formula with one correct value.
$\begin{gathered} \text { 16(b) } \\ \text { (i) } \end{gathered}$	$B C / / A D$ (opposite sides of a rectangle are parallel) $\angle B C D=\angle D A B=90^{\circ}$ (angles of a rectangle equal 90°) $\angle B C D+\angle F C D=180^{\circ}$ (straight angle is 180°) $90^{\circ}+\angle F C D=180^{\circ}$ $\angle F C D=90^{\circ}$ Similarly $\angle D A E=90^{\circ}$ In $\triangle F C D$ and $\triangle D A E$ $\angle F C D=\angle D A E=90^{\circ}$ (from above) $\angle B F D=\angle A D E$ (corresponding angles are equal, $B C / / A D$) $\therefore \triangle F C D$ is similar to $\triangle D A E$ (equiangular)	3 Marks: Correct answer. 2 Marks: Makes significant progress. 1 Mark: One relevant statement and reason.
$\begin{gathered} \text { 16(b) } \\ \text { (ii) } \end{gathered}$	$\frac{C F}{A D}=\frac{C D}{A E}$ (matching sides in similar triangles are equal) $\begin{aligned} \frac{x}{2} & =\frac{3}{y} \\ x y & =6 \end{aligned}$	1 Mark: Correct answer.

$\begin{gathered} 16(\mathrm{~b}) \\ (\mathrm{iii}) \end{gathered}$	$\begin{aligned} A & =\frac{1}{2} b h \\ & =\frac{1}{2}(2+x)(3+y) \\ & =\frac{1}{2}(6+2 y+3 x+x y) \end{aligned}$ Now $x y=6$ and $y=\frac{6}{x}$ $\begin{aligned} A & =\frac{1}{2}\left(6+2 \times \frac{6}{x}+3 x+6\right) \\ & =6+\frac{3}{2} x+\frac{6}{x} \end{aligned}$	2 Marks: Correct answer. 1 Mark: Finds the correct expression for area containing both x and y.
$\begin{gathered} \text { 16(b) } \\ \text { (iv) } \end{gathered}$	$\begin{aligned} A & =6+\frac{3}{2} x+6 x^{-1} \\ \frac{d A}{d x} & =\frac{3}{2}-6 x^{-2} \\ & =\frac{3}{2}-\frac{6}{x^{2}} \end{aligned}$ Minimum area occurs when $\frac{d A}{d x}=0$ $\begin{aligned} \frac{3}{2}-\frac{6}{x^{2}} & =0 \\ \frac{6}{x^{2}} & =\frac{3}{2} \\ 3 x^{2} & =12 \\ x^{2} & =4 \\ x & = \pm 2 \end{aligned}$ Since x is a length the $x>0$ $\therefore x=2 \text { and } y=3$ Test if a minimum $\frac{d^{2} A}{d x^{2}}=12 x^{-3}=\frac{12}{x^{3}}>0 \text { for all } x(x>0)$ Therefore minimum value when $x=2$ $\therefore B E=6 \mathrm{~cm} \text { and } B F=4 \mathrm{~cm}$	3 Marks: Correct answer 2 Marks: Finds $x=2$ and tests for minimum value. 1 Mark: Calculates the first derivative or has some understanding of the problem.

