Student Name: _____

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- Show all necessary working in Questions 11-16

Total marks - 100

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

90 marks

- Attempt Questions 11-16
- Allow about 2 hour 45 minutes for this section

Section I

10 marks Attempt Questions 1 - 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- 1 What is the primitive of $\frac{2}{x} \cos x$?
 - (A) $\frac{-2}{x^2} + \sin x + C$ (B) $\frac{-2}{x^2} - \sin x + C$ (C) $2 \ln x + \sin x + C$
 - (D) $2\ln x \sin x + C$
- 2 What are the values of x for which |4-3x| < 13?
 - (A) x < -3 or $x < \frac{17}{3}$ (B) x > -3 or $x > \frac{17}{3}$ (C) x > -3 or $x < \frac{17}{3}$ (D) x < -3 or $x > \frac{17}{3}$

3 What is the simultaneous solution to the equations 2x + y = 7 and x - 2y = 1?

- (A) x = 3 and y = 1
- (B) x = -1 and y = 9
- (C) x = 2 and y = 3
- (D) x = 5 and y = 1

- 4 Factorise $2x^2 7x 15$.
 - (A) (2x-3)(x-5)
 - (B) (2x+3)(x-5)
 - (C) (2x-5)(x-3)
 - (D) (2x+5)(x-3)
- 5 The value of $\frac{5.79 + 0.55}{\sqrt{4.32 3.28}}$ is closest to:
 - (A) 4
 - (B) 6
 - (C) 9
 - (D) 10

6 What are the values of p and q given $(3\sqrt{12} + \sqrt{75})(2 + \sqrt{48}) = p + q\sqrt{3}?$

- (A) p = 132 and q = 15
- (B) p = 396 and q = 15
- (C) p = 132 and q = 22
- (D) p = 396 and q = 22
- 7 The line 6x ky = 8 passes through the point (3,2). What is the value of k?
 - (A) -13
 - (B) -5
 - (C) 5
 - (D) 15
- 8 The semi-circle $y = \sqrt{4 x^2}$ is rotated about the *x*-axis. Which of the following expressions is correct for the volume of the solid of revolution?
 - (A) $V = \pi \int_0^2 (4 x^2) dx$

(B)
$$V = 2\pi \int_0^2 (4-x^2) dx$$

(C)
$$V = \pi \int_0^2 (4 - y^2) dy$$

(D)
$$V = 2\pi \int_0^2 (4 - y^2) dy$$

- 9 A circle has the equation $4x^2 4x + 4y^2 + 24y + 21 = 0$. What is the radius and centre?
 - (A) Centre $(\frac{1}{2}, -3)$ and radius of 2.
 - (B) Centre $(\frac{1}{2}, 3)$ and radius of 2.
 - (C) Centre $(\frac{1}{2}, -3)$ and radius of 4.
 - (D) Centre $(\frac{1}{2}, 3)$ and radius of 4.
- **10** An infinite geometric series has a first term of 12 and a limiting sum of 15. What is the common ratio?
 - (A) $\frac{1}{5}$ (B) $\frac{1}{4}$ (C) $\frac{1}{3}$ (D) $\frac{1}{2}$

Section II

90 marks Attempt Questions 11 🗆 16 Allow about 2 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet.

All necessary working should be shown in every question.

Question 11 (15 marks)

(a) y D(0,4) E O C(3,0)x

The coordinates of O, D and C are (0,0), (0,4) and (3,0) respectively. Point E lies on CD. Copy the diagram onto your workbook.

	(i)	Show that the equation of <i>CD</i> is $4x + 3y - 12 = 0$	1
	(ii)	The equation of <i>OE</i> is $3x - 4y = 0$. Explain why <i>OE</i> is perpendicular to <i>CD</i> .	2
	(iii)	Prove that $\triangle DOE$ is similar to OCE .	2
	(iv)	Give a reason why $\frac{OE}{DE} = \frac{CE}{OE} = \frac{3}{4}$.	1
	(v)	Find the ratio of the areas of triangles DOE and OCE.	1
(b)	Find t	the equation of the tangent to the curve $y = \log_e x - 1$ at the point $(e, 0)$.	2

(c) The equation of a parabola is given by y = x² - 2x + 5. (i) Find the coordinates of its vertex. (ii) What is its focal length? (iii) Find the equation of the normal at the point P(2,5). (iv) For what values of x is the parabola concave upwards?

Marks

2

1

2

1

Question 12 (15marks)

Marks

(a) Find the value of k for which $(k-2)x^2 - 2kx - 1 = 0$ has real and distinct roots. 3

(b) Differentiate with respect to *x*.

(i)
$$e^{3x} \tan x$$
 2
 $\sin x$

(ii)
$$\frac{\sin x}{5-x}$$
 2

(c) Find

(i)
$$\int \frac{dx}{e^{4x}}$$
 2

(ii)
$$\int_0^\pi \sec^2 \frac{x}{3} dx$$
 2

(d) The roots of the equation $2x^2 - x - 15 = 0$ are α and β . Find the value of:

(i)
$$\alpha + \beta$$
 1

(ii)
$$\alpha\beta$$
 1

(iii)
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$$
 2

Question 13 (15 marks)

Marks

(a) The sum of the first *n* terms of a certain arithmetic series is given by:

$$S_n = \frac{3n^2 + n}{2}$$

(i)	Calculate S_1 and S_2 .	1
(ii)	Find the first three terms of the series.	2
(iii)	Find an expression for the <i>n</i> th term.	1

(b) Let $f(x) = x^3 - 3x^2 - 9x + 22$

(i)	Find the coordinates of the stationary points and determine their nature.	3
(ii)	Find the coordinates of the point of inflexion.	2
(iii)	Sketch the graph of $y = f(x)$, indicating where the curve meets the <i>y</i> -axis, stationary points and points of inflexion.	2
(iv)	For what values of x is the graph of $y = f(x)$ concave down?	1

(c) Alex and Bella leave from point O at the same time. Alex travels at 20 km/h along a straight road in the direction 085° T. Bella travels at 25 km/h along another straight road in the direction 340° T.

Draw a diagram to represent this information.

- (i) Show that $\angle AOB$ is 105° where $\angle AOB$ is the angle between the directions taken by Alex and Bella. 1
- (ii) Find the distance Alex and Bella are apart to the nearest kilometre after two hours.

Question 14 (15 marks)

(a)

ABCD is a rhombus, BE is perpendicular to AD and intersects AC at F. Copy the diagram onto your workbook.

(i)	Explain why $\angle BCA = \angle DCA$.	1
(ii)	Prove that the triangles BFC and DFC are congruent.	3
(iii)	Show that $\angle FBC$ is a right angle.	1
(iv)	Hence or otherwise find the size of $\angle FDC$.	1

(b) A scientist grows the number of bacteria according to the equation

$$N(t) = Ae^{0.15t}$$

where t is measured in days and A is a constant.

(i)	Show that the number of bacteria increases at a rate proportional to the number present.	2
(ii)	When $t = 3$ the number of bacteria was estimated at 1.5×10^8 . Evaluate A. Answer correct to 2 significant figures.	1
(iii)	The number of bacteria doubles every <i>x</i> days. Find <i>x</i> . Answer correct to 1 decimal place.	2

Marks

<i>t</i> (h)	0	$\frac{1}{30}$	$\frac{1}{15}$	$\frac{1}{10}$	$\frac{2}{15}$
v (km/h)	0	35	45	50	60

(c) The speed of a car at intervals of two minutes is shown below.

Use Simpson's rule with these five function values to estimate $\int_0^{\frac{2}{15}} v dt$. Answer correct to 3 significant figures.

2

(d) Solve the equation
$$(\cos x + 2)(2\cos x + 1) = 0$$
 in the domain $0 \le x \le 2\pi$.

Question 15 (15 marks)

(a)

Marks

The diagram shows the graphs of $y = e^x - 2$ and $y = e^{-x}$.

(i)	Find the area between the curves from $x = 1$ and $x = 2$. Leave your	2
	answer in terms of <i>e</i> .	5
<i>(</i>)	r	1

- (ii) Show that the curves intersect when $e^{2x} 2e^x 1 = 0$. 1
- (iii) Show that the *x*-coordinate of the point of intersection of the curves is approximately 0.881. **3**

(b) The velocity of an object moving along the *x*-axis is given by

$$v = 2\sin t + 1$$
 for $0 \le t \le 2\pi$

where v is measured in metres per second and t in seconds.

(i)	When is the object at rest?	2
(ii)	Sketch the graph of <i>v</i> as a function of <i>t</i> for $0 \le t \le 2\pi$	2
(iii)	Find the maximum velocity of the object for this period.	1
(iv)	When is the object travelling in the negative direction during this period?	1
(v)	Calculate the total distance travelled by the object in the period $\pi \le t \le 2\pi$.	2

Question 16 (15 marks)

- (a) George is saving for a holiday. He opens a savings account with an interest rate of 0.4% per month compounded monthly at the end of each month. George decides to deposit \$450 into the account on the first of each month. He makes his first deposit on the 1st December 2011 and his last on the 1st June 2014. George withdraws the entire amount, plus interest, immediately after his final interest payment on the 30th June 2014.
 - (i) How much did George deposit into his saving account? Answer correct to the nearest dollar.
 - (ii) How much did George withdraw from his account on the 30th June 2014? Answer correct to the nearest dollar.
 - (iii) George's holiday is postponed due to family illness. He decides to deposit \$12 000 into a different account with an interest rate of 5% p.a. compounded quarterly for 2 years. How much will George receive at the end of the investment period? Answer correct to the nearest dollar.

B

(b)

A

ABCD is a rectangle with CD = 3 cm and AD = 2 cm. *F* and *E* lie on the lines *BC* and *BA*, so that *F*, *D* and *E* are collinear. Let CF = x cm and AE = y cm.

- (i) Show that FCD and DAE are similar. 3
- (ii) Show that xy = 6. 1
- (iii) Show that the area (A) of *FBE* is given by $A = 6 + \frac{3}{2}x + \frac{6}{x}$. 2
- (iv) Find the height and base of *FBE* with **minimum** area. Justify your **3** answer.

End of paper

Marks

2

1

3

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} \, dx \qquad \qquad = \ln x, \ x > 0$$

$$\int e^{ax} dx \qquad \qquad = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx \qquad \qquad = \frac{1}{a} \sin ax, \ a \neq 0$$

- $\int \sin ax \, dx \qquad \qquad = -\frac{1}{a} \cos ax, \ a \neq 0$
- $\int \sec^2 ax \, dx \qquad \qquad = \frac{1}{a} \tan ax, \ a \neq 0$

$$\int \sec ax \tan ax \, dx \qquad = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right) x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx \qquad = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

Frensham 2014

Trial HSC Mathematics Examination

Worked solutions and marking guidelines

Section I				
	Solution	Criteria		
1	$\int \frac{2}{x} -\cos x dx = 2\ln x - \sin x + C$	1 Mark: D		
2	4-3x < 13 4-3x < 13 and -4+3x < 13 -3x < 9 3x < 17 $x > -3 x < \frac{17}{3}$	1 Mark: C		
3	2x + y = 7 (1) x - 2y = 1 (2) Multiply eqn (1) by 2 4x + 2y = 14 (3) Eqn (2)+(3) 5x = 15 or x = 3 Substitute $x = 3$ into eqn (1) 6 + y = 7 or y = 1 Solution is $x = 3$ and $y = 1$.	1 Mark: A		
4	$2x^2 - 7x - 15 = (2x + 3)(x - 5)$	1 Mark: B		
5	$\frac{5.79 + 0.55}{\sqrt{4.32 - 3.28}} = 6.216881484$ \$\approx 6\$	1 Mark: B		
6	$(3\sqrt{12} + \sqrt{75})(2 + \sqrt{48}) = (6\sqrt{3} + 5\sqrt{3})(2 + 4\sqrt{3})$ = $12\sqrt{3} + 72 + 10\sqrt{3} + 60$ = $132 + 22\sqrt{3}$ Therefore $p = 132$ and $q = 22$	1 Mark: C		
7	The point (3,2) satisfies the equation $6x - ky = 8$. $6 \times 3 - k \times 2 = 8$ 18 - 2k = 8 -2k = -10 k = 5	1 Mark: C		

	Now $y = \sqrt{4 - x^2}$ or $y^2 = 4 - x^2$	
8	$V = \pi \int_{-2}^{2} y^2 dx$	1 Mark: B
	$=2\pi \int_{0}^{2} (4-x^{2}) dx$	
	$4x^2 - 4x + 4y^2 + 24y + 21 = 0$	
	$x^{2} - x + y^{2} + 6y = -\frac{21}{4}$	
9	$(x-\frac{1}{2})^2 - \frac{1}{4} + (y+3)^2 - 9 = -\frac{21}{4}$	1 Mark: A
	$(x - \frac{1}{2})^2 + (y + 3)^2 = 4$	
	Centre $(\frac{1}{2}, -3)$ and radius of 2.	
	a = 12 and $S = 15$	
	$S = \frac{a}{1 - r}$	
	$15 = \frac{12}{12}$	
10	1-r 15-15r = 12	1 Mark: A
	15r = 3	
	$r = \frac{1}{5}$	
Section	II	
11(a) (i)	Gradient of <i>CD</i> is $\frac{rise}{run} = -\frac{4}{3}$ and y intercept is, 4 so using	1 Mark: Correct answer.
	$y=mx+b: y=\frac{-4x}{3}+4$ then multiplying by 3	
	3y = -4x + 12	
	4x + 3y - 12 = 0	
11(a) (ii)	$4x+3y-12=0, y=-\frac{4}{3}x+4$ Gradient is $-\frac{4}{3}$	2 Marks: Correct answer.
	$3x - 4y = 0, y = \frac{3}{4}x$ Gradient is $\frac{3}{4}$	1 Mark: Finds
	Perpendicular lines then $m_1m_2 = -1$	<i>OE</i> or
	$-\frac{4}{3} \times \frac{3}{4} = -1$ True	recognises $m_1 m_2 = -1$.

11(a) (iii)	In $\triangle DOE$ and $\triangle OCE$	2 Marks: Correct answer.
	$\angle ECO + \angle CDO + \angle DOC - 180^{\circ}$ (angle sum of triangle is 180)	
	$\angle CDO = 120^\circ = 00^\circ = 100^\circ$ (angle sum of triangle is 100)	1 Mark: Shows
	$\angle CDO = 180 - 90 - x = 90 - x$	some
	$\angle DOE + \angle EDO + \angle DEO = 180$ (angle sum of triangle is 180)	understanding
	$\angle DOE = 180^{\circ} - (90^{\circ} - x) - 90^{\circ}$	
	$\angle DOE = x$	
	$\angle DEO = \angle CEO = 90^{\circ}$ (<i>OE</i> is perpendicular to <i>CD</i>)	
	$\angle DOE = \angle ECO$ (Both equal to x)	
	$\angle EOC = \angle EDO$ (Both equal to 90-x)	
11()	ΔDOE is similar to ΔOCE (equiangular)	
(iv)	$\frac{OE}{DE} = \frac{CE}{OE} = \frac{OC}{OD} = \frac{3}{4}$ (corresponding sides in similar triangles)	1 Mark: Correct answer.
11(a) (v)	$\frac{\Delta DOE}{\Delta OCE} = \frac{\frac{1}{2}DE \times OE}{\frac{1}{2}CE \times OE}$	1 Mark: Correct answer.
	$\Delta OCE = \frac{1}{2}CE \times OE$	
	$=\frac{DE}{OE}\times\frac{OE}{CE}$	
	4 4 16	
	$=\frac{1}{3}\times\frac{1}{3}=\frac{1}{9}$	
11(b)	dy = 1	2 Marks:
	$y = \log_e x - 1$ At the point $(e, 0)$ $\frac{d}{dx} = -\frac{1}{dx}$	Correct answer.
	$\frac{dy}{dx} = \frac{1}{x}$	
	ax = x Boint slope formula $y = y = w(x - x)$	1 Mark: Finds
	Four stope formula $y - y_1 = m(x - x_1)$	the tangent
	$y-0=\frac{1}{e}(x-e)$	C
	$y = \frac{1}{e}x - 1$ or $x - ey - e = 0$	
11(c)	$y = x^2 - 2x + 5$	2 Marks:
(1)	$y = (x-1)^2 + 4$	Correct answer.
	$y - 4 = (x - 1)^2$	l Mark: Completes the
	Vertex is (1, 4)	square
11(c)	$v-k = 4a(x-h)^2$ Focal length is $\frac{1}{4}$	1 Mark: Correct
(ii)	$y-4 = 4 \times \frac{1}{4}(x-1)^2$	answer.

11(c) (iii)	$\frac{dy}{dx} = 2x - 2$ At the point (2,5) $\frac{dy}{dx} = 2 \times 2 - 2 = 2$	2 Marks: Correct answer.
	$m_{1}m_{2} = -1$ Equation of the normal $y - y_{1} = m(x - x_{1})$ $m_{1} \times 2 = -1$ $y - 5 = -\frac{1}{2}(x - 2)$ $m = -\frac{1}{2}$ x + 2y - 12 = 0	1 Mark: Finds gradient of the tangent
11(c) (iv)	$\frac{d^2 y}{dx^2} = 2 > 0$ Parabola is concave up for all real x	1 Mark: Correct answer.
12(a)	For real and distinct roots $\Delta > 0$. $b^{2} - 4ac > 0$ $(-2k)^{2} - 4(k-2)(-1) > 0$ $4k^{2} + 4k - 8 > 0$ $k^{2} + k - 2 > 0$ $(k+2)(k-1) > 0$ $k < -2, k > 1$	3 Marks: Correct answer. 2 Marks: factorises discriminant correctly or/& recognises $\Delta > 0$. 1 Mark: finds discriminant
12(b) (i)	$\frac{d}{dx}\left(e^{3x}\tan x\right) = e^{3x}(\sec^2 x) + \tan x 3e^{3x}$ $= e^{3x}(\sec^2 x + 3\tan x)$	2 Marks: Correct answer. 1 Mark: Applies the product rule
12(b) (ii)	$\frac{d}{dx}\left(\frac{\sin x}{5-x}\right) = \frac{(5-x)\cos x - \sin x \times -1}{(5-x)^2} = \frac{(5-x)\cos x + \sin x}{(5-x)^2}$	2 Marks: Correct answer. 1 Mark: Applies the quotient rule

12(c) (i)	$\int \frac{dx}{e^{4x}} = \int e^{-4x} dx$	2 Marks: Correct answer.
	$= -\frac{1}{4}e^{-4x} + C$	1 Mark: Shows some understanding.
12(c) (ii)	$\int_{0}^{\pi} \sec^{2} \frac{x}{3} dx = 3 \left[\tan \frac{x}{3} \right]_{0}^{\pi}$	2 Marks: Correct answer.
	$= 3 \left[\tan \frac{\pi}{3} - \tan \frac{0}{3} \right]$ $= 3\sqrt{3}$	1 Mark: Finds the integral.
12(d) (i)	$\alpha + \beta = -\frac{b}{a}$ $= -\frac{-1}{2} = \frac{1}{2}$	1 Mark: Correct answer.
12(d) (ii)	$\alpha\beta = \frac{c}{a}$ $= \frac{-15}{2}$	1 Mark: Correct answer.
12(d) (iii)	$\frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}} = \frac{\alpha^{2} + \beta^{2}}{\alpha^{2}\beta^{2}} = \frac{(\alpha + \beta)^{2} - 2\alpha\beta}{\alpha^{2}\beta^{2}}$ $= \frac{\left(\frac{1}{2}\right)^{2} - 2 \times \left(\frac{-15}{2}\right)}{\left(\frac{-15}{2}\right)^{2}} = \frac{61}{225}$	2 Marks: Correct answer. 1 Mark: Make significant progress
13(a) (i)	$S_{n} = \frac{3n^{2} + n}{2}$ $S_{1} = \frac{3 \times 1^{2} + 1}{2} = 2$ $S_{2} = \frac{3 \times 2^{2} + n}{2} = 7$	1 Mark: Correct answer.
13(a) (ii)	$a = T_1 = S_1 = 2$ $T_2 = S_2 - S_1 = 7 - 2 = 5$ $d = T_2 - T_1 = 5 - 2 = 3$ Sequence is {2, 5, 8,}	2 Marks: Correct answer.1 Mark: Finds the first term or the common difference.
13(a) (iii)	$T_n = a + (n-1)d$ = 2 + (n-1)3 = 2 + 3n - 3 = 3n - 1	1 Mark: Correct answer.

13(b)	$f(x) = x^3 - 3x^2 - 9x + 22$ Stationary points $f'(x) = 0$	3 Marks:
(i)	$f'(x) = 3x^2 - 6x - 9 \qquad \qquad 3(x^2 - 2x - 3) = 0$	Correct answer.
	$= 3(x^2 - 2x - 3) \qquad \qquad 3(x - 3)(x + 1) = 0$	2 Marks: Finds
	f''(x) = 6x - 6 $x = -1, x = 3$	points.
	When $x = -1$, $v = 27$ then $f''(x) = -12 < 0$ Maxima.	
	When $x = 3$ $y = -5$ then $f''(x) = 12 > 0$ Minima	1 Mark: Correct
	Maximum turning point at (-1.27)	differentiation
	Minimum turning point at $(3, -5)$	the stationary
		points.
13(b) (ii)	Possible points of inflexion $f''(x) = 0$ $6x - 6 = 0$	2 Marks:
(11)	6(x-1) = 0	Correct answer.
	x = 1	1 Mark: Finds
	When $x = 1, y = 11$	the point of
	Check for change in concavity	inflexion.
	When $x = 0.9$ then $f''(x) = 6 \times 0.9 - 6 < 0$ (concave down)	
	When $x = 1.1$ then $f'(x) = 6 \times 1.1 - 6 > 0$ (concave up)	
12(b)	Concavity has changed, hence (1,11) is a point of inflexion.	
(iii)	(-1, 27) = 1	2 Marks: Correct answer
		Confect answer.
	24	1 Mark: Correct
		shape or shows
		some understanding.
	8	5
	4	
	<	
	-3 -2 -1 -4 1 2 3 4 5	
10(1)	\checkmark $(3, -5)$	
13(b) (iv)	Function is concave down when $x < 1$ (from the graph)	1 Mark: Correct
13(c)		answer.
(i)	N	answer.
	35° \rightarrow 4	
	$\angle AOB = 85^\circ + 20^\circ$	
	=105°	

13(c) (ii)	After 2 hours Alex travels 40 km and Bella travels 50 km.	2 Marks: Correct answer.
	$AB^{2} = 40^{2} + 50^{2} - 2 \times 40 \times 50 \times \cos 105^{\circ}$ $AB^{2} = 5135.27618$ AB = 71.66084133 $AB \approx 72$ km Alex and Bella are 72 km apart after 2 hours.	1 Mark: Uses the cosine rule with some correct values

14(a) (i)	$\angle BCA = \angle DCA$ (diagonals of a rhombus bisect the angles through which they pass)	1 Mark: Correct answer.
14(a) (ii)	In $\triangle BFC$ and $\triangle DFC$	3 Marks: Correct answer.
	CF = CF (common side) $\angle BCF = \angle DCF$ (proven from part (i)) BC = DC (adjacent sides of a rhombus are equal) $\therefore \Delta BFC \equiv \Delta DFC$ (SAS)	2 Marks: Makes significant progress. 1 Mark: One relevant statement and reason.
14(a) (iii)	$\angle AEB = \angle EBC$ (alternate angles are equal, $AD//BC$) Given $\angle AEB = 90^{\circ} \therefore \angle FBC = 90^{\circ}$	1 Mark: Correct answer.
14(a) (iv)	$\angle FBC = \angle FDC$ (corresponding angles in congruent triangles are equal) $\therefore \angle FBC = 90^{\circ}$	1 Mark: Correct answer.
14(b) (i)	$N(t) = Ae^{0.15t}$ $\frac{dN}{dt} = A \times 0.15e^{0.15t}$ $= 0.15N$	2 Marks: Correct answer. 1 Mark: Finds
	The number of bacteria increases at a rate proportional to the number present.	$\frac{dt}{dt}$.
14(b) (ii)	We need to find A when $t = 3$ and $N = 1.5 \times 10^8$ $N(t) = Ae^{0.15t}$ $1.5 \times 10^8 = Ae^{0.15 \times 3}$	1 Mark: Correct answer.
	$A = \frac{1.5 \times 10^8}{e^{0.45}}$ = 95 644 222.74 $\approx 9.6 \times 10^7$	

14(b)	When $t=x$ the number has doubled or i.e. $N=2A$	2 Marks:
(111)	$N(t) = Ae^{0.15t}$	Correct answer.
	$2A = Ae^{0.15t}$	1 Mark: Makes
	$2 = e^{0.15t}$	some progress
	$\ln 2 = 0.15t$	towards the
	$t = \frac{\ln 2}{0.15}$	solution.
	$\begin{array}{l} 0.15\\ t = 4.6 \ days \end{array}$	
	Alternative solution:	
	When $t=x+3$ $N = 2 \times (1.5 \times 10^8)$	
	$N(t) = A e^{0.15t}$	
	$3.0 \times 10^8 = 95\ 644\ 222.74 \times e^{0.15(3+x)}$	
	$e^{0.15(3+x)} - \frac{3.0 \times 10^8}{2}$	
	95 644 222.74	
	$0.15(3+x) = \log_e\left(\frac{3.0 \times 10^8}{95\ 644\ 222.74}\right)$	
	$3 + x = \log_e \left(\frac{3.0 \times 10^8}{95\ 644\ 222.74}\right) \div 0.15$	
	$x = \log_e \left(\frac{3.0 \times 10^8}{95\ 644\ 222.74} \right) \div 0.15 - 3$	
	= 4.620981204	
	≈ 4.6 days	
14(c)	$\int_{0}^{\frac{2}{15}} v dt = \frac{h}{3} [y_0 + y_4 + 4(y_1 + y_3) + 2y_2]$	2 Marks: Correct answer.
	$=\frac{\frac{1}{30}}{3}[0+60+4\times(35+50)+2\times45]$	1 Mark: Uses
	= 5.44444444	simpson's rule with one
	≈ 5.44	correct value.
14(d)	$2\cos x + 1 = 0$	2 Marks:
	$\cos x = \frac{-1}{2}$	Correct answer.
	$\frac{2}{\pi} \cos x + 2 = 0$	1 Mark: Finds
	related x is $\frac{\pi}{3}$ cos x = -2	one solution or
	$\therefore x = \pi - \frac{\pi}{3}, \pi + \frac{\pi}{3}$ No solution	shows some understanding.
	In domain $0 \le x \le 2\pi$ the solution is $x = \frac{2\pi}{3}, \frac{4\pi}{3}$	

15(a) (i)	$A = \int_{1}^{2} (e^{x} - 2) dx - \int_{1}^{2} e^{-x} dx$ = $\left[e^{x} - 2x + e^{-x} \right]_{1}^{2}$ = $\left(e^{2} - 4 + e^{-2} \right) - \left(e - 2 + e^{-1} \right)$ = $e^{2} + e^{-2} - e - e^{-1} - 2$ square units	3 Marks: Correct answer. 2 Marks:Makes significant progress. 1 Mark: Correctly sets up one integral
15(a) (ii)	Solve the equations simultaneously $x^{-x} = 2 - e^{-x}$	1 Mark: Correct answer.
	$e^{x} - 2 = e^{x}$ $e^{x} - 2 = \frac{1}{e^{x}}$ $e^{2x} - 2e^{x} - 1 = 0$	
15(a)	The <i>x</i> coordinate is the solution of the equation $e^{2x} - 2e^x - 1 = 0$	3 Marks:
(111)	Let $m = e^x$ then $m^2 - 2m - 1 = 0$	Correct answer.
	$m = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	2 Marks:
	$-(-2)\pm\sqrt{(-2)^2-4\times1\times-1}$	quadratic
	$=\frac{2\times 1}{2}$	equation.
	$=\frac{2\pm\sqrt{8}}{2}$	1 Mark: Recognises the
	$=1\pm\sqrt{2}$	quadratic
	$\therefore e^x = 1 + \sqrt{2}$ or $\therefore e^x = 1 - \sqrt{2}$	equation.
	$x = \log_e(1 + \sqrt{2}) \qquad x = \log_e(1 - \sqrt{2})$	
	≈ 0.881	
15(b)	Particle at rest when $v = 0$	2 Marks:
(1)	$v = 2\sin t + 1$	Correct answer.
	$0 = 2\sin t + 1$	1 Mark: Finds
	$\sin t = -\frac{1}{2}$	$2\sin t + 1 = 0$ or calculates
	$t = \frac{7\pi}{6} \text{ or } \frac{11\pi}{6}$	one answer.
15(b)		2 Marks:
(11)		Correct answer.
		1 Mark: Correct
		shape of the curve.

15(b) (iii)	Maximum velocity is 3 metres per second (from the graph)	1 Mark: Correct answer.
15(b) (iv)	Negative direction occurs when $v < 0$ $\frac{7\pi}{6} \le t \le \frac{11\pi}{6}$ (from the graph and 15(b)(i))	1 Mark: Correct answer.
15(b) (v)	Distance travelled is the area between the curve and the <i>x</i> -axis from $\pi \le t \le 2\pi$. $d = 2\int_{\pi}^{\frac{7\pi}{6}} (2\sin t + 1)dt + \left \int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}} (2\sin t + 1)dt \right $ $= 2[-2\cos t + t]_{\pi}^{\frac{7\pi}{6}} + \left[-2\cos t + t \int_{\frac{7\pi}{6}}^{\frac{11\pi}{6}} \right]$ $= 2\left(\frac{\pi}{6} + \sqrt{3} - 2\right) + \left \left(\frac{4\pi}{6} - 2\sqrt{3}\right) \right $ $= 4\sqrt{3} - 4 - \frac{\pi}{3}$	2 Marks: Correct answer. 1 Mark: Makes some progress towards the solution.

16(a)	31 deposits between 1 st December 2011 and 1 st June 2014.	1 Mark: Correct
(1)	Total deposited = 450×31	answer.
	= \$13950	
16(a)	1^{st} deposit - $A = P(1+r)^n$	3 Marks:
(11)	$=450(1+0.004)^{31}$	Correct answer.
	$S = 450(1.004) + 450(1.004)^2 + 450(1.004)^3 + \dots + 450(1.004)^{31}$	2 Marks
	G.P. with $a = 450(1.004)$, $r = 1.004$ and $n = 31$	Identifies G.P.
	$450(1.004) \left[1.004^{31} - 1 \right]$	with 31 terms.
	$s = \frac{1.004 - 1}{1.004 - 1}$	1 Mark [.] Uses
	= \$14879.57127	compound
	≈ \$14880	interest formula
	George withdraws \$14880 from his account.	with one correct value.
16(a) (iii)	$P = \$12000, r = \frac{0.05}{4} = 0.0125 \text{ and } n = 2 \times 4 = 8$	2 Marks: Correct answer.
	$A = P(1+r)^n$	
	$= 12000(1+0.0125)^{8}$	1 Mark: Uses
	= \$13253.83321	interest formula
	≈ \$13254	with one
	George will receive \$13254 after 2 years.	correct value.
16(b)	<i>BC MD</i> (opposite sides of a rectangle are parallel)	3 Marks:
(i)	$\angle BCD = \angle DAB = 90^{\circ}$ (angles of a rectangle equal 90°)	Correct answer.
	$\angle BCD + \angle FCD = 180^{\circ}$ (straight angle is 180°)	
	$90^\circ + \angle FCD = 180^\circ$	2 Marks: Makes
	$\angle FCD = 90^{\circ}$	significant
	Similarly $\angle DAE = 90^{\circ}$	progress.
	In ΔFCD and ΔDAE	
	$\angle FCD = \angle DAE = 90^{\circ}$ (from above)	1 Mark: One
	$\angle BFD = \angle ADE$ (corresponding angles are equal, BC / AD)	statement and
	$\therefore \Delta FCD$ is similar to ΔDAE (equiangular)	reason.
16(b) (ii)	$\frac{CF}{AD} = \frac{CD}{AE}$ (matching sides in similar triangles are equal)	1 Mark: Correct answer.
	$\frac{x}{x} = \frac{3}{2}$	
	2 <i>y</i>	
	xy = 6	

16(b) (iii)	$A = \frac{1}{2}bh$	2 Marks: Correct answer.
	$= \frac{1}{2}(2+x)(3+y)$ = $\frac{1}{2}(6+2y+3x+xy)$ Now $xy = 6$ and $y = \frac{6}{x}$ $A = \frac{1}{2}(6+2\times\frac{6}{x}+3x+6)$ = $6+\frac{3}{2}x+\frac{6}{x}$	1 Mark: Finds the correct expression for area containing both x and y.
16(b) (iv)	$A = 6 + \frac{3}{2}x + 6x^{-1}$	3 Marks: Correct answer.
	$\frac{dA}{dx} = \frac{3}{2} - 6x^{-2}$ $= \frac{3}{2} - \frac{6}{x^{2}}$ Minimum area occurs when $\frac{dA}{dx} = 0$ $\frac{3}{2} - \frac{6}{x^{2}} = 0$ $\frac{6}{x^{2}} = \frac{3}{2}$ $3x^{2} = 12$ $x^{2} = 4$ $x = \pm 2$ Since x is a length the $x > 0$ $\therefore x = 2 \text{ and } y = 3$ Test if a minimum $\frac{d^{2}A}{dx^{2}} = 12x^{-3} = \frac{12}{x^{3}} > 0 \text{ for all } x (x > 0)$ Therefore minimum value when $x = 2$	2 Marks: Finds x = 2 and tests for minimum value. 1 Mark: Calculates the first derivative or has some understanding of the problem.