

Girraween High School

Year 12 HSC Trial Examination

August 2014

General Instructions

-Reading time - 5 minutes

- Working time - 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

90 marks

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section

Section I

10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Circle the letter corresponding to the correct answer.

Question 1 (1 mark)
What is the correct value of $|-1|-|-1|$?
A. 0
B. -1
C. 1
D. 2

Question 2 (1 mark)
What is 0.01077 rounded to 3 significant figures?
A. 0.0107
B. 0.011
C. 0.0108
D. 0.01

Question 3 (1 mark)
Solve the equation $3 x-1=\frac{x+3}{2}$
A. $x=\frac{4}{5}$
B. $x=1$
C. $x=2$
D. $x=7$

Question 4 (1 mark)
Which is the correct factorisation of $3 x^{2}+x-2$?
A. $(3 x+2)(x-1)$
B. $(3 x-2)(x+1)$
C. $(3 x-1)(x+2)$
D. $(3 x+1)(x-2)$

Question 5 (1 mark)
What is the distance between the points $(6,1)$ and $(3,-3)$?
A. 5
B. 25
C. $\sqrt{7}$
D. 7

Question 6 (1 mark)
When the denominator is rationalised, $\frac{1}{\sqrt{3}-\sqrt{2}}=$
A. $\frac{\sqrt{3}-\sqrt{2}}{5}$
B. $\sqrt{3}-\sqrt{2}$
C. $\frac{\sqrt{3}+\sqrt{2}}{5}$
D. $\sqrt{3}+\sqrt{2}$

Question 7 (1 mark)
What is the domain of the function $f(x)=\sqrt{6-2 x}$?
A. All real x such that $x \leq 3$
B. All real x such that $x<3$
C. All real x such that $x \geq 3$
D. All real x such that $x>3$

Question 8 (1 mark)
Below is a graph of $y=\sin \frac{\pi x}{2}$. Which of the following integrals has the greatest value?

A. $\int_{0}^{1} \sin \frac{\pi x}{2} d x$
B. $\int_{0}^{2} \sin \frac{\pi x}{2} d x$
C. $\int_{0}^{4} \sin \frac{\pi x}{2} d x$
D. $\int_{0}^{7} \sin \frac{\pi x}{2} d x$

Question 9 (1 mark)
When x is replaced with $x+1$ in the equation $y=x^{2}$, the graph is moved:
A. One unit to the right
B. One unit to the left
C. One unit higher
D. One unit lower

Question 10 (1 mark)
Which of the following is the correct function value at the minimum turning point of:

$$
f(x)=(x-2012)(x-2013)(x-2014)
$$

A. -1
B. 0
C. $\frac{1}{2}(2012)(2013)(2014)$
D. $\frac{-2 \sqrt{3}}{9}$

Section II
90 marks
Attempt Questions 11-16
Allow about 2 hours and 45 minutes for this section
Write your answers on the paper provided.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)
(a) Evaluate $\sqrt{\pi^{2}+5}$ to two decimal places.
(b) Convert $\frac{3 \pi}{5}$ radians to degrees.
(c) Find the exact value of $\sin \frac{2 \pi}{3}$
(d) Simplify $\frac{x}{x^{2}-4}+\frac{2}{x-2}$
(e) Find the values of x for which $|x-3| \geq 3$
(f) Differentiate with respect to x
i. $y=x^{2} \ln 3 x$
ii. $y=\frac{\sin 4 x}{x^{3}}$
(g) Find $\int 1+\sec ^{2} x d x$
(h) Find the limiting sum of the geometric series

$$
\frac{3}{4}+\frac{3}{16}+\frac{3}{64}+\ldots
$$

Question 12 (15 marks)
(a) A function $f(x)$ passes through the point $(2,10)$. Given that

$$
f^{\prime}(x)=3 x^{2}-3 x+5
$$

find the value of $f(1)$.
(b) In a certain arithmetic series, the first term is 13 and the sixth term is -7 .
i. Find the common difference.
ii. Find the value of the third term.
(c) Consider the parabola $y+2=8(x-1)^{2}$. Find:
i. the coordinates of the vertex,
ii. the coordinates of the focus,
iii. the equation of the directrix.
(d) The diagram shows points A, B and C lying on the line $2 y=x+4$. The point A lies on the y-axis and $A B=B C$. The line from $D(10,-3)$ to B is perpendicular to $A C$.

i. Find the coordinates of A.
ii. Find the equation of the line $B D$.
iii. Find the coordinates of C.
.

Question 13 (15 marks)
(a) Let α and β be the roots of $2 x^{2}-4 x-2=0$.
i. State the value of $\alpha \beta$
ii. Find $\frac{5}{\alpha}+\frac{5}{\beta}$
(b) In the diagram below, triangle $A B C$ has dimensions $A B=7 \mathrm{~cm}$ and $B C=15 \mathrm{~cm}$. The point D lies on $A C$ such that $A D=5 \mathrm{~cm}$ and $B D=3 \mathrm{~cm}$.

i. Use the cosine rule to show that $\angle A D B=120^{\circ}$.
ii. Show that $\angle B C D=10^{\circ}$ (rounded to the nearest degree).
iii. Find the length of $D C$, correct to the nearest cm .
(c) In the diagram below, $A B C D$ is a square and $A B T$ us an equilateral triangle. The line $T P$ bisects $\angle A T B$, and $\angle P A B=15^{\circ}$.

i. Copy the diagram into your writing booklet and explain why $\angle P A T=75^{\circ}$.
ii. Prove that $\triangle T A P \equiv \triangle D A P$.
iii. Prove that $\triangle D A P$ is isosceles.

Question 14 (15 marks)
(a) Consider the function $f(x)=x^{4}-4 x^{3}$.
i. Show that $f^{\prime}(x)=4 x^{2}(x-3)$
ii. Find the coordinates of the stationary points of the curve $f(x)$, and determine their nature.
iii. Sketch the graph of the curve $f(x)$, showing the stationary points.
iv. Find the values of x for which the graph of $f(x)$ is concave down.
(b) Jenny borrows $\$ 500000$ to buy a house. An interest rate of 9% p.a. compounded monthly is charged on the outstanding balance. The loan is to be repaid in equal monthly instalments of $\$ M$ over a 25 year period (300 months). Let A_{n} be the amount owing after n months.
i. Show the amount owing after 3 months is:

$$
A_{3}=500000 \times 1.0075^{3}-M\left(1+1.0075+1.0075^{2}\right)
$$

ii. Find the required monthly repayment.
iii. How much interest does Jenny pay over the 25 years?
(c) A bag contains six discs. Two of the discs have the number 0 on them and the other four discs have the number 1 on them. Three discs are drawn at random without replacement.
i. Find the probability that all of the three discs drawn have the number 1 on them.
ii. Find the probability that the product of the numbers on the three discs drawn is 0 .

Question 15 (15 marks)
(a) Suppose $y=\sqrt{3^{x}+x}$:
i. Complete the table below, giving the values of y to 3 decimal places.

x	0	0.25	0.5	0.75	1
y	1	1.251			2

ii. Use the trapezoidal rule with all the values of y from the table above to find an approximation for the value of

$$
\int_{0}^{1} \sqrt{3^{x}+x} d x
$$

(b) The mass (kg) of a decaying substance at time t years is given by $M=M_{0} e^{-k t}$, where M_{0} is its initial mass and k is a positive constant.
i. Show that M satisfies the differential equation $\frac{d M}{d t}=-k M$.
ii. Show that the half-life of the substance is given by $\frac{\ln 2}{k}$ years.
iii. A second substance is also decaying simultaneously with the first substance but its rate of decay is twice as fast. Find the mass of the second radioactive substance N in terms of M_{0} and k, given that its initial mass is half of the first substance.
(c) The velocity of a particle moving along the x axis at time t is given by

$$
v=t e^{2 t}
$$

i. Find the acceleration of the particle.
ii. Given that when $t=0$ the particle is at $x=0$, find x in terms of t.

Question 16 (15 marks)
(a) i. Given $2 \log _{3} x-\log _{3}(x-2)=2$ show that x satisfies $x^{2}-9 x+18=0$.

$$
2 \log _{3} x-\log _{3}(x-2)=2
$$

(b) The diagram below shows a closed box used by a shop for packing pieces of cake. The box is a right prism of height $h \mathrm{~cm}$. The cross section is a sector of a circle. The sector has radius $r \mathrm{~cm}$ and angle 1 radian. The volume of the box is $300 \mathrm{~cm}^{3}$.

i. Show that the surface area of the box, $S \mathrm{~cm}^{2}$, is given by:

$$
S=r^{2}+\frac{1800}{r}
$$

ii. Find the value of r that minimises the the value of S. Give your answer correct to one decimal place.
(c) The diagram below shows the graph of $y=x^{2}+1$ and a point T on the unit circle $x^{2}+y^{2}=1$ at angle θ from the positive x-axis, where $0 \leq \theta \leq 2 \pi$.

The tangent line L to the circle at T is perpendicular to $O T$.

i. Show that the equation of the tangent line L is given by

$$
x \cos \theta+y \sin \theta=1
$$

ii. Show that if L intersects $y=x^{2}+1$ twice then $\sin \theta$ satisfies the following inequalities

$$
-\frac{1}{5}<\sin \theta<0 \text { or } 0<\sin \theta<1
$$

iii. Find the values of θ to the nearest minute such that L intersects $y=x^{2}+1$ twice.

End of exam

Yeur 12 HSC TRIAL 2014
Multiple Choice Solutions:
1.A 2.C 3.B 4.8 5.A
6. D 7.A 8.B $9 . B \quad 10 . D$

Q1)

$$
\begin{equation*}
|-1|-|-1|=1-1=0 \tag{A}
\end{equation*}
$$

G2

$$
\begin{equation*}
=0.0108 \tag{c}
\end{equation*}
$$

Q3

$$
\begin{align*}
& 3 x-1=\frac{x+3}{2} \\
& 6 x-2=x+3 \\
& 6 x-x=2+3 \\
& 5 x=5 \\
& x=1 \quad \therefore
\end{align*}
$$

04

$$
\begin{array}{cc}
3 x^{2}+x-2 \\
3 x & -2 \\
x & 1
\end{array}
$$

$$
(3 n-2)(n+1)
$$

as/

$$
\begin{aligned}
D & =\sqrt{(6-3)^{2}+(1+3)^{2}} \\
& =\sqrt{9+16}=\sqrt{25}=5
\end{aligned}
$$

\therefore A
$a b$

$$
\begin{align*}
& \frac{1}{\sqrt{3}-\sqrt{2}} \times \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}} \\
= & \frac{\sqrt{3}+\sqrt{2}}{3-2}=\sqrt{3}+\sqrt{2} \tag{D}
\end{align*}
$$

67

$$
\begin{align*}
& 6-2 x \geqslant 0 \\
& 6 \geqslant 2 x \\
& 2 x \leqslant 6 \\
& x \leqslant 3
\end{align*}
$$

Q8/

$$
\begin{align*}
& \int_{0}^{4} y d x=0 \\
& 0<\int_{0}^{1} y d x=\int_{0}^{7} y d x \\
& \int_{0}^{2} y d x=2 \int_{0}^{1} y d x
\end{align*}
$$

09
x replaced with $x+1$ mores the graph I unit to the left.
\therefore (B)

QuO
The value and the nature of turning points sloes not change under translations of the graph. So replacing x with $x+2013$ in $f(x)$ me get:

$$
\begin{aligned}
& f(x)=(x+1) x(x-1) \\
& f(x)=x(x+1)(x-1) \\
& f(x)=x\left(x^{2}-1\right) \\
& f(x)=x^{3}-x \\
& f^{\prime}(x)=3 x^{2}-1
\end{aligned}
$$

$f^{\prime}(x)=0$ when $3 x^{2}-1=0$

$$
\begin{aligned}
& x^{2}=\frac{1}{3} \quad x= \pm \frac{1}{\sqrt{3}} \\
& f^{\prime \prime}(x)=6 x \quad \text { s. } f^{\prime \prime}\left(\frac{1}{\sqrt{3}}\right)=6 \times \frac{1}{\sqrt{3}}>0
\end{aligned}
$$

So $x=\frac{1}{\sqrt{3}}$ gives the minimum

$$
\begin{aligned}
f\left(\frac{1}{\sqrt{3}}\right)=\frac{1}{\sqrt{3}}\left(\frac{1}{3}-1\right) & =\frac{1}{\sqrt{3}} \times-\frac{2}{3} \\
& =\frac{-2}{3 \sqrt{3}}=\frac{-2 \sqrt{3}}{9}
\end{aligned}
$$

\therefore (D)

Ql
(a) $3.86(2 d p)$.
(b) $\frac{3 \pi}{5}=\frac{3 \pi}{5} \times \frac{180}{\pi}=108^{\circ}$
(c) $\sin \frac{2 \pi}{3}=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$

$$
\begin{aligned}
& \text { (d) } \frac{x}{x^{2}-4}+\frac{2}{x-2} \\
& =\frac{x}{x^{2}-4}+\frac{2(x+2)}{x^{2}-4} \\
& =\frac{x+2 x+4}{x^{2}-4}=\frac{3 x+4}{x^{2}-4}
\end{aligned}
$$

(e)

$$
\begin{aligned}
& |x-3| \geqslant 3 \\
& x-3 \geqslant 3 \quad \& \quad 3-x \geqslant 3 \\
& x \geqslant 6 \quad \& \quad 3-3 \geqslant x \\
& \quad x \leqslant 0
\end{aligned}
$$

(f)
(i) $y=x^{2} \ln 3 x$

$$
\begin{aligned}
& n=x^{2} \quad v=\ln 3 x \\
& n^{\prime}=2 x \quad v^{\prime}=\frac{1}{x} \\
& y^{\prime}=2 x \ln 3 x+x_{0}
\end{aligned}
$$

Qll
(f)
(ii)

$$
\begin{aligned}
& y=\frac{\sin 4 x}{x^{3}} \\
& n=\sin 4 x \quad v=x^{3} \\
& n^{\prime}=4 \cos 4 x \quad v^{\prime}=3 x^{2} \\
& y^{\prime}=\frac{4 x^{3} \cos 4 x-3 x^{2} \sin 4 x}{x^{6}} \\
& y^{\prime}=\frac{4 x \cos 4 x-3 \sin 4 x}{x^{4}}
\end{aligned}
$$

(g)

$$
\begin{aligned}
& \int 1+\sec ^{2} x d x \\
= & x+\tan x+c
\end{aligned}
$$

(h)

$$
\begin{aligned}
& a=\frac{3}{4} \quad r=\frac{1}{4} \\
& S_{\infty}=\frac{a}{1-r}=\frac{\frac{3}{4}}{1-\frac{1}{4}}=\frac{\frac{3}{4}}{-\frac{3}{4}}=1
\end{aligned}
$$

Q12
(a)

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-3 x+5 \\
& f(x)=x^{3}-\frac{3}{2} x^{2}+5 x+C \\
& f(2)=10
\end{aligned}
$$

$$
\text { So } 10=2^{3}-\frac{3}{2} \times 2^{2}+5 \times 2+c
$$

$$
10=8-6+10+c
$$

$$
c=6-8=-2
$$

$$
\therefore f(x)=x^{3}-\frac{3}{2} x^{2}+5 x-2
$$

$$
\begin{aligned}
\therefore f(1) & =1-\frac{3}{2}+5-2 \\
& f(1)
\end{aligned}=\frac{5}{2} .
$$

(b)

$$
\text { i. } \begin{aligned}
a & =13 \\
T_{b} & =a+(6-1) d \\
-7 & =13+5 d \\
5 d & =-20, \text { so } d=-4 \\
\text { ii. } T_{3} & =13+2 x-4 \\
& =13-8=5
\end{aligned}
$$

(c)
(i) $\frac{1}{8}(y+2)=(x-1)^{2}$
so $v=(1,-2)$

(ii) $4 a=\frac{1}{8}$ so $a=\frac{1}{32}$

$$
\therefore F=\left(1,-2+\frac{1}{32}\right)=\left(1,-\frac{63}{32}\right)
$$

(iii) $D: y=-2 \frac{1}{32}$
(d)
(i)

$$
y=\frac{x}{2}+2
$$

So $A=(0,2)$
(ii) m of $B D=-2$ as $-2 \times \frac{1}{2}=-1$

So $m=-2 \&$ pont $=(10,-3)$

$$
\begin{aligned}
& y+3=-2(x-10) \\
& y=-2 x+20-3 \\
& y=-2 x+17
\end{aligned}
$$

412
(d)
(iii) Finding intersection of line $A C$ \& BD:

$$
\begin{aligned}
& 2 y=x+4 \\
& y=-2 x+17
\end{aligned}
$$

$$
\text { So } 2(-2 x+10)=x+4
$$

$$
-4 x+34=x+4
$$

$$
30=5 x
$$

$$
x=6
$$

$$
\therefore y=-2 \times 6+17=5
$$

$$
\therefore \quad B=(6,5)
$$

Since $B B$ the mid pout if $A C$

$$
\begin{gathered}
6=\frac{x+0}{2} \quad+5=\frac{2+y}{2} \\
\therefore \quad x=12 \quad 2+y=10 \\
y=8 \\
\therefore \quad C=(12,8)
\end{gathered}
$$

$a / 3$
(a)
(i) $\alpha \beta=\frac{c}{a}=\frac{-2}{2}=-1$.
(ii) $\frac{5}{\alpha}+\frac{5}{\beta}=\frac{5 \beta+5 \alpha}{\alpha \beta}$

$$
\begin{aligned}
& =\frac{5(\alpha+\beta)}{\gamma \beta} \\
& =\frac{5 \times \frac{-(-4)}{2}}{-1} \\
& =\frac{10}{-1}=-10 .
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { (i) } \cos \angle A D B=\frac{5^{2}+3^{2}-7^{2}}{2 \times 5 \times 3} \\
& \cos \angle A D B=-\frac{1}{2} \\
& \therefore \angle A D B=180-60=120^{\circ}
\end{aligned}
$$

(ii) $\angle B D C=60$ (2 in a straight line)

Using some rale in $\triangle B D C$:

$$
\begin{aligned}
& \frac{\sin \angle B C D}{3}=\frac{\sin 6_{0}}{15} \\
& \sin \angle D C D=\frac{\sqrt{3}}{2} \times \frac{1}{5}=\frac{\sqrt{3}}{10} \\
& \angle B C D=\sin ^{-1}\left(\frac{\sqrt{3}}{10}\right)=10^{\circ} \text { (nearest deg. }
\end{aligned}
$$

(iii) $\frac{D C}{\sin \angle D B C}=\frac{15}{\sin 60}$

$$
\angle D B C=180-60-\angle B C D \quad(\angle \mathrm{san} \text {, }
$$ of $a \Delta$;

$$
D C=\frac{15 \sin \angle D B C}{\sin 60}=16\left(\mathrm{~cm} \begin{array}{c}
\text { (nearest } \\
\mathrm{cm})
\end{array}\right.
$$

Q/3
(c)
(i)

$\angle T A D=60^{\circ}$ (\angle in an eypulatemes s)

$$
\therefore \angle P A T=60+15=75^{\circ}
$$

(ii)
$A D=A B$ (Sides of a square)
$A B=A T$ (Srdes of an equilatoral Δ)

$$
\begin{aligned}
& \therefore A D=A T \\
& \angle D A P=90-15^{\circ}=75^{\circ} \quad \text { (} \angle \text { in a a } \\
& \text { sqare) }
\end{aligned}
$$

AP is commin.

$$
\therefore \triangle T A P \equiv \triangle D A P(S A S)
$$

(iii) $\angle A T P=30^{\circ}$ (TP bisuts $\angle A T B$)

$$
\begin{array}{r}
\therefore \angle T P_{A}=180-30-75^{\circ}=75^{\circ} \\
(\angle \text { sam of } \Delta)
\end{array}
$$

$\therefore A T=T P$ (Equal sides opposite equal \angle 's in poscales \triangle ATP)

But since $\triangle A P D \equiv \triangle A T P$, $\triangle A P D$ must also be posates.

414
(a)
(i) $f(x)=x^{4}-4 x^{3}=x^{3}(x-4)$

$$
\begin{aligned}
f^{\prime}(x) & =4 x^{3}-12 x^{2} \\
& =4 x^{2}(x-3)
\end{aligned}
$$

(ii) $f^{\prime}(x)=0$ when $4 x^{2}(x-3)=0$

So $x=0$ or $x=3$

$$
f(0)=0 \quad \& \quad f(3)=-27
$$

So stat pts are $(0,0) \&(3,-27)$

$$
\begin{aligned}
& f^{\prime \prime}(x)=12 x^{2}-24 x \\
& f^{\prime \prime}(x)=12 x(x-2)
\end{aligned}
$$

x	-1	0	1
$f^{\prime}(x)$	-16	0	-8

$\therefore(0,0)$ is a horizontal point of inflexion.

$$
f^{\prime \prime}(3)=36>0 \quad \therefore(3,-27)
$$

a local minimum.

(iv) Concave down when $f^{\prime \prime}(x)<0$
(i) $R=\frac{9}{12} \div 100=0.0075$.

$$
\begin{aligned}
& A_{1}=500000(1.0075)-M \\
& A_{2}=A_{1}(1.0075)-M \\
& A_{2}=500000(1.0075)^{2}-M(1.0075)
\end{aligned}
$$

$$
\begin{aligned}
A_{3}= & A_{2}(1.0075)-M \\
= & 500000(1.0075)^{3}-m(1.0075)^{2} \\
& -M(1.0075)-M \\
= & 500000(1.0075)^{3}-M(1+1.0075+1.007
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& A_{n}=500000(1.0075)^{n}-m(1+1.0075+1.0075 \\
& \left.+\ldots+1.0075^{n-1}\right) \\
& A_{300}=500000(1.0075)^{300}-m\left(\frac{1.0075^{300}-1}{1.0075-1}\right) \\
& A_{300}=0 \text { when: }
\end{aligned}
$$

$$
m=500000(1.0075)^{300} \times \frac{0.0075}{1.0075^{300}-1}
$$

$$
m=\$ 4195.98
$$

(iii) $I=4195.98 \times 300-500000$

$$
=\$ 758794.55
$$

So $12 x(x-2)<0$

414
(c)
(i)

$$
p=\frac{4}{6} \times \frac{3}{5} \times \frac{2}{4}=\frac{1}{5}
$$

(ii)

$$
p(\text { athast one } 0)=1-p(\text { all }, i s)
$$

$$
=1-\frac{1}{5}=\frac{4}{5}
$$

415
(a)
(i)

x	0	0.25	0.5	0.75	1
y	1	1.251	1.494	1.741	2

(ii)

$$
\begin{aligned}
& \because h=0.25 \\
& A \approx \frac{0.25}{2}\left[\begin{array}{l}
1+2 \times 1.251+2 \times 1.494 \\
+2 \times 1.741+2]
\end{array}\right.
\end{aligned}
$$

$A_{2} \quad 1.4965$
(b)
(i)

$$
\begin{aligned}
m & =m_{0} e^{-k t} \\
\frac{d M}{d t} & =-k m_{0} e^{-k t} \\
& =-k m
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \frac{1}{2} m_{0}=m_{0} e^{-k t} \\
& \frac{1}{2}=e^{-k t} \\
& -k t=\ln \frac{1}{2} \\
& -k t=\ln 1-\ln 2 \\
& k t=\ln 2 \quad \therefore \quad t=\frac{\ln 2}{k}
\end{aligned}
$$

(isi)

$$
\frac{d N}{d t}=-2 k m_{0} e^{-k t}
$$

$$
\begin{aligned}
\therefore N & =-2 k m_{0} \int e^{-k t} d t \\
N & =2 m_{0} e^{-k t}+c
\end{aligned}
$$

When $t=0 \quad N=\frac{1}{2} M_{0}$
s. $\frac{1}{2} m_{0}=2 m_{0}+c$

$$
\begin{aligned}
\therefore C & =-\frac{3}{2} m_{0} \\
\therefore & N=2 m_{0} e^{-k t}-\frac{3}{2} m_{0}
\end{aligned}
$$

(c)
(i) $v=t e^{2 t}$

$$
\begin{aligned}
& n=t \quad v=e^{2 t} \\
& n^{\prime}=1 \quad v^{\prime}=2 e^{2 t} \\
& a=e^{2 t}+2 t e^{2 t}
\end{aligned}
$$

(iii) $\int a d t=v$

So $\int e^{2 t}+2 t e^{2 t} d t=t e^{2 t}$
So $\int e^{2 t} d t+2 \int t e^{2 t} d t=t e^{2 t}$
So $\frac{1}{2} e^{2 t}+2 \int v d t=t e^{2 t}$

Q15
(c)

$$
\begin{aligned}
& \text { (ii) } 2 \int v d t=t e^{2 t}-\frac{1}{2} e^{2 t} \\
& 2 x=t e^{2 t}-\frac{1}{2} e^{2 t} \\
& x=\frac{1}{2} t e^{2 t}-\frac{1}{4} e^{2 t}+c \\
& t=0 \quad x=0 \\
& 0=0-\frac{1}{4} t c \quad \therefore c=\frac{1}{4} . \\
& \therefore x=\frac{1}{2} t e^{2 t}-\frac{1}{4} e^{2 t}+\frac{1}{4} .
\end{aligned}
$$

alb
(a) $2 \log _{3} x-\log _{3}(x-2)=2$.
(i) $\log _{3}\left(x^{2}\right)-\log _{3}(x-2)=2$

$$
\begin{aligned}
& \log _{3}\left(\frac{x^{2}}{x-2}\right)=2 \\
& \frac{x^{2}}{x-2}=3^{2} \\
& x^{2}=9(x-2) \\
& x^{2}=9 x-18 \\
& x^{2}-9 x+18=0 .
\end{aligned}
$$

(ii) $x^{2}-9 x+18=0$

$$
\begin{aligned}
& x \quad-3 \\
& x \quad-6 \\
& (x-3)(x-6)=0 \\
& x=3, x=6 .
\end{aligned}
$$

(3)
(i)

$$
\begin{aligned}
\text { Aren of cross sution } & =\frac{1}{2} \times 1 \times r^{2} \\
& =\frac{1}{2} r^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore r=\frac{1}{2} h r^{2} \\
& \therefore 300=\frac{1}{2} h r^{2} \\
& \therefore h=\frac{600}{r^{2}}
\end{aligned}
$$

$$
S=2\left(\frac{1}{2} r^{2}\right)+2(h r)+(r h)
$$

$$
S=r^{2}+2 h r+r h
$$

$$
5=r^{2}+3 h r
$$

$$
S=r^{2}+\frac{1800}{r}
$$

$$
\text { (ii) } \begin{aligned}
s & =r^{2}+1800 r^{-1} \\
s^{\prime} & =2 r-1800 r^{-2} \\
s^{\prime} & =2 r-\frac{1800}{r^{2}}
\end{aligned}
$$

$$
s^{\prime}=0 \text { when } 2 r=\frac{1800}{r^{2}}
$$

$$
2 r^{3}=1800
$$

$$
r^{3}=900
$$

$$
r=\sqrt[3]{900}
$$

$$
\begin{aligned}
& s^{\prime \prime}=2+3600 r^{-3}=2+\frac{3600}{r^{3}} \\
& s^{\prime \prime}=2+\frac{3600}{900} s 0 \therefore r=\sqrt[3]{900} \\
& r=9.7 \mathrm{~cm}(\mathrm{~d} p) \quad \begin{array}{c}
\text { gies the } \\
\text { minimam }
\end{array}
\end{aligned}
$$

x / b
(c)
(i) $T=(\cos \theta, \sin \theta)$

$$
\begin{aligned}
& m_{O T}=\tan \theta=\frac{\sin \theta}{\cos \theta} \\
\therefore & m \text { of } L=-\frac{\cos \theta}{\sin \theta}
\end{aligned}
$$

\therefore Equation of 4 is given by

$$
\begin{aligned}
& y-\sin \theta=-\frac{\cos \theta}{\sin \theta}(x-\cos \theta) \\
& y \sin \theta-\sin ^{2} \theta=-\cos \theta(x-\cos \theta) \\
& y \sin \theta-\sin ^{2} \theta=-x \cos \theta+\cos ^{2} \theta \\
& y \sin \theta+x \cos \theta=\sin ^{2} \theta+\cos ^{2} \theta \\
& x \cos \theta+y \sin \theta=1
\end{aligned}
$$

when $0=0, \quad x+y \sin 0=1$

$$
x=1
$$

When $\theta=180, \quad x \cos 180+y \sin 180=1$

$$
\begin{aligned}
& -x+0=1 \\
& x=-1
\end{aligned}
$$

$\therefore \quad L$ is given by $x \cos \theta+y \sin \theta=1$.

$$
\text { So }-\frac{1}{5}<\sin \theta<1 \text { hat } \sin \theta \neq 0
$$

(c)
(iii) Solving $\sin \theta=\frac{-1}{5}$

$$
\begin{aligned}
& \theta=180+\sin ^{-1}\left(\frac{1}{5}\right) \text { and } \\
& \theta=360-\sin ^{-1}\left(\frac{1}{5}\right) \\
& \theta=191^{\circ} 32^{\prime} \text { and } 348^{\circ} 27^{\prime} \\
& \theta=191^{\circ} 32^{\prime} \text { and }-11^{\circ} 32^{\prime} \\
& \therefore-11^{\circ} 32^{\prime}<0<191^{\circ} 32^{\prime} \\
& \text { and } \theta \neq 00^{\circ} \text { and } \theta \neq 180^{\circ}
\end{aligned}
$$

