

Girraween High School

2015 Year 12 Trial Higher School Certificate

Mathematics (2 unit)

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I

10 marks

- Attempt Questions $1-10$
- Allow about 15 minutes for this section

Section II

90 marks

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section
- For Section II: Questions 11-16 MUST be returned in clearly marked separate sections.
- On each page of your answers, clearly write:
$>$ the QUESTION being answered
$>$ YOUR NAME
$>$ your Mathematics TEACHER'S NAME.
- Start each new question on a NEW PAGE.
- You may ask for extra pieces of paper if you need them.

SECTION I

10 Marks
Attempt all of Questions 1-10
Allow about 15 minutes for this section.
Use the multiple-choice answer sheet for Questions 1-10.

1. What is the value of $\frac{2 \pi^{2}}{19}$, correct to 3 significant figures?
(A) 1.03
(B) 1.04
(C) 1.038
(D) 1.039
2. Which of the following is equal to $\frac{1}{3 \sqrt{5}+\sqrt{2}}$?
(A) $\frac{3 \sqrt{5}-\sqrt{2}}{13}$
(B) $\frac{3 \sqrt{5}+\sqrt{2}}{13}$
(C) $\frac{3 \sqrt{5}-\sqrt{2}}{43}$
(D) $\frac{3 \sqrt{5}+\sqrt{2}}{43}$
3. Which of the following is equivalent to $\frac{\log _{a} 8}{\log _{a} 4}$?
(A) $1 \frac{1}{2}$
(B) 2
(C) $\log _{a} 2$
(D) $\log _{a} 4$
4. The quadratic equation $2 x^{2}-4 x-3=0$ has roots α and β.

What is the value of $(\alpha+\beta)-(\alpha \beta)$?
(A) $-\frac{1}{2}$
(B) $-3 \frac{1}{2}$
(C) $\frac{1}{2}$
(D) $3 \frac{1}{2}$
5.

$A B C D E$ is a regular pentagon and $D X \perp D E$.
The size of $\angle C X D$ is :
(A) 36°
(B) 54°
(C) 64°
(D) 72°
6. The diagram shows the graph of $y=f(x)$.

Which of the following statements is true?

(A) $f^{\prime}(a)<0$ and $f^{\prime \prime}(a)<0$
(B) $f^{\prime}(a)<0$ and $f^{\prime \prime}(a)>0$
(C) $f^{\prime}(a)>0$ and $f^{\prime \prime}(a)<0$
(D) $f^{\prime}(a)>0$ and $f^{\prime \prime}(a)>0$
7. A parabola has focus $(0,-4)$ and directrix $y=2$.

What is the equation of the parabola?
(A) $x^{2}=-12(y+1)$
(B) $x^{2}=-24(y+4)$
(C) $x^{2}=12(y+1)$
(D) $x^{2}=24(y+4)$
8. What is the derivative of $\frac{x}{\sin x}$?
(A) $\frac{-x \cos x-\sin x}{\sin ^{2} x}$
(B) $\frac{x \cos x-\sin x}{\sin ^{2} x}$
(C) $\frac{\sin x+x \cos x}{\sin ^{2} x}$
(D) $\frac{\sin x-x \cos x}{\sin ^{2} x}$
9. The diagram shows the graph of $y=f(x)$.

NOT TO SCALE

Use the graph to determine the value of a which satisfies the condition $\int_{-7}^{a} f(x) d x=0$.
(A) 9
(B) 12
(C) 13
(D) 15
10.

It is known that $y=f(x)$ passes through the origin.
By examining the graph of $y=f^{\prime}(x)$ shown above, state which of the following statements is true?
(A) $f(x)$ is an even function with a point of inflexion at $f(0)$.
(B) $f(x)$ is an even function with a local maximum at $f(0)$.
(C) $f(x)$ is an odd function with a point of inflexion at $f(0)$.
(D) $f(x)$ is an odd function with a local maximum at $f(0)$.

SECTION II

90 Marks
Attempt all of Questions 11-16
Allow about 2 hours and 45 minutes for this section.
Answer each question on the paper provided.
Start each new question on a NEW PAGE.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks)

Start a NEW PAGE.
(a) Factorise $2 x^{2}+11 x-21$.
(b) Solve $|3 x-5|<4$.
(c) Find the equation of the tangent to the curve $y=x^{3}$ at the point where $x=2$.
(d) Differentiate $\left(e^{3 x}-5\right)^{4}$.
(e) Evaluate $\int_{1}^{2} \frac{1}{(3 x-1)^{2}} d x$
(f) (i) Find $\frac{d}{d x}\left(\sin x^{3}\right)$.
(ii) Hence find $\int x^{2} \cos x^{3} d x$.

The examination continues on the next page.

Question 12 (15 Marks)

Start a NEW PAGE.
(a) What is the radius of a circle in which an arc of length 15 cm subtends an angle of 60° at the centre?

Give your answer correct to the nearest mm .
(b) Solve $2 \log _{c} x=\log _{c}(3 x+10)$.
(c) Differentiate $y=\frac{\sin x}{1+\cos x}$
and hence show that $\frac{d y}{d x}=\frac{1}{1+\cos x}$.
(d) Find $\int \frac{10 x}{x^{2}-8} d x$.
(e) Evaluate $\int_{0}^{\frac{\pi}{4}} \cos (2 x) d x$
(f) Mayomi and Christina each throw a die.
(i) Find the probability that they throw the same number.
(ii) Find the probability that the number thrown by Christina is greater than the number thrown by Mayomi.

The examination continues on the next page.

Question 13 (15 Marks)

Start a NEW PAGE.
(a) The first and last terms of an arithmetic series are 10 and 60 respectively, and the sum of the series is 3535 .

Find:
(i) the number of terms in the series.
(ii) the common difference.
(b) "Although the number of unemployed is increasing, the Government's policies to reduce unemployment seem to be taking effect."

Given E is the number of unemployed, what does the above statement imply about $\frac{d E}{d t}$ and $\frac{d^{2} E}{d t^{2}}$?
(c) What is the volume of the solid of revolution formed by rotating the curve $y=\sec x$ about the x-axis for $0 \leq x \leq \frac{\pi}{3}$?
(d)

In the diagram $A D$ is parallel to $B C$ and $\angle D B C=\angle A C B=x^{\circ}$.
(i) Show that $A E=D E$.
(ii) Prove that the triangles $\triangle A B C$ and $\triangle D C B$ are congruent.
(iii) Deduce that $\angle A B D=\angle D C A$.

The examination continues on the next page.

Question 14 (15 Marks)
Start a NEW PAGE.
(a) Consider the geometric series $1+(\sqrt{5}-2)+(\sqrt{5}-2)^{2}+\ldots$
(i) Explain why the geometric series has a limiting sum. 1
(ii) Find the exact value of the limiting sum.

Write your answer with a rational denominator.
(b) Find the values of k for which the quadratic equation $x^{2}+(k-2) x+4=0$ has no real roots.
(c) (i) Prove that the line $3 x-4 y=15$ is a tangent to the circle $x^{2}+y^{2}=9$.

(ii) Calculate the exact area in the fourth quadrant between the tangent $3 x-4 y=15$ and the circle $x^{2}+y^{2}=9$ (as shown by the shaded area in the diagram above).

Question 14 continues on the next page.

Question 14 (continued)

(d) The graph of $y=x^{3}+x^{2}-x+2$ is sketched below.

The points A and B are the turning points.

(i) Find the coordinates of A and B.
(ii) For what values of x is the curve concave up?

Give reasons for your answer.
(iii) For what values of k has the equation $x^{3}+x^{2}-x+2=k$ three real solutions?

End of Question 14.

The examination continues on the next page.

Question 15 (15 Marks)
Start a NEW PAGE.
(a) A standard pack of 52 cards consists of four suits (Diamonds, Hearts, Clubs and Spades) with 13 cards in each suit.
(i) One card is drawn from the pack and kept on the table. A second card is drawn and placed beside it on the table.

What is the probability that the second card is from a different suit to the first?
(ii) The two cards are replaced and the pack shuffled. Four cards are chosen from the pack and placed side by side on the table.

What is the probability that these four cards are all from different suits?
(b) A particle is initially at rest at the origin.

Its acceleration as a function of time t is given by $\ddot{x}=4 \sin 2 t$.
(i) Show that the velocity of the particle is given by $\dot{x}=2-2 \cos 2 t$.
(ii) Sketch the graph of the velocity for $0 \leq t \leq 2 \pi$ AND determine the time at which the particle first comes to rest after $t=0$.
(iii) Find the distance travelled by the particle between $t=0$ and the time at which the particle first comes to rest after $t=0$.
(c)

In the diagram, the shaded region is bounded by $y=\log _{e}(x-2)$, the x-axis and the line $x=7$.

Find the exact value of the area of the shaded region.

The examination continues on the next page.

Start a NEW PAGE.
(a) A drug is used to control a medical condition. It is known that the quantity Q of drug remaining in the body after t hours satisfies an equation of the form

$$
Q=Q_{0} e^{-k t}
$$

where Q_{0} and k are constants.
The initial dose is 6 milligrams and after 15 hours the amount remaining in the body is half the initial dose.
(i) Find the values of Q_{0} and k, correct to 3 decimal places where necessary.
(ii) When will one-eighth of the initial dose remain?
(b)

NOT TO SCALE

$$
V=\frac{10 \pi r^{2}(6-r)}{3}
$$

(ii) Hence find the values of r and h for the cylinder which has maximum volume.

Question 16 continues on the next page.

Question 16 (continued)

(c) A farmer borrows $\$ 80000$ to purchase new machinery. The interest is calculated monthly at the rate of 2% per month, and is compounded each month.

The farmer intends to repay the loan with interest in two equal annual instalments of $\$ M$ at the end of the first and second years.
(i) How much does the farmer owe at the end of the first month?
(ii) Write an expression involving M for the total amount owed by the farmer after

12 months, just after the first instalment of $\$ M$ has been paid.
(iii) Find an expression for the amount owed at the end of the second year and deduce that

$$
M=\frac{80000 \times(1.02)^{24}}{(1.02)^{12}+1}
$$

(iv) What is the total interest over the two year period?

End of examination.

2015 Trial HSC Mathematics (zunit) SOLUTIONS Page 1
MULTIPLE-CHOICE

1) B 2) C
2) A 4) D
3) B
4) B
5) A
6) D
7) D 10) C
8) $\begin{aligned} \frac{2 \pi^{2}}{19} & =1.038905726 \\ & =1.04 \text { (3sigfigs) }\end{aligned}$

$$
\text { 2) } \begin{align*}
\frac{1}{3 \sqrt{5}+\sqrt{2}} \times \frac{3 \sqrt{5}-\sqrt{2}}{3 \sqrt{5}-12} & =\frac{3 \sqrt{5}-\sqrt{2}}{945-2} \tag{B}\\
& =\frac{3 \sqrt{5}-\sqrt{2}}{43} \tag{c}
\end{align*}
$$

$$
\text { 3) } \begin{align*}
\frac{\log _{a} 8}{\log _{a} 4} & =\frac{\log _{a} 2^{3}}{\log _{a^{2}} 2^{2}} \\
& =\frac{3 \log _{a} 2}{2 \log _{a}} \\
& =\frac{3}{2} \operatorname{or} 1 \frac{1}{2}
\end{align*}
$$

$$
\text { 4) } \begin{aligned}
2 x^{2}-4 x-3 & =0 \alpha+\beta=\frac{-b}{a} \quad \alpha \beta=\frac{c}{a} \\
& =\frac{-(-4)}{2} \quad=\frac{-3}{2} \\
& =2-(\alpha+\beta)-(\alpha \beta) \\
& =3 \frac{2}{2} \\
& =3)
\end{aligned}
$$

5) Angle Sum. pentagon $=(n-2) \times 180^{\circ}$

$$
\text { C5 sided }=3 \times 180^{\circ}
$$

$$
\begin{aligned}
& 3 \times 180 \\
& =540^{\circ} 0
\end{aligned}
$$

\therefore each angle regular $=\frac{540^{\circ}}{5}=108^{\circ}$

6)

At $x \equiv a$:

* gradient negative

$$
\therefore f^{\prime}(a)<0^{-}
$$

*-concave UP $\therefore f^{\prime \prime}(a)>0$
$\therefore f^{\prime}(a)<0$ and $f^{\prime \prime}(a)>0$

$$
\text { 8) } \begin{aligned}
y & =\frac{x}{\sin x} \frac{u=x}{d u} \quad v=1 \quad \frac{d v}{d x}=\cos x \\
\frac{d y}{d x} & =\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \\
& =\frac{(\sin x) \cdot(1)-(x) \cdot \cos x}{\sin ^{2} x} \\
& =\frac{\sin x-x \cos x}{\sin ^{2} x}
\end{aligned}
$$

$$
\begin{aligned}
A_{2}=\frac{1}{2} b h=\frac{1}{2} \times b \times-5 & =30 \\
5 b & =60
\end{aligned}
$$

$$
\therefore a=12+3=15(D)^{b=12}
$$

10) Fam graph of $y=f^{\prime}(x)$:
$f^{-1}(x)>0$ for all x
So $f(x)$ ALWAHS increasing
\therefore No stationary paints/ No MaxiMin tumingas. at $x=0: f^{\prime}(x)$-has stationary point. \therefore At $x=0, f^{\prime \prime}(x)=0$ i.e. $f^{\prime \prime}(0)=0$ So $x=0$ may be point of inflexion. Need to check for change of concavity "around" $x=0$:

- to immediate left of $x=0 . f^{\prime \prime}(x)<0$ concern - to immediate right of $x=0: f^{\prime \prime}(x)>0$ concave \therefore at $x=0, f^{\prime \prime}(0)=0$ \& concavity changes $\rightarrow \overrightarrow{O D} \rightarrow$ point of f inflexion. $f(x)$ will about the origin \therefore ODD function, pt inflexion $x=0$

2015 Trial HSC Mathematics (2unit)

Question 11 (15 Marks)

$$
\text { (a) } \begin{aligned}
& 2 x^{2}+11 x-21^{-42}-42^{+114} \\
= & 2 x^{2}+14 x-3 x-21 \\
= & 2 x(x+7)-3(x+7) \\
= & (2 x-3)(x+7) \quad \text { (2m) }
\end{aligned}
$$

when $x=2: \frac{d y}{d x}=3 \times 4$
when $x=2: y=2^{3}$

$$
-y=8
$$

Require tangent $m=12,(2,8)$:

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-8 & =12(x-2) \\
y-8 & =12 x-24 \\
y & =12 x-16
\end{aligned}
$$

or $12 x-y-16=0$
2 m
(d) $y=\left(e^{3 x}-5\right)^{4}$

$$
\begin{aligned}
\frac{d y}{d x} & =4\left(e^{3 x}-5\right)^{3} \cdot\left(3 e^{3 x}\right) \\
& =12 e^{3 x}\left(e^{3 x}-5\right)^{4}(2 m
\end{aligned}
$$

(e) $\int_{1}^{2} \frac{1}{(3 x-1)^{2}} d x=\int_{1}^{2}(3 x-1)^{-2} d x$

$$
=\left[\frac{(3 x-1)^{-1}}{3 \times(-1)}\right]_{1}^{2}
$$

$$
=\left[\frac{-1}{3(3 x-1)}\right]_{1}^{2}
$$

$$
=\frac{-1}{15}-\left(\frac{-1}{6}\right)
$$

$$
=-\frac{1}{15}+\frac{1}{6}
$$

$$
=\frac{-1}{10}
$$

$$
\begin{aligned}
& \text { (b) } \\
& \text { b) }|3 x-5|<4 \\
& \pm(3 x-5)<4 \\
& +(3 x-5)<4 \text { or }-(3 x-5)<4 \\
& -3 x<9 \\
& x<3 \\
& \therefore \frac{1}{3}<x<3 \\
& 3 x-5>-4 \\
& 3 x>1 \\
& x>\frac{1}{3} \\
& \text { (c) } y=x^{3} \\
& \frac{d y}{d x}=3 x^{2}
\end{aligned}
$$

Question II continued:

$$
\begin{align*}
& \text { 11)(f)(i) } \quad \begin{aligned}
& y=\sin x^{3} \\
& \frac{d y}{d u}=\sin u \quad=x^{3} \\
&=\frac{d u}{d x}=3 x^{2} \\
& \frac{d y}{d x}= \frac{d y}{d u} \times \frac{d u}{d x} \\
&= \cos u \times 3 x^{2} \\
&=3 x^{2} \cos x^{3}
\end{aligned}
\end{align*}
$$

f) (ii) If $\frac{d}{d x}\left(\sin x^{3}\right)=3 x^{2} \cos x^{3}$
then $\int 3 x^{2} \cos ^{3} d x=\sin x^{3}+c_{1}$

$$
\therefore \quad \int x^{2} \cos x^{3} d x=\frac{1}{3} \sin x^{3}+c
$$

Question 12 (15 Marks)
(a)

$$
\begin{aligned}
& l=15 \quad \theta=60^{\circ} \\
& l=r \theta=\frac{\pi}{3} \\
& l=r \cdot \frac{\pi}{3} \\
& r=\frac{45}{\pi} \\
& r=14.32394488
\end{aligned}
$$

$\therefore r=14.3 \mathrm{~cm}$, or $r=143 \mathrm{~mm}$
Correct to nearest mm.) 2 m
(b)

$$
\begin{aligned}
2 \log _{e} x & =\log _{e}(3 x+10) \\
\log _{e} x^{2} & =\log _{e}(3 x+10) \\
\therefore-x^{2} & =3 x+10 \\
x^{2}-3 x-10 & =0
\end{aligned}
$$

$$
(x+2)(x-5)=0
$$

$$
x=-2 \text {, or } x=5
$$

$x \neq-2$ as for $y=\log _{e} x, x>0$.
\therefore only solution is $x=5$. $2 m$

2015 Trial Hs e Mathematics (2unit)

Question 12 continued:
12)(c)

$$
u=\sin x \quad v=1+\cos x
$$

$$
\frac{d u}{d x}=\cos x \quad \frac{d v}{d x}=-\sin x
$$

$$
\frac{-d y}{d x}=\frac{v-\frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

$$
=\frac{(1+\cos x) \cdot(\cos x)-(\sin x) \cdot(-\sin x)}{(1+\cos x)^{2}}
$$

$$
=\frac{\cos x+\cos ^{2} x+\sin ^{2} x}{(1+\cos x)^{2}}
$$

$$
=\frac{\cos x+1}{(1+\cos x)^{2}}
$$

since $\sin ^{2} x+\cos ^{2} x=1$

$$
\frac{d y}{d x}=\frac{1}{-1+\cos x}
$$

(2)(d) $\int \frac{10 x}{x^{2}-8} d x=5 \int \frac{2 x}{x^{2}-8} d x$

$$
=5 \log _{e}\left(x^{2}-8\right)+c
$$

since $\int \frac{f^{\prime}(x)}{f(x)} d x=\log _{e} f(x)+c$
(2) (e)

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{4}} \cos (2 x) d x \\
= & \frac{1}{2}[\sin (2 x)]_{0}^{\frac{\pi}{4}} \\
= & \frac{1}{2}\left[\sin \frac{\pi}{2}-\sin 0\right] \\
= & \frac{1}{2}(1-0) \\
= & \frac{1}{2}
\end{aligned}
$$

12) (f) (i) P (throw same number)

$$
\begin{aligned}
& =P(1,1) \operatorname{or} P(2,2) \operatorname{or} P(3,3) \operatorname{or} P(4,4) \\
& =6 \times \frac{1}{36} \\
& =\frac{6}{36} \\
& =\frac{1}{6}
\end{aligned}
$$

Question $12(f)$ continued:
12) (f) (ii) Let Mayomi be first number, then Christina throw second number. Possible outcomes:

$$
\begin{aligned}
& (1,1)(1,2)(1,3)(1,4)(1,5)(1,6) \\
& (2,1)(2,2)(2,3)-(2,4)-(2,5)(2,6) \\
& (3,1)(3,2)(3,3)(3,4)(3,5)(3,6) \\
& (4,1)(4,2)(4,3)(4,4)(4,5)(4,6) \\
& \begin{array}{l}
(5,1)(5,2)(5,3)(5,4)(5,5)(5,6) \\
(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)
\end{array}
\end{aligned}
$$

15 possible outcomes where christina throws number greater than Mayomi.
$\therefore P$ (Christina's number $>$ Mayomi's number)

$$
\begin{aligned}
& =\frac{15}{36} \\
& =\frac{5}{12}
\end{aligned}
$$

(am)
(2)f(ii) ALTERNATVE METHOD
from $f(i), P$ (throw samenumber) $=\frac{1}{6}$
$\therefore P($ do NoT throw same number $)=\frac{5}{6}$
of this, $\frac{1}{2} \times \frac{5}{6}=P$ (christina $>$ Moyomi) $=P($ Mayomi $>$ Christina)
\therefore P (christina's number> Mayomis number)

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{5}{6} \\
& =\frac{5}{12}
\end{aligned}
$$

Question 13 (15 Marks)
(a) (i) Arithmetic series: $a=10, l=60$

$$
s_{n}=3535
$$

$$
\begin{aligned}
s_{n} & =\frac{n}{2}(a+l)^{n} \\
3535 & =\frac{n}{2}(10+60) \\
35 n & =3535 \\
n & =3535 \\
\therefore n & =101 \quad 35
\end{aligned}
$$

(3) (a) (ii)

$$
\begin{align*}
60 & =10+100 \times d \\
100 d & =50 \\
\therefore \quad d & =\frac{1}{2} \quad 2 \mathrm{~m}
\end{align*}
$$

Unemployment is increasing: so $\frac{d E}{d t}>0$. Since policy to reduce unemployment is taking effect, then even though the number of unemployed is still increasing, rate of increase is slowing down, ie. curve is concave down. ie. $\frac{d^{2} E}{d t^{2}}<0$
-50 in this case $\frac{d E}{d t}>0, \frac{d^{-2} E}{d t^{2}}<0$.
(3) dc)

$$
\begin{aligned}
& \text { volume about }=\pi \int_{x \text {-axis }} y^{2} d x \\
& =\pi \int_{0}^{\frac{\pi}{3}} \sec ^{2} x d x \\
& =\pi[\tan x]_{0}^{\frac{\pi}{3}} \\
& =\pi\left[\tan \frac{\pi}{3}-\tan 0\right]_{0}^{\frac{\pi}{3}} \\
& =\pi \sqrt{3}{ }^{3} \text { cubic units }_{0}^{0}
\end{aligned}
$$

(mm)
(3) (d)

(i) $\angle A D E=\angle C B E$. (alternate andes equal) $\quad A D-1 / B C$) and $\angle D A E=\angle A C B$ (alternate angles equal $\begin{gathered}A D / / B C\end{gathered}$
$\therefore \triangle A D E$ is isosceles triangle

$$
\therefore A E=D E\binom{\text { sides opposite equal }}{\text { angles are equal }}
$$

Question $13(d)$ continued:
13)(d) (ii) $\triangle B E C$ is isosceles (since given $\angle D B C=x^{\circ}=\angle A C B$)
$\therefore E B \equiv E C$ (sides opposite equal)
But

$$
A C=A E+E C
$$

$$
\text { and } \quad D B=D E+E B
$$

but $A E=D E$, and $E B=E C$

$$
\therefore \quad A C=D B .
$$

Now in $\triangle A B C, \triangle D C B$:

| | $A C=D B$ (as shown) |
| ---: | :--- |$\quad S$

(3)(d) (iii) $\angle A B C=\angle D C B$
C matching angles in congruent triangles are equal)
ie. $\angle A B D+\angle D B C=\angle D C A+\angle A C B$
But $\angle D B C=x^{0} \equiv \angle A C B$ (given)

$$
\therefore \angle A B D=\angle D C A
$$

Question 14 (15 marks)
14) (a) (i) $1+(\sqrt{5}-2)+(\sqrt{5}-2)^{2}+\ldots$

Todd this is geometric series:
have $a=1, r=\sqrt{5}-2$
Limiting sum exists if $|r|<1$
in this case $r=\sqrt{5}=2=0.236 \ldots$
ie. $r<1$
\therefore limiting sum exists. $1 m$

$$
\begin{aligned}
\text { (4) (a) (ii) } \begin{aligned}
S_{\infty} & =\frac{-a}{1-r} \\
& =\frac{1-}{\frac{1-(\sqrt{5}-2)}{1}} \\
& =\frac{1}{3-\sqrt{5}} \\
& =\frac{1}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}} \\
& =3+\sqrt{5} \\
\therefore S_{\infty} & =\frac{3+\sqrt{5}}{4}
\end{aligned} . \begin{aligned}
9
\end{aligned}
\end{aligned}
$$

Question 14 continued:
(4) (b)

$$
\begin{aligned}
& x^{2}+(k-2) x+4=0 \\
\Delta & =b^{2}-4 a c \\
& =(k-2)^{2}-4 \times 1 \times 4 \\
& =k^{2}-4 k+4-16 \\
\Delta & =k^{2}-4 k-12 \\
\Delta & =(k-6)(k+2)
\end{aligned}
$$

for no real roots,

$$
\Delta<0
$$

from sketch, $\Delta<0$ when

$$
=2<k<-6
$$

(4) (c) (i) $x^{2}+y^{2}=9$ is a circle centre radius 3 . $(-0,0)$
For $3 x-4 y=15$ to be a tangent to circle, 1 distance from $(0,0)$ to
$3 x-4 y-15=0$ must be 3 units.

$$
\begin{align*}
d & =\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right| \\
& =\left|\frac{3 \times 0-4 \times 0-15}{\sqrt{3^{2}+4^{2}}}\right| \\
& \left.=1-\frac{15}{\sqrt{25}} \right\rvert\, \\
& =\frac{15}{5} \\
\therefore d & =3
\end{align*}
$$

So perpendicular distance is 3 units $\therefore 3 x-4 y=15$ is tangent to circle

$$
x^{2}+y^{2}=9
$$

(4) (c) (ii) $3 x-4 y=15$ crosses:-
x-axis:- when $y=0-3 x=15$

$$
x=5
$$

x-intercept is $(5,0)$
y-axis: when $x=0$:

$$
\begin{aligned}
-4 y & =15 \\
y & =-\frac{15}{4} \\
y & =-3 \frac{3}{4}
\end{aligned}
$$

Question 14 (c) (ii) continued:
14) (c) (ii)

Shaded Area

$$
\begin{aligned}
& =\text { (Area triangle) }- \text { (Area Quadrant) } \\
& =\left(\frac{1}{2} \times 5 \times \frac{15}{4}\right)-\left(\frac{1}{4} \times \pi \times 3^{2}\right) \\
& =\frac{75}{8}-\frac{9 \pi}{4} \\
& =\frac{75-\frac{18 \pi}{18}}{8} \\
& =\frac{3(25-6 \pi)}{8} \text { square units }
\end{aligned}
$$

14) (d)

$$
\begin{aligned}
y & =x^{3}+x^{2}-x+2 \\
\frac{d y}{d x} & =3 x^{2}+2 x-1
\end{aligned}
$$

A and B are -stationary points,
So need to solve $\frac{d y}{d x}=0$:

$$
\begin{aligned}
& x^{2}+2 x-1=0 \\
& 3 x^{-3}=0 \quad-3 \frac{x-1}{+3}+ \\
& 3 x(x+1)-x-1=0 \\
& (3 x-1)(x+1)=0 \\
& x=\frac{1}{3} \text { or } x=-1
\end{aligned}
$$

when $x=-15 \quad y=(-1)^{3}+(-1)^{2}=(-1)+2$

$$
\begin{aligned}
& y=-1+1+1+2 \\
& y=3-1
\end{aligned}
$$

$$
\text { When } x=\frac{1}{3}: \frac{y=3}{y=\left(\frac{1}{3}\right)^{3}}+\left(\frac{1}{3}\right)^{2}=\left(\frac{1}{3}\right)+2
$$

$$
=\frac{49}{27}
$$

$\frac{y=1 \frac{22}{27}}{3), B\left(\frac{1}{3}, 1 \frac{22}{27}\right)} 3 m$

Question $14(d)$ continued:
(4) (d) (ii)

$$
\begin{aligned}
\frac{d y}{d x} & =3 x^{2}+2 x-1 \\
\frac{d^{2} y}{d x^{2}} & =6 x+2
\end{aligned}
$$

concave up when $\frac{d^{2} y}{d x^{2}}>0$
ie. when $6 x+2>0$

$$
6 x>-2
$$

i- concave up when $x>-\frac{1}{3} \quad 2 m$
(4) (d) (iii)

$x^{3}+x^{2}-x+2=k$ represents the intersection of $y=x^{3}+x^{2}-x+2$ and $y=k$.
There will be 3 real solutions for

$$
\begin{equation*}
1 \frac{22}{27}<k<3 \tag{lm}
\end{equation*}
$$

(Note: only 2 roots if $k=\left(\frac{22}{27}\right.$ or $k=3$).
Question 15 (15 Marks)
a) (i) After first card is drawn, 51 cards remain of which 3×13 are of a different suit
$\therefore P$ (and card different suit)

$$
\begin{align*}
& =\frac{39}{51} \\
& =\frac{13}{17} \tag{mm}
\end{align*}
$$

Question 15 (a) continued:
15)(a)(ii)
P (all 4 different suits)

$=\left(\frac{52}{52}\right) \times\left(\frac{39}{51}\right) \times\left(\frac{26}{50}\right) \times\left(\frac{13}{49}\right)$
$=\frac{685464}{6497400}$
$=\frac{2197}{20825}$
$=0.1054981993 \ldots$
$\doteq 0.105$ (3 decimal places)

$$
\begin{aligned}
15)(b)(i) \ddot{x} & =4 \sin 2 t \\
\dot{x} & =\int \ddot{x} d t \\
& =-4 \sin 2 t \\
\dot{x} & =-2 \cos 2 t+c_{1}
\end{aligned}
$$

when $t=0, \dot{x}=0$:

$$
0=-2 \cos 2(0)+c_{1}
$$

$$
\begin{align*}
& \quad 0=-2+c_{1} \\
& \therefore \quad c_{1}=-2 \\
& \therefore \quad \dot{x}=-2 \cos 2 t+2
\end{align*}
$$

$$
(5)(b)(i i) \quad \dot{x}=2-2 \cos 2 t
$$

Period $=\frac{2 \pi}{2}$
Amplitude $=2$

$$
\begin{gathered}
=\pi \\
\dot{x}=2 \cos 2 t \\
\dot{x}=-2 \cos 2 t
\end{gathered}
$$

then translate -UP zunits to -get final sketch of graph:

Particle first comes to rest (after $t=0$) at $t=\pi$

Question $15(b)$ continued:
(1) (b) (iii) Distance travelled between
$t=0$ and $t=\pi$

$$
\begin{align*}
p & =\int_{0}^{\pi}(2-2 \cos 2 t) d t \\
& =[2 t-\sin 2 t]_{0}^{\pi} \\
& =(2 \pi-\sin 2 \pi)-(0-\sin 0) \\
& =(2 \pi-0)-(0-0) \\
\text { Distance } & =2 \pi
\end{align*}
$$

\therefore distance travelled is 2π units
15) (c) Required area needs to be found by subtraction

shaded area about y-axis needed:

$$
y=\log _{e}(x-2)
$$

from definition of logarithm:

$$
\begin{aligned}
& e^{y}=x-2 \\
\therefore & x=2+e^{y} \\
\text { Area } & =\int_{0}^{\log _{e} 5}\left(2+e^{y}\right) d y \\
& =\left[2 y+e^{y}\right]_{0}^{\log 5} \\
& =\left(2 \log _{e} 5+e^{-\log _{e} 5}\right)-\left(2 \times 0+e^{0}\right) \\
& =2 \log _{e} 5+5-1
\end{aligned}
$$

$$
\text { Area }=2 \log _{e} 5+4
$$

$$
\text { Now Area Rectangle }=7 \times \log _{2} 5
$$

so required Area

$$
=7 \text { loge }_{e} 5
$$

$$
\begin{aligned}
& \text { required Area } \\
& =\left(\text { Area rectangle) }-\binom{\text { area between }}{\text { ave }}\right. \\
& =7 \text {-axis) } \\
& =5 \log _{e} 5-\left(2 \log _{e} 5-4 \text { square units } 5+4\right)
\end{aligned}
$$

Question 16 (15 Marks)
(6) (a) (i) $Q=Q_{0} e^{-k t}$
when $t=0, Q=6: \quad G=Q_{0} e^{\bar{c}}$

$$
\therefore \quad Q_{0}=6
$$

So $Q=6 e^{-k t}$
when $t=15, Q=\frac{Q_{0}}{2}$

$$
\begin{aligned}
\therefore \quad \frac{Q_{0}}{2} & =Q_{0} e^{2}-15 k \\
\frac{-1}{2} & =e^{-15 k}
\end{aligned}
$$

Taking logarithms base e of both sides:

$$
\begin{aligned}
& -\log \left(\frac{1}{2}\right)=-15 k \\
& k=-\frac{1}{15} \log _{e}\left(\frac{1}{2}\right) \\
& =0.04620981204 \ldots \text {. } \\
& \therefore k=0.046 \text { (3 decimal places) } \\
& \therefore Q_{0}=6, k \div 0.046 \text {. } 2 \mathrm{~m} \\
& \text { 16)(a)(ii) Require } \frac{1}{8} \text { of initial dose } Q_{0}:
\end{aligned}
$$ ie- - require $\frac{Q_{0}}{8}$

solving

$$
\begin{aligned}
& \frac{Q_{0}}{8}=Q_{0} e^{-k t} \\
& \frac{1}{8}=e^{-k t}
\end{aligned}
$$

Taking logarithms base e of both sides:

$$
\begin{aligned}
\log _{e}\left(\frac{1}{8}\right) & =-k t \\
t & =\frac{\log _{e}\left(\frac{1}{8}\right)}{-k} \\
& =\frac{\log _{e}\left(\frac{1}{8}\right)}{-0.04620981204} \\
& =45
\end{aligned}
$$

\therefore After 45 hours, there will be $-\frac{1}{8}$ of initial dose remaining. 2 m
ALTERNATE METHOD 16 (a) (ii)
15 hours \rightarrow half life

$$
\frac{1}{8} \rightarrow 3 \text { "half lives" } \rightarrow \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}
$$

So $\frac{1}{8}$ of initial dose $=3 \times 15$

$$
=45 \text { hours }
$$

Question 16 continued:
16)

Take cross-section of cone.
Since top of cylinder (DE) is parallel to base of cone $(O B)$,

$\triangle A D E(1) \triangle A O B$ (equiangular)

$$
\therefore \frac{A D}{A O}=\frac{D E}{O B}
$$

B (matching sides similar (triangles are in same ratio)
live.

$$
\begin{aligned}
\frac{20-h}{20} & =\frac{r}{6} \\
6(20-h) & =20 r \\
120-6 h & =20 r \\
6 h & =120-20 r \\
h & =\frac{120-20 r}{6} \\
h & =\frac{20(6-r)}{6} \\
\therefore \quad h & =\frac{10(6-r)}{3}
\end{aligned}
$$

\therefore volume of cylinder

$$
\begin{aligned}
& =\pi r^{2} h \\
& =\pi r^{2} \cdot \frac{10(6-r)}{-3}
\end{aligned}
$$

$\therefore V=\frac{10 \pi r^{2}\left(6^{3}-r\right)}{3} \quad 2 m$

Question $16(b)$ continued:
(16)(b) (ii) $v=\frac{10 \pi r^{2}(6-r)}{3}$
i.e. $V=\frac{10 \pi .6 r^{2}}{3}-\frac{10 \pi r^{3}}{3}$
$V=20 \pi r^{2}-\frac{10 \pi r^{3}}{3}$

$$
\begin{aligned}
\therefore \frac{d V}{d r} & =40 \pi r-\frac{3 \cdot 10 \pi r^{2}}{\beta} \\
\frac{d V}{d r} & =40 \pi r-10 \pi r^{2}
\end{aligned}
$$

For stationary points, solve $\frac{d V}{d r}=0$

$$
\begin{aligned}
40 \pi r-10 \pi r^{2} & =0 \\
10 \pi r(4-r) & =0
\end{aligned}
$$

$$
\therefore r=0 \text { or } r=4
$$

Require maximum volume, so $r \neq 0$
Need to check $r=4$ is a maximum:

$$
\begin{aligned}
& \frac{d v}{d r}=40 \pi r-10 \pi r^{2} \\
& \frac{d^{2} v}{d r^{2}}=40 \pi-20 \pi r
\end{aligned}
$$

when $r=4: \frac{d^{2} v}{-d r^{2}}=40 \pi-80 \pi$

$$
=-40 \pi
$$

ie. $\frac{d^{2} v}{d r^{2}}<0$ when $r=4$
\therefore. concave-down \oslash
\therefore maximum when $r=4$.
from $(i): h=10(6-r)$

$$
\begin{aligned}
& 3 \\
&=\frac{10 x^{2}}{3} \\
& h=\frac{20-}{3} \text { or } 6 \frac{2}{3}
\end{aligned}
$$

\therefore maximum volume when
$r=4 \mathrm{~cm}, h=\frac{20}{3} \mathrm{~cm}$ or $6 \frac{2}{3} \mathrm{~cm}$ $2 m$

Question 16 continued:
(6) (c) A_{n} is amount owed at end of n months
P is principal, amount borrowed. in this case $P=80000$.

$$
\begin{aligned}
& \text { (i) } \quad A=P\left(1+\frac{r}{100}\right)^{n} \\
& A_{1}=80000 \times\left(1+\frac{2}{100}\right)^{1} \\
& \text { ide. } \quad A_{1}=80000 \times 1.02 \\
& =181600 \quad \mathrm{~m} \\
& \text { (ii) } A_{2}=A_{1}\left(1+\frac{2}{100}\right) \\
& =\bar{A}_{1} \times 1.02 \\
& =(80000 \times 1.02) \times 1.02 \\
& -A_{2}=80000 \times 1.02^{2} \\
& \bar{A}_{3}=\bar{A}_{2} \times 80 \overline{000} \\
& =\left(80000 \times 1.02^{2}\right) \times 1.02 \\
& A_{3}=80000 \times 1.02^{3}
\end{aligned}
$$

following this pattern for first 12 months, then:-

$$
A_{12}=80000 \times 1.02^{12}
$$

Solafter list instalment of $\$ M$,
Amount owing after 12 months

$$
=80000 \times 1.02^{12}-M
$$

$2 m$
(iii) lIst repayment made after A_{12}.

But and repayment not made. until after A_{24}.

$$
\begin{aligned}
& A_{13}=A_{12}\left(1+\frac{2}{100}\right) \\
&=A_{12} \times 1.02 \\
& A_{13}=\left[80000 \times 1.02^{12}-M\right] \times 1.02 \\
& A_{14}=\left[80000 \times 1.02^{12}-M\right] \times 1.02^{2} \\
& A_{15}=\left[80000 \times 1.02^{12}-M\right] \times 1.02^{3} \\
& \text { Following this pattern:- } \\
& A_{24}=\left[80000 \times 1.02^{12}-M\right] \times 1.02^{12}
\end{aligned}
$$

Question $16(c)(i i i)$ continued:
Ind (final)repayment of $\$ M$ is paid after A_{24} :
ie. $\left[80000 \times 1.02^{12}-M\right] \times 1.02^{12}-M$ But after 2nd/Final repayment there is no money owing.

$$
\begin{align*}
& \therefore\left[80000 \times 1.02^{12}-M\right] \times 1.02^{12}-M=0 \\
& 80000 \times 1.02^{24}-1.02^{12} M-M=0 \\
& 80000 \times 1.02^{24}-M\left(1.02^{12}+1\right)=0 \\
& \therefore . e . M\left(1.02^{12}+1\right)=80000 \times 1.02^{24} \\
& \therefore M=80-000 \times 1.02^{24} \\
& \therefore\left(1.02^{12}+1\right) \\
& \therefore M=\frac{80000 \times(1.02)^{24}}{\left(1.02^{12}\right)+1}
\end{align*}
$$

(iv) From calculator

$$
M=\frac{80000 \times 1.02^{24}}{1.02^{12}+1}=56728.95203
$$

ie. each instalment $M=\$ 56728.95$
\therefore Total repaid in the 2 instalments

$$
\begin{aligned}
& =2 x \$ 56728.95 \\
& =\$ 113457.90
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Interest } & =\binom{\text { Total }}{\text { repaid }}-\left(\begin{array}{c}
\text { original } \\
\text { loan of } \\
\text { \$80 } 000
\end{array}\right) \\
& =\$ 113457.90-\$ 80000 \\
& =\$ 33457.90
\end{aligned}
$$

