

Girraween High School

Year 12 Mathematics HSC Trial Examination

General Instructions

- Reading Time - 5 minutes
- Working Time - 3 hour
- Calculators and ruler may be used
- All necessary working out must be shown

Total Marks - 100

- Attempt all questions
- Marks may be deducted for careless or badly arranged work
- Start each question on a new sheet of paper

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Question 1 (1 mark)
What is 0.01029 rounded to 3 significant figures?
A. 0.01
B. 0.010
C. 0.0103
D. 0.01029

Question 2 (1 mark)
What are the solutions to the equation $x(x-1)=x ?$
A. $x=0$
B. $x=1$
C. $x=0$ and $x=2$
D. $x=1$ and $x=2$

Question 3 (1 mark)
What is the correct factorisation of $8 x^{3}-1$?
A. $(2 x-1)\left(4 x^{2}+4 x+1\right)$
B. $(2 x+1)\left(4 x^{2}-4 x+1\right)$
C. $(2 x+1)\left(4 x^{2}-2 x+1\right)$
D. $(2 x-1)\left(4 x^{2}+2 x+1\right)$

Question 4 (1 mark)
What is the angle of inclination of the line $\sqrt{3} x+y=1$ with respect to the positive x axis?
A. 30°
B. 60°
C. 120°
D. 150°

Question 5 (1 mark)
Which of the following is the domain of the function $f(x)=\frac{1}{\sqrt{x+1}}$
A. $x>-1$
B. $x \geq-1$
C. $x<-1$
D. $x \leq-1$

Question 6 (1 mark)
What is the period of the function $f(x)=2 \sin \left(\frac{2 \pi}{3} x\right) ?$
A. 3
B. 3π
C. $\frac{1}{3}$
D. $\frac{\pi}{3}$

Question 7 (1 mark)
The value of the limit $\lim _{x \rightarrow 10} \frac{x^{2}-100}{x-10}$ is
A. undefined
B. 0
C. 8
D. 20

Question 8 (1 mark)

Which of the following integrals does NOT compute the area of the shaded region?

A. $\int_{-1}^{1} x^{2} d x$
B. $\int_{-1}^{1} 1-x^{2} d x$
C. $2-\int_{-1}^{1} x^{2} d x$
D. $2 \int_{0}^{1} 1-x^{2} d x$

Question 9 (1 mark)
The velocity time graph of a particle travelling in a straight line is given below. Which is the best approximate time at which the particle returns to its initial position?

A. $t=1$
B. $t=2$
C. $t=3$
D. $t=5$

Question 10 (1 mark)
The position x of a particle travelling in a straight line is given by $x=-2 t^{2}+t+1$, which of the following is false in the time frame $0 \leq t \leq 5$?
A. The maximum speed of the particle $>$ the maximum velocity of the particle
B. The minimum speed of the particle $<$ the minimum velocity of the particle
C. The maximum speed of the particle $>$ the minimum velocity of the particle
D. The minimum speed of the particle $<$ the maximum velocity of the particle

Section II
90 marks
Attempt Questions 11-16
Allow about 2 hours and 45 minutes for this section
Write your answers on the paper provided.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)
(a) Evaluate $\sqrt{e^{2}-1}$ to two decimal places.
(b) Convert $\frac{4 \pi}{3}$ radians to degrees.
(c) Find the exact value of $\cos \frac{5 \pi}{6}$
(d) Simplify $\frac{x}{x(x-1)}+\frac{1}{x-1}$
(e) Find the values of x for which $|x-2| \geq 5$
(f) Differentiate with respect to x
i. $y=x \ln x$
ii. $y=\frac{\sin x}{2 x}$
(g) Find $\int \frac{x}{x^{2}+1} d x$
(h) Find the value of $7+14+21+\cdots+175$.

Question 12 (15 marks)
(a) In the diagram below, the line ℓ has equation $2 x+3 y+6=0$. It cuts the x axis at A and the y axis at B and it intersects the line k at C. Line k is perpendicular to ℓ and cuts the x axis at D.

i. Find the coordinates of A and B.
ii. If B is the midpoint of $A C$ show that the equation of k is given by

$$
3 x-2 y-17=0 .
$$

(b) In the diagram below, a person walks from point A on a bearing of 030° for 2.4 km to point B. From point B he walks for 3.6 km on a bearing of 145° to arrive at point C.

i. Find the length of $A C$ to one decimal place.
ii. Find the bearing of point C from point A. Give your answer to the nearest minute.
(c) A school sports team has a probability of 0.2 of winning any match.
i. Find the probability the team wins exactly one of its first two matches.
ii. Find the least number of consecutive matches the team must play to be 90% certain that it will win at least one match.

The exam continues on the next page

Question 13 (15 marks)
(a) Consider the parabola given by the equation $y=x^{2}-4 x+8$. Find:
i. the coordinates of the vertex.
ii. the coordinates of the focus.
iii. the equation of the directrix.
(b) In the diagram below, $A B C D$ is a rectangle in which $A B=40 \mathrm{~cm}$ and $A D=60$ $\mathrm{cm} . M$ is the midpoint of $B C$ and $D P$ is perpendicular to $A M$.

i. Prove that $\triangle A B M \| \triangle A P D$.
ii. Prove that $P D=48 \mathrm{~cm}$.
iii. Find the length of $P A$ and hence show that the area of the quadrilateral $P M C D$ is $936 \mathrm{~cm}^{2}$.
(c) Consider the series $2+4 e^{-x}+8 e^{-2 x}+\cdots$
i. Show that the series is geometric.
ii. Find the values of x such that this geometric series has an limiting sum.
iii. Find the limiting sum of this geometric series in terms of x.

The exam continues on the next page

Question 14 (15 marks)
(a) Consider the curve $y=x^{3}-3 x+2$.
i. Find the coordinates of the stationary points and determine their nature.
ii. Find any points of inflexion.
iii. Sketch the curve, showing the stationary points and any points of inflexion.
iv. For what values of x is the curve increasing and concave down?
(b) Use Simpson's Rule with 5 functions values to find an approximation to the value of

$$
\begin{equation*}
\int_{1}^{5} \operatorname{cosec} \frac{\pi}{6} x d x \tag{3}
\end{equation*}
$$

(c) Find the volume of the solid generated by rotating the shaded area below about the y-axis.

The exam continues on the next page

Question 15 (15 marks)
(a) i. Alan borrows $\$ 10000$ at an interest rate of 12% pa, compounded monthly. Alan wants to pay off the loan with monthly repayments over 5 years. Find the required monthly repayment.
ii. If Alan only wishes to pay $\$ 150$ each month over 5 years, how much is he able to borrow under the same interest rate?
(b) A particle travels in a straight line. Its position x metres from the origin is given by

$$
x=6-2 t+8 \ln (t+2)
$$

where time t is measured in seconds.
i. Find the initial velocity and acceleration of the particle.
ii. Find the position of the particle when it is stationary.
iii. State the eventual velocity and acceleration of the particle.
(c) The population N of a certain species at time t is given by

$$
N=N_{0} e^{-0.03 t}
$$

where t is in days and N_{0} is the initial population of the species.
i. Show that $N=N_{0} e^{-0.03 t}$ is a solution to the differential equation

$$
\frac{d N}{d t}=-0.03 N
$$

ii. How long will it take for the population to halve? Give you answer to the nearest day.
iii. Find in terms of N_{0}, the rate of change of the population when the population has halved.

Question 16 (15 marks)
(a) Two corridors of widths a and $8 a$ intersect at a right angle. A straight rope $P R$ touches the corner Q. Let L be the length of $P R$.

i. Show that $L=\frac{a}{\cos \theta}+\frac{8 a}{\sin \theta}$
ii. Show that $\frac{d L}{d \theta}=\frac{a \cos \theta}{\sin ^{2} \theta}\left(\tan ^{3} \theta-8\right)$
iii. Find the exact value of the minimum value of L.
(b) Suppose α and β are roots of $a x^{2}+b x+c=0$ where $a \neq 0$ and $\alpha \geq \beta$.
i. Show that $\alpha-\beta=\frac{\sqrt{\triangle}}{a}$ where $\triangle=b^{2}-4 a c$.
ii. Show that $\alpha^{2}-\beta^{2}=-\frac{b \sqrt{\triangle}}{a^{2}}$.
iii. Show that $\alpha^{3}-\beta^{3}=\frac{\sqrt{\triangle}\left(b^{2}-a c\right)}{a^{3}}$.
iv. Show that $\int_{\beta}^{\alpha} a x^{2}+b x+c d x=-\frac{\triangle^{3 / 2}}{6 a^{2}}$
(c) Find the values of m such that equation $e^{x}=m x$ has no solutions.

End of exam

$C C D C A$
$A D A B B$

Q1

$$
\begin{equation*}
=0.0103 \tag{c}
\end{equation*}
$$

$a 2$

$$
\begin{align*}
& x(x-1)=x \\
& x^{2}-x=x \\
& x^{2}-2 x=0 \\
& x(x-2)=0 \\
& \therefore x=0 \& x=2 \tag{c}
\end{align*}
$$

43

$$
8 t^{3}-1=(2 t)^{3}-1
$$

$$
=(2 t-1)\left(4 t^{2}+2 t+1\right) \therefore \text { (D) }
$$

44

$$
y=-\sqrt{3} n+1
$$

$$
\begin{gather*}
\therefore \tan \theta=-\sqrt{3} \therefore \theta=120^{\circ} \therefore \tag{c}\\
45 \quad x+1>0 \therefore x>-1 \therefore \text { (A) }
\end{gather*}
$$

a6 $T=\frac{2 \pi}{\frac{2 \pi}{3}}=3 \therefore A$

$$
\begin{aligned}
& \text { Q1 } \lim _{x \rightarrow 10} \frac{(x+10)(x-10)}{x-10} \\
& =\lim _{x \rightarrow 10} x+10=20 \therefore \text { (D) }
\end{aligned}
$$

ab
(4)
a 5

$$
t=2
$$

(B)
alo

$$
v=-4 t+1
$$

$\operatorname{Max} V=1 \quad \operatorname{Max} 5=19$
Min $V=-19 \quad \operatorname{Min} S=0$

411
(a) $2.53(2 \mathrm{mp})$
(b) $\frac{4 \times 180}{3}=240^{\circ}$
(c)

$$
\cos \left(\frac{5 \pi}{6}\right)=-\cos \frac{\pi}{6}=-\frac{\sqrt{3}}{2} .
$$

(d)

$$
=\frac{x}{x(x-1)}+\frac{x}{x(x-1)}=\frac{2}{x-1}
$$

(e) $x-2 \geqslant 5$ and $2-x \geqslant 5$

$$
x \geqslant 7 \text { and } x \leqslant-3
$$

all
(f)

$$
\begin{aligned}
& \text { (i) } y=x \ln x \\
& n^{\prime}=x \quad v=\ln x \\
& n^{\prime}=1 \quad v^{\prime}=\frac{1}{x} \\
& y^{\prime}=\ln x+1
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) } \begin{array}{l}
y=\frac{\sin x}{2 x} \\
n=\sin x \quad v=2 x \\
n^{\prime}=\cos x \quad v^{\prime}=2 \\
y^{\prime}=\frac{2 x \cos x-2 \sin x}{4 x^{2}}
\end{array},=\frac{2}{}
\end{aligned}
$$

(g)

$$
\begin{aligned}
& \int \frac{x}{x^{2}+1} d x \\
= & \frac{1}{2} \int \frac{2 x}{x^{2}+1} d x=\frac{1}{2} \ln \left(x^{2}+1\right)+C .
\end{aligned}
$$

(h)

$$
\begin{aligned}
& 7+14+\cdots+175 \\
& 175=25 \times 7 \\
& \therefore \quad a=7 \quad n=25 \\
& S_{25}=\frac{25}{2}(7+175)=2275
\end{aligned}
$$

al2
(a) (i)

$$
\begin{array}{ll}
\text { (i) } 2 x+3 y+6=0 \\
y=0, x=-3 \therefore & \therefore \\
& A=(-3,0) \\
x=0, y=-2 \therefore & \therefore=(0,-2) .
\end{array}
$$

(a)
(ii)
(ii) Let $C=(x, y)$

$$
\begin{aligned}
& \therefore \frac{-3+x}{2}=0 \quad \& \quad \frac{0+y}{2}=-2 \\
& \therefore x=3 \\
& \therefore \quad c=(3,-4) .
\end{aligned}
$$

$$
\begin{aligned}
& 3 y=-2 x-6 \\
& y=-\frac{2}{3} x-2 \\
& \therefore m \text { of } k 13 \frac{3}{2} \\
& \therefore y+4=\frac{3}{2}(x-3) \\
& 2 y+8=3 x-9
\end{aligned}
$$

$\therefore 3 x-2 y-17=0$.
(b)

(i)

$$
A C^{2}=2.4^{2}+3.6^{2}-2 \times 2.4 \times 3.6 \times \cos 65
$$

$A C=3.8 \mathrm{~km}$ (lop)
(ii)

$$
\begin{aligned}
& \frac{\sin (\angle B A C)}{3.6}=\frac{\sin 65}{A C} \\
& \angle D A C=\sin ^{-1}\left(\frac{3.6 \sin 65^{5}}{A C}\right)=74^{\circ} 56^{\prime} \\
& \therefore \text { Buring }=104^{\circ} 56^{\prime}
\end{aligned}
$$

412
(c) $p(W L)+P L L W)$
(i)

$$
\begin{aligned}
& =0.2 \times 0.8+0.8 \times 0.2 \\
& =0.32
\end{aligned}
$$

(ii) Lat n bo the murher of matiches nealed.

$$
\begin{aligned}
\therefore p(\text { Watlenot } 1) & =1-p(\text { alt lose }) \\
& =1-0.8^{n}
\end{aligned}
$$

We neal $1-0.8^{n}=0.9$

$$
\begin{aligned}
\therefore & 0.8^{n}=0.1 \\
& n=\log _{0.8}(0.1) \\
n & =\frac{\ln 0.1}{\ln 0.8}=10.31 \ldots
\end{aligned}
$$

\therefore noed at lewat 11 games.
$a 13$
(a)
(i)

$$
\begin{aligned}
& y-8=x^{2}-4 x \\
& y-4=x^{2}-4 x+4 \\
& y-4=(x-2)^{2} \\
& (x-2)^{2}=4\left(\frac{1}{4}\right)(y-4) \\
& \therefore V=(2,4)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& (2,4) \\
& \therefore F=\left(2,4 \frac{1}{4}\right)
\end{aligned}
$$

(iii) $y=3 \frac{3}{4}$.
(b)
(i) $\angle A B M=\angle A P D=90$
(\angle in a rectang w)

$$
\angle B M A=\angle P A D
$$

(altermate $\angle ' S, B C / / A D$)
$\therefore \triangle A B M I I I \triangle A P D$ (Equirougular)
(ii)

$$
\begin{aligned}
B M & =30 \therefore A M=50 \\
\frac{P D}{A B} & =\frac{A D}{A M}\left(\begin{array}{l}
\text { rntio of } \\
\text { matelig sidy } \\
\text { of } 111 \Delta S
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \frac{P D}{40}=\frac{60}{50} \\
& \therefore P D=48 \mathrm{~cm}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
P A^{2} & =60^{2}-48^{2} \\
\therefore P A & =36
\end{aligned}
$$

Aren of $P M C D=40 \times 60$ - Aren of 2 Δ 's

$$
\begin{aligned}
& =40 \times 60-\frac{1}{2}(40 \times 30+48 \times 36) \\
& =936
\end{aligned}
$$

413
(c)
(i)

$$
\begin{aligned}
& \frac{T_{2}}{T_{1}}=\frac{4 e^{-x}}{2}=2 e^{-x} \\
& \frac{T_{3}}{T_{2}}=\frac{8 e^{-2 x}}{4 e^{-x}}=2 e^{-x} \\
& \therefore r=2 e^{-x} \therefore B a G P
\end{aligned}
$$

(ii) Need $-1<r<1$

$$
\therefore \quad-1<2 e^{-x}<1
$$

But since $e^{-x}>0$ for are x $\therefore \quad-1<2 e^{-x}$ is froe for wat

we chuck where $2 e^{-x}=1$

$$
\begin{aligned}
\therefore \quad e^{-x} & =\frac{1}{2} . \\
-x & =\ln \frac{1}{2} \\
\therefore \quad x & =\ln 2 .
\end{aligned}
$$

$\therefore 2 e^{-x}<1$ whin $x>\ln 2$.
\therefore for $x \operatorname{sln} 2$ limiting sum exists.
(oi)

$$
\begin{aligned}
& S_{\infty}=\frac{a}{1-r} \\
& S_{\infty}=\frac{2}{1-2 e^{-x}} \\
& S_{\infty}=\frac{2 e^{x}}{e^{x}-2}
\end{aligned}
$$

414
(a)

$$
\begin{aligned}
& \text { (i) } y=x^{3}-3 x+2 \\
& y^{\prime}=3 x^{2}-3=3(x-1)(x+1) \\
& y^{\prime \prime}=6 x
\end{aligned}
$$

$y^{\prime}=0$ when $x= \pm 1$

$$
y(1)=0 \quad g(-1)=4
$$

\therefore Stationary pts are $(1,0) \&(-1,4)$
$y^{\prime \prime}(1)=6>0 \therefore(1,0)$ is min

$$
y^{\prime \prime}(-1)=-6<0 \therefore(-1,4) \text { is max. }
$$

(ii) $y^{\prime \prime}=0$ when $x=0$
$g(0)=2 \quad \therefore(0,2)$ is possible point of infterim.

n	-1	0	1
$y^{\prime \prime}$	-6	0	6

\therefore concavity chang-
$\therefore(0,2)$ is a point of inflexion.

414
(a)
(rii)

(iv) $x<-1$

$$
\begin{aligned}
& \text { (b) } h=\frac{5-1}{4}=1 \\
& I \approx \frac{1}{3}[f(1)+4 f(2)+2 f(3)+4 f(4)+f(5)] \\
& \approx \frac{1}{3}\left[2+4\left(\frac{2}{\sqrt{3}}\right)+2(1)+4\left(\frac{2}{\sqrt{3}}\right)+2\right]
\end{aligned}
$$

$$
\approx .5 .08(2 \mathrm{dp})
$$

(c)

$$
\begin{gathered}
y=\ln x \\
\therefore x=e^{y} \\
x^{2}=e^{2 y} \\
V=\pi \int_{0}^{\ln 3} e^{2 y} d y
\end{gathered}
$$

$$
\begin{aligned}
& V=\frac{\pi}{2}\left[e^{2 y}\right]_{0}^{\ln 3} \\
& V=\frac{\pi}{2}\left[e^{2 \ln 3}-1\right] \\
& V=\frac{\pi}{2}[9-1]=4 \pi
\end{aligned}
$$

415
(a)
(i) Lef A_{1} denote emount owe by ene of ath $^{\text {th }}$ month.

$$
\begin{aligned}
& r= \frac{12}{12} \div 100=0.01 \\
& A_{1}= 10000(1.01)-m \\
& A_{2}= 10000(1.01)^{2}-m(1.01)-m \\
& A_{3}= 10000(1.01)^{3}-m(1.01)^{2}-m(1.01) \\
&-m \\
& A_{3}=10000(1.01)^{3}-m\left(1+1.01+1.01^{2}\right) \\
& \therefore A_{n}=10000(1.01)^{n}-m\left(1+1.01+1.01^{2}\right. \\
&\left.+\ldots+1.01^{n-1}\right)
\end{aligned} \quad \begin{aligned}
\therefore A_{60}=10000(1.01)^{60}-m\left(1+1.01+1.01^{2}\right. \\
\left.t . .+1.01^{59}\right)
\end{aligned}
$$

$A_{60}=0$

$$
\begin{aligned}
& \therefore 10000(1.01)^{60}-m\left[\frac{1.01^{60}-1}{0.01}\right]=0 \\
& \therefore M=\frac{10000(1.01)^{60} \times 0.01}{1.01^{60}-1} \\
& M=\$ 222.44
\end{aligned}
$$

415
(a)
(ii)

$$
\begin{aligned}
& \therefore P(1.01)^{60}-150\left[\frac{1.01^{60}-1}{0.01}\right]=0 \\
& \therefore P=\frac{150\left(1.01^{60}-1\right)}{0.01 \times(1.01)^{60}} \\
& P=\$ 6747.26
\end{aligned}
$$

(b)
(i)

$$
\begin{aligned}
& \text { (i) } x=6-2 t+8 \ln (t+2) \\
& v=-2+\frac{8}{t+2}=-2+8(t+2)^{-1} \\
& a=-8(t+2)^{-2}=-\frac{8}{(t+2)^{2}} \\
& v(0)=2 \mathrm{~ms}^{-1} \\
& a(0)=-2 \mathrm{~ms}^{-2}
\end{aligned}
$$

(ii)

$$
\begin{gathered}
v=0 \text { when }-2+\frac{8}{t+2}=0 \\
\therefore t+2=4 \therefore t=2 \\
x(2)=6-4+8 \ln 4 \\
x= \\
\therefore+6 \ln 4 \mathrm{~m}
\end{gathered}
$$

(ir) as $t \rightarrow \infty \quad r \rightarrow-2 \mathrm{~ms}^{-1}$

$$
a \rightarrow 0 \mathrm{~ms}^{-2}
$$

a,
(c)

$$
\begin{aligned}
\text { (i) } N & =N_{0} e^{-0.03 t} \\
\frac{d N}{d t} & =-0.03 \times N_{0} e^{-0.03 t} \\
\therefore \frac{d N}{d t} & =-0.03 N
\end{aligned}
$$

($\because \cdot)$

$$
\begin{aligned}
& \therefore \frac{N_{0}}{2}=N_{0} e^{-0.03 t} \\
& \therefore e^{-0.03 t}=\frac{1}{2}
\end{aligned}
$$

$$
-0.03 t=\ln \frac{1}{2}
$$

$$
0.03 t=\ln 2
$$

$$
t=\frac{\ln 2}{0.03}=23.104 \ldots
$$

$\therefore 24$ drops noeded.
(iii)

$$
\frac{d W}{d t}=-0.03 \mathrm{~N}
$$

So when $N=\frac{N_{0}}{2} \frac{d N}{d t}=-0.03 \times \frac{N_{0}}{2}$

$$
\frac{d N}{d t}=\frac{3}{200} N_{0}
$$

(iv)
alb
(a)
(i)

$$
\begin{aligned}
& \text { i) } \cos \theta=\frac{a}{P Q} \quad \sin \theta=\frac{8 a}{Q R} \\
& \therefore P Q=\frac{a}{\cos \theta} \quad \therefore Q R=\frac{8 a}{\sin \theta} \\
& \angle=P Q+Q R=\frac{a}{\cos \theta}+\frac{8 a}{\sin \theta} .
\end{aligned}
$$

(ii:)

$$
\text { (ii) } \begin{aligned}
L= & a(\cos \theta)^{-1}+8 a(\sin \theta)^{-1} \\
\frac{d L}{d \theta}= & -a(\cos \theta)^{-2} x-\sin \theta \\
& -8 a(\sin \theta)^{-2} \times \cos \theta \\
\frac{d L}{d \theta}= & \frac{a \sin \theta}{\cos ^{2} \theta}-\frac{8 a \cos \theta}{5 \sin ^{2} \theta} \\
\frac{d L}{d \theta}= & \frac{a \cos \theta}{\sin ^{2} \theta}\left(\frac{\sin ^{3} \theta}{\cos ^{3} \theta}-8\right) \\
\frac{d L}{d \theta}= & \frac{a \cos \theta}{\sin ^{2} \theta}\left(\tan ^{3} \theta-8\right)
\end{aligned}
$$

(xi:) $\frac{d L}{d \theta}=0$ when $\tan ^{3} \theta-8=0$

$$
\therefore \tan \theta=2
$$

note that $\cos \theta \neq 0$ for $0<\theta<\frac{\pi}{2}$
$\therefore \theta=\tan ^{-1} 2$. gores the stationary point.

Now as $\tan \theta$ is an increasing function if $\theta>\tan ^{-1} 2$ then $\tan \theta>2$

$$
\begin{aligned}
& \therefore \tan ^{3} \theta>8 \\
& \therefore \frac{d L}{d \theta}>0
\end{aligned}
$$

if $\theta<\tan ^{-1} 2$ then $\tan \theta<2$

$$
\begin{aligned}
& \therefore \tan ^{3} \theta<3 \\
& \therefore \frac{d L}{d \theta}<0
\end{aligned}
$$

$\therefore \theta=\tan ^{-1} 2$ gives $\sin L$.
Now if $\tan \theta=2$

$$
\therefore \sin \theta=\frac{2}{\sqrt{5}} \& \cos \theta=\frac{1}{\sqrt{5}}
$$

$$
L=\frac{a}{\cos \theta}+\frac{8 a}{\sin \theta}
$$

$$
\therefore L=\sqrt{5} a+6 a\left(\frac{\sqrt{5}}{2}\right)
$$

$$
L=\sqrt{5} a+4 a \sqrt{5}
$$

$$
L=5 a \sqrt{5}
$$

(b)

$$
\left.\begin{array}{l}
\text { (i) } \alpha=\frac{-b+\sqrt{\Delta}}{2 a} \quad \beta=\frac{-b-\sqrt{\Delta}}{2 a} \\
\therefore \alpha-\beta
\end{array}\right)=\frac{-b+\sqrt{\Delta}+b+\sqrt{\Delta}}{2 a}, ~=\frac{\sqrt{\Delta}}{a} .
$$

$$
\text { (ii) } \begin{aligned}
\alpha^{2}-\beta^{2} & =(a-\beta)(a+\beta) \\
& =\frac{\sqrt{\Delta}}{a} \times \frac{-b}{a}=\frac{-b \sqrt{\Delta}}{a^{2}} .
\end{aligned}
$$

016
(b)
(iii)

$$
\begin{aligned}
& \alpha^{3}-\beta^{3}=(a-\beta)\left(\alpha^{2}+\alpha \beta+\beta^{2}\right) \\
& =(a-\beta)\left(\alpha^{2}+2 \alpha \beta+\beta^{2}-\alpha \beta\right) \\
& =(\sigma-\beta)\left[(\alpha+\beta)^{2}-a \beta\right] \\
& =\frac{\sqrt{\Delta}}{a}\left[\frac{b^{2}}{a^{2}}-\frac{c}{a}\right] \\
& =\frac{\sqrt{\Delta}}{a}\left(\frac{b^{2}-a c}{a^{2}}\right)=\frac{\sqrt{\Delta}\left(b^{2}-a c\right)}{a^{3}}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
& \int_{\beta}^{\alpha} a x^{2}+b x+c d x \\
= & {\left[\frac{a x^{3}}{3}+\frac{b x^{2}}{2}+c x\right]_{\beta}^{q} } \\
= & \frac{a a^{3}}{3}+\frac{b a^{2}}{2}+c \alpha-\frac{a \beta^{3}}{3}-\frac{5 \rho^{2}}{2}-c \beta \\
= & \frac{a}{3}\left(\alpha^{3}-\beta^{3}\right)+\frac{b}{2}\left(\alpha^{2}-\beta^{2}\right)+c(\alpha-\beta) \\
= & \frac{a}{3} \times \frac{\sqrt{\Delta}\left(b^{2}-a c\right)}{a^{3}}-\frac{b}{2} \times \frac{b \sqrt{\Delta}}{a^{2}}+c\left(\frac{\sqrt{\Delta}}{a}\right) \\
= & \frac{\sqrt{\Delta}}{3 a^{2}}\left(b^{2}-a c\right)-\frac{b^{2} \sqrt{\Delta}}{2 a^{2}}+\frac{c \sqrt{\Delta}}{a} \\
= & \frac{2 \sqrt{\Delta} b^{2}-2 a c \sqrt{\Delta}-3 b^{2} \sqrt{\Delta}+6 a c \sqrt{\Delta}}{6 a^{2}} \\
= & \frac{4 a c \sqrt{\Delta}-b^{2} \sqrt{\Delta}}{6 a^{2}}=\frac{\sqrt{\Delta}\left(4 a c-b^{2}\right)}{6 a^{2}}=\frac{-\Delta^{3 / 2}}{6 a^{2}}
\end{aligned}
$$

(c)

We first foul the value of m suck that $y=m x$ is tangent to $y=e^{x}$

$$
\begin{aligned}
\therefore m & =e^{x} \cdots 0 \\
m x & =e^{x} \cdots(2)
\end{aligned}
$$

(2) gives $x=1$

$$
\therefore m=e .
$$

\therefore ho solutions ie. no intersections when $0 \leqslant m<e$

