

2018
 Higher School Certificate Trial Examination

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time -3 hours
- Board approved calculators may be used.
- Write using black or blue pen
- A reference sheet is provided
- All necessary working should be shown in Question 11-16
- Write your student number and/or name at the top of every page

Total marks - 100
Section I - Pages 2-6
10 marks
Attempt Questions 1-10
Allow about 15 minutes for this section
Section II - Pages 7-14
90 marks
Attempt Questions 11-16
Allow about 2 hours 45 minutes for this section

This paper MUST NOT be removed from the examination room

Section I

10 marks

Attempt Questions 1-10.
Allow about 15 minutes for this section.
Use the multiple-choice answer sheet for Questions 1-10.

1 What is 0.00367254 written in scientific notation, correct to 4 significant figures?
(A) $\quad 3.672 \times 10^{-2}$
(B) $\quad 3.673 \times 10^{-2}$
(C) $\quad 3.673 \times 10^{-3}$
(D) $\quad 3.7 \times 10^{-3}$
$2 A B C D E$ is a regular pentagon and $\angle C A E=x^{\circ}$.

What is the value of x ?
(A) 36°
(B) 72°
(C) 84°
(D) 108°

3 Which of the following is equal to $\sec ^{2} x-\tan ^{2} x-\cos ^{2} x$?
(A) $1-\tan ^{2} x$
(B) $-\tan ^{2} x$
(C) $\cot ^{2} x$
(D) $\sin ^{2} x$

4 A circle with centre O has a sector with arc length of 2π units and a sector angle of $\frac{\pi}{3}$.

What is the area of the shaded sector?
(A) 6π
(B) 12π
(C) $\frac{\pi^{2}}{5400}$
(D) $\frac{\pi^{3}}{5400}$
$5 \quad$ Which of the following is the solution to $3^{x}=50$?
(A) $\quad x=1.70$
(B) $\quad x=3.56$
(C) $\quad x=3.60$
(D) $\quad x=3.91$
$6 \quad$ The diagram shows the graph of $y=f(x)$.

Which graph represents $f^{\prime}(x)$?
(A)

(B)

(C)

(D)

7 If $a>0$ and the function $f(x)=a x^{3}+b x^{2}+c x+d$ is always increasing, which of the following conditions must apply to a, b and c ?
(A) $b^{2}-a c<0$
(B) $b^{2}-2 a c<0$
(C) $b^{2}-3 a c<0$
(D) $b^{2}-4 a c<0$

8 The geometric series $a+a r+a r^{2}+a r^{3}+\cdots$ has limiting sum S.
What is the limiting sum of the geometric series $a^{2}+a^{2} r^{2}+a^{2} r^{4}+a^{2} r^{6}+\cdots$?
(A) S^{2}
(B) $\frac{a S}{1+r}$
(C) $\frac{S^{2}}{1+r}$
(D) $\frac{a S(1-r)}{1+r}$

9 Which of the following is a correct expression for $f^{\prime}(x)$, given $f(x)=\left[\ln \left(x^{2}+1\right)\right]^{3}$?
(A) $\frac{6 x}{x^{2}+1}$
(B) $\frac{8 x^{3}}{\left(x^{2}+1\right)^{3}}$
(C) $3\left[\ln \left(x^{2}+1\right)\right]^{2}$
(D) $\frac{6 x}{x^{2}+1}\left[\ln \left(x^{2}+1\right)\right]^{2}$

10 A particle is moving in a straight line. The acceleration/time graph is shown below.

If the particle was originally stationary at the origin, which of the following statements best describes the particle at point P ?
(A) $\quad P$ is stationary at a point on the right of the origin.
(B) $\quad P$ has positive velocity and negative acceleration.
(C) $\quad P$ has negative velocity and negative acceleration.
(D) $\quad P$ has negative velocity and zero acceleration.

Section II

90 marks
 Attempt Questions 11-16
 Allow about $\mathbf{2}$ hours and $\mathbf{4 5}$ minutes for this section

Answer each question in a new writing booklet.
In Questions 11-16, your responses should include relevant mathematical reasoning and/ or calculations.

Question 11 (15 marks) Start a new writing booklet.
(a) Solve $\frac{2 x}{3}-1=\frac{x}{2}$.
(b) Evaluate $\lim _{m \rightarrow 4}\left(\frac{2 m^{2}-9 m+4}{m^{2}-16}\right)$.
(c) If $(2 \sqrt{2}-\sqrt{6})^{2}=a-b \sqrt{3}$, find the values of a and b.
(d) Differentiate $\frac{3 x+2}{2 x^{3}-5 x^{2}}$.
(e) Solve the inequality $|2 x-3| \leq 3$.
(f) Evaluate $\int_{0}^{1} \frac{1}{2 x+1} d x$
(g) Find the equation of the tangent to the curve $y=2(\tan x-1)$ at the point $\left(\frac{\pi}{4}, 0\right)$.

Question 12 (15 marks) Start a new writing booklet.
(a) A gate is being installed for the drive-way of a home.

The gate consists of two steel panels that are exactly the same.
Each panel is 2 m in length and is divided into 4 equal intervals.

Using Simpson's rule with 5 vertical lengths, calculate the total area of the gate.
(b) Find the domain and range of $y=\sqrt{x^{2}-1}$
(c) Solve $8 \sin ^{2} x=\operatorname{cosec} x$ for $0 \leq x \leq 2 \pi$
(d) The roots of the equation $2 x^{2}-3 x+8=0$ are α and β.
(i) Find the value of $\alpha+\beta$.
(ii) Find the value of $\alpha \beta$.
(iii) Find the value of $\alpha^{2}+\beta^{2}$.
(e) The region bounded by the curve $y=e^{x}$ and the x axis between $x=0$ and $x=\log _{e} 3$ is rotated through one complete revolution about the x axis.

Find, in simplest exact form, the volume of the solid formed.

Question 13 (15 marks) Start a new writing booklet.
(a) The diagram shows the points $A(-2,5), B(4,3)$ and $O(0,0)$. The point C is the fourth vertex of the parallelogram $O A B C$.

(i) Show that the equation of $A B$ is $x+3 y-13=0$.
(ii) Show that the length of $A B$ is $2 \sqrt{10}$.
(iii) Calculate the perpendicular distance from O to $A B$.
(iv) Calculate the area of parallelogram $O A B C$.
(v) Find the coordinates of C.
(b) Consider the curve $y=-x^{3}+3 x+2$.
(i) Find the stationary points and determine their nature.
(ii) Find any point(s) of inflexion.
(c) Shade the region in the Cartesian plane which simultaneously satisfies the inequalities $y \geq 3^{x}$ and $y>4-x^{2}$.

Question 14 (15 marks) Start a new writing booklet.
(a) An aeroplane flies directly from town P to town Q. The distance from P to Q is 650 kilometres. The bearing of Q from P is 015°.

At town Q, the aeroplane turns onto a bearing of 040° and heads to town R which is 990 kilometres from town Q.

(i) Show that $\angle P Q R=155^{\circ} \quad 2$
(ii) Calculate the distance from town P to town R, correct to the nearest kilometre.
(b) The parabola $y=-x^{2}+6 x-5$ meets the x axis at points $A(1,0)$ and $B(5,0)$.

The line $y=-x+5$ meets the parabola at points B and $C(2,3)$.

Find the area of the shaded region.

Question 14 continues on page 11
(c) The diagram below shows the graph of $y=\cos (2 x)$ and $y=f(x)$ from $x=0$ to $x=2 \pi$.

The graph of $y=f(x)$ is a reflection of $y=\cos (2 x)$ across the line $y=1$.

Find the equation for the graph of $y=f(x)$.
(d) Consider the parabola $y=x^{2}-8 x+4$.
(i) Find the coordinates of the vertex.
(ii) Find the coordinates of the focus.
(e) In March 1958, 24 koalas were introduced on Kangaroo Island. By March 2018, the number of koalas had risen to 5000 .

Assume that the number N of koalas is increasing exponentially and satisfies the equation $N=24 e^{k t}$, where k is a constant and t is measured in years from March 1958.
(i) Show that $k=0.0890$, correct to 4 significant figures.
(ii) Predict the number of koalas that will be present on Kangaroo Island in 1 March 2024.

End of Question 14

Question 15 (15 marks) Start a new writing booklet.
(a) The point $P(x, y)$ moves such that the gradient of $A P$ is twice the gradient of $B P$, where the points A and B are $(0,-5)$ and $(-2,3)$ respectively.

Find the equation of the locus of P.
(b) A series is given by

$$
\log _{10} e+\log _{10} e^{2}+\log _{10} e^{3}+\cdots+\log _{10} e^{n}
$$

Show that this is an arithmetic series.
(c) $A B C D$ is a rectangle with $A B=12 \mathrm{~cm}$ and $A D=9 \mathrm{~cm} . A M$ is perpendicular to $B D$.

(i) Find the length of $B D$.
(ii) Prove that $\triangle A B M$ is similar to $\triangle D B A$.
(iii) Hence find the length of $B M$.
(d) At the start of the month, Katrina opens a bank account and deposits $\$ 300$ into the account.

At the start of each subsequent month, Katrina makes a deposit which is 1.5% more than the previous deposit.

At the end of every month, the bank pays Katrina interest at a rate of 3% per annum on the balance of the account.
(i) Show that the balance of the account at the end of the second month is

$$
\$ 300(1.0025)^{2}+\$ 300(1.015)(1.0025)
$$

(ii) Show that the balance of the account at the end of the $n^{\text {th }}$ month is given by

$$
\$ 300(1.0025)^{n}\left(\frac{\left(\frac{1.015}{1.0025}\right)^{n}-1}{\left(\frac{1.015}{1.0025}\right)-1}\right)
$$

(iii) Calculate the balance of the account at the end of the $60^{\text {th }}$ month, correct to the nearest dollar.

End of Question 15

Question 16 (15 marks) Start a new writing booklet.
(a) A particle travelling in a straight line is initially at rest.

Its acceleration as a function of time t (seconds), is given by $a=4 \sin 2 t$.
(i) Show that the velocity of the particle is given by $v=2-2 \cos (2 t)$
(ii) Sketch the graph of the velocity as a function of time, for $0 \leq t \leq \pi$
(iii) Explain why the particle never changes direction.
(iv) Find the total distance travelled in the first π seconds.
(b) (i) Find $\frac{d}{d x}[x \tan x+\log (\cos x)]$.
(ii) Hence find $\int_{0}^{\frac{\pi}{4}}\left(x \sec ^{2} x-\frac{\sin x}{\cos x}\right) d x$.
(c) The diagram below shows a cylinder of radius $x \mathrm{~cm}$ and height $y \mathrm{~cm}$, inscribed in a cone. The cone has a radius of 8 cm and its height is 12 cm .

(i) Show that $y=\frac{3}{2}(8-x)$.
(ii) Show that the volume of the cylinder is given by $V=\frac{3}{2} \pi x^{2}(8-x) \mathrm{cm}^{3}$.
(iii) Find the value of x for which the volume is a maximum.

End of paper

$$
\text { e) } \begin{aligned}
V & =\pi \int_{0}^{\log _{e} 3}\left(e^{x}\right)^{2} d x \\
& =\pi \int_{0}^{\ln 3} e^{2 x} d x \\
& =\frac{\pi}{2}\left[e^{2 x}\right]_{0}^{\ln 3} \\
& =\frac{\pi}{2}\left[e^{2 \ln 3}-e^{0}\right] \\
& =\frac{\pi}{2}\left[e^{\ln 9}-e^{0}\right] \\
& =\frac{\pi}{2}[9-1] \\
& =4 \pi \text { units }^{3}
\end{aligned}
$$

$\left[\frac{\left(\frac{1.015}{1.0025}\right)^{60}-1}{\left(\frac{1.015}{1.0025}\right)-1}\right]$
300×1.0025^{60}
$=\$ 30835.37$
$\approx \$ 30835$
(ii) A_{b}

