

2020

Trial Higher School Examination Mathematics Advanced

	 Reading time – 10 minutes 					
General Instructions	• Working time – 3 hours					
	Write using black pen					
	Calculators approved by NESA may be used					
	 A reference sheet is provided at the back of this paper 					
	 For questions in Section II, show relevant mathematical reasoning and/or calculations 					
	Section I – 10 marks (pages 2-4)					
Total marks: 100	Attempt Questions 1-10					
	 Allow about 15 minutes for this section 					
	Section II – 90 marks (pages 5-24)					
	Attempt Questions 11-32					
	 Allow about 2 hours and 45 minutes for this section 					

Section I

10 marks Attempt questions 1 - 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for questions 1-10

1. What is the value of $\operatorname{cosec} \frac{\pi}{3}$ to three significant figures?

- (A) 1.00
- (B) 1.15
- (C) 1.41
- (D) 2.00
- 2. What is the value of *c* for which the circle $(x-3)^2 + (y-2)^2 = c$ touches the *x* axis?
 - (A) 2
 - (B) 3
 - (C) 4
 - (D) 9

3. What is the equation of the tangent to $y = x^2 - 3$ at x = -1?

- (A) y = -2x 4
- (B) y = 2x 4
- (C) $y = \frac{x}{2} \frac{3}{2}$ (D) $y = -\frac{x}{2} - \frac{3}{2}$

- 4. Which statement is true for an ungrouped data set with no outliers?
 - (A) The largest possible range is 2 times the interquartile range.
 - (B) The largest possible range is 3 times the interquartile range.
 - (C) The largest possible range is 4 times the interquartile range.
 - (D) The largest possible range is 5 times the interquartile range.
- 5. Which one of the following is the set of all solutions to $2x^2 5x + 2 \ge 0$?
 - (A) $\left[\frac{1}{2}, 2\right]$
 - (B) $\left(\frac{1}{2},2\right)$
 - (C) $\left(-\infty,\frac{1}{2}\right)\cup\left(2,\infty\right)$
 - (D) $\left(-\infty,\frac{1}{2}\right]\cup\left[2,\infty\right)$
- 6. The graph of y = f(x) has a stationary point at (2, -3).

Which one of the following is a guaranteed stationary point of $y = -f\left(\frac{x}{2}\right) - 5$?

- (A) (1, -2)
- (B) (1,2)
- (C) (4, -2)
- (D) (4,2)

- 7. What is the period and amplitude for the curve $y = \sin \pi x$?
 - (A) Amplitude = 1; Period = 2
 - (B) Amplitude = π ; Period = 2
 - (C) Amplitude = 1; Period = 2π
 - (D) Amplitude = π ; Period = 2π

8. If the *z* scores on an examination are normally distributed and P(z < N) = 0.6 for some number *N*, what is the value of P(-N < z < N)?

- (A) 0.1
- (B) 0.2
- (C) 0.3
- (D) 0.4
- 9. Which one of the following equations is NOT correct?

(A)
$$\int x (x^{2} - 1)^{2} dx = \frac{(x^{2} - 1)^{3}}{6} + c$$

(B)
$$\int_{-3}^{3} \sqrt{9 - x^{2}} dx = \frac{9\pi}{2}$$

(C)
$$\int_{-1}^{1} 3^{x} dx = \frac{1}{\ln 3} \left(3 - \frac{1}{3} \right)$$

(D)
$$\int_{-5}^{5} 4x^{4} - x^{3} + \cos x \, dx = 0$$

10. Consider the series $\sqrt{5} + \sqrt{45} + \sqrt{125} + \dots + z = 225\sqrt{5}$, the value of z is:

- (A) $25\sqrt{5}$
- (B) $29\sqrt{5}$
- (C) $30\sqrt{5}$
- (D) $35\sqrt{5}$

Section II

90 marks Attempt all questions Allow about 2 hours and 45 minutes for this section

Answer each question in the spaces provided.

Your responses should include relevant mathematical reasoning and/or calculations. Extra writing space is provided at the back of the examination paper.

Question 11 (2 marks)

Marks

2

What angle does the line 2x + 3y + 6 = 0 make with the positive *x*-axis? Round to the nearest minute.

Question 12 (2 marks)

Sketch a possible function which could have the gradient function as graphed below.

Question 13 (3 marks)

In triangle *ABC*, the length of *AB*=5cm, *AC*=13cm and $\cos\langle BAC = \frac{1}{8}\rangle$ А 5cm 13cm C В 2 (a) Find the exact value of sin (BAC (b) Find the area of triangle ABC 1 Question 14 (3 marks) Solve $2\log x = \log(5x+6)$ 3 ----------

stion 15 (3 marks)	Marks
$ 1 - 2\cos^2 x = 1$ for $0 \le x \le 2\pi$	3
rentiate the following expressions.	Marks
log ₅ (tan x)	2
	3
	stion 15 (3 marks) $ 1 - 2\cos^2 x = 1$ for $0 \le x \le 2\pi$ stion 16 (5 marks) rentiate the following expressions. $\log_5(\tan x)$ $\frac{2^s}{e^s}$

Question 17 (5 marks)

3

Question 18 (5 marks)

The discrete random variable X has probability distribution shown in the table below

x	-1	0	1	2	3
P(X=x)	а	b	0.2	0.15	0.13

and E(X) = 0.55

(a) By forming a pair of simultaneous equations, or otherwise, find the values of *a* and *b*. **3**

......

Question 19 (2 marks)

The length of steel rods produced by a machine is normally distributed with a standard deviation of 3 mm. It is found that 2.5% of all rods are less than 25 mm long. Find the mean length of rods produced by the machine.

Question 20 (8 marks)

Consider the function $f(x) = x^3 + 6x^2 + 9x + 4$ in the domain $-4 \le x \le 1$

3

2

Marks

2

		10. 2010 (2010) (201	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	and a second	aanga ahayaa ahaa ahaa ahaa ahaa ahaa ahaa			and Harden and an approximation of the second
Determine the	coordinates of i	ts point(s) o	f inflexion.		
Determine the	coordinates of i	ts point(s) o	f inflexion.		
Determine the	coordinates of i	ts point(s) o	f inflexion.		

Question 20 continued on next page

Question 20 continued

Marks

(c) Draw a sketch of the curve y = f(x) in the domain $-4 \le x \le 1$ clearly showing all **2** essential features.

Question 21 (2 marks)

The diagram shows the graph of $y = a \sin(bx) + c$ for $0 \le x \le 2\pi$, where *a*, *b* and *c* are positive integers.

2

Marks

Find the values of *a*, *b* and *c*.

Question 22 (5 marks)

2

A pet ownership survey resulted in the following results:

$$P(C) = \frac{3}{7}$$
, $P(D | \overline{C}) = \frac{2}{5}$, and $P(\overline{D} | C) = \frac{3}{4}$.

Where C is the event that "a person has a cat" and D is the event that "a person has a dog"

(a) Complete the probability tree by marking a probability on each branch.

Marks

Question 23 (5 marks)

The function *f* is defined by $f(x) = 2 + \sqrt{x-3}$ for $x \ge 3$. The function *g* is defined by $g(x) = \frac{12}{x} + 2$ for x > 0

(a) Write the domain and range of the function f using interval notation.
 3
 (b) Write an expression for the composite function h(x) = g(f(x)) and hence find a value for g(f(12))
 2

Question 24 (5 marks)

The diagram shows the graphs $y = \sin x$ and $y = \cos x$, $0 \le x \le 2\pi$. The graphs intersect at *A* and *B*.

3

Question 24 continued

(b) Find the area enclosed by the two graphs.

Marks

Question 25 (3 marks)

In the diagram, the points A(-5,3), B(2,2) and C(1,-5) are shown.

Marks

2

3

Question 26 (5 marks)

A particle is moving in a straight line. Its velocity for $t \ge 0$ is given by $v = \frac{4}{t+1} - 2t$, where time is in seconds and displacement in metres.

Find when the particle changes direction.
Find the exact distance travelled in the first 2 seconds.

Question 27 (6 marks)

Marks

The continuous random variable X has probability density function f(x) given by

$$f(x) = \begin{cases} k(x^2 - 2x + 2) & 1 \le x \le 4\\ 0 & otherwise \end{cases}$$

Where k is a constant

	and an order of the state of the	
	annes super a superior and an annual annual annual annual annual super annual super a super annual superior ann	
Fully define the c	umulative distribution function <i>I</i>	F(x).
anahanan ar ang kana kana kana kana kana kana kana		
nan nan a mata ya sana ana ana ana ana ana ana ana ana a		erer og se til 1. Henselsensensensensensensensensensensensensens
	a and an	an a
		ант Маландин I Гарри I (тур одного должно собрани собрани собрани и собрани собрани собрани собрани собрани со Област - дар 2014 години собрани
	annan ar an	
		NUMBER OF A STREET S

	Question 27 continued
	Show that the median of X lies between $x = 3.2$ and $x = 3.3$

Question 28 (3 marks)

Mar	'ks
-----	-----

Cons	sider the geometric series $1 + \frac{4}{3}\sin^2 x + \frac{16}{9}\sin^4 x + \frac{64}{27}\sin^6 x +$
(a)	When the limiting sum exists, find an expression for its value.
(b)	For what values of x in the interval $0 < x < \frac{\pi}{2}$ does the limiting sum of this series
	exist?
)ues	stion 29 (4 marks)
a)	Find $\int \sec^2(2x)\tan^4(2x)dx$
b)	Find $\int \frac{5x^2}{dx} dx$
	$\int x^3 + 1$

Question 30 (4 marks)

2

Luke suspects that the rate at which he spends cash is affected by the amount of cash he withdrew at his previous visit to an ATM.

The table below shows the amount of cash withdrawn, x, from an ATM, and the time, y hours, until Luke's next withdrawal from an ATM.

Withdrawal	1	2	3	4	5	6	7	8	9	10
x	40	10	100	110	120	150	20	90	80	130
у	56	62	195	330	94	270	48	196	214	286

(a) Find the equation of the least squares regression line for y in terms of x, for the withdrawals 1 to 10 and hence estimate how much cash (to the nearest \$10) Luke would need to withdraw from the ATM at his previous visit in order to not need to visit an ATM again for 120 hours.

(b) Calculate the correlation coefficient between *x* and *y* for the withdrawals 1 to 10. Describe the nature of the correlation.

Question 31 (4 marks)

Marks

The table below shows the future values of an annuity, for different rates of interest and for different numbers of compounding periods, where contributions of \$1 are made at the end of each compounding period.

n	1%	2%	3%	4%	5%	6%
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	2.0100	2.0200	2.0300	2.0400	2.0500	2.0600
3	3.0301	3.0604	3.0909	3.1216	3.1525	3.1836
4	4.0604	4.1216	4.1836	4.2465	4.3101	4.3746
5	5.1010	5.2040	5.3091	5.4163	5.5256	5.6371
6	6.1520	6.3081	6.4684	6.6330	6.8019	6.9753

Table of future value interest factors

(a) An annuity account is opened and contributions of \$1200 are made at the end of each half year for 3 years at an interest rate of 4% p.a. compounding half yearly. Calculate the final amount in the account immediately after the last contribution is made.

(b) Calculate the single lump sum amount that would need to be invested at the start
 2 to reach the same final amount at the end of the 3 years with the same interest rate of 4% compounding half yearly.

Question 32 (6 marks)

Marks

An open cone, of radius r cm and height h cm is made from a sector of a circle. The area of the sector used is 300 cm²

Figur	e 1 $Figure 2$
(a)	Show from Figure 1 that the slant height <i>l</i> is given by $l^2 = \frac{450}{\pi}$
(b)	In Figure 2 it is given that $h = \sqrt{l^2 - r^2}$ (do not prove this). Show that the volume of the cone is given by $V = \frac{1}{3}r^2\sqrt{450\pi - \pi^2r^2}$
	Question 32 continued on next page

2

Question 32 continued

Hence or othe	erwise find t	he value of <i>i</i>	r for the vol	ume of the o	cone to be a	maxim
nence of othe		ic vulue of /	ioi die voi	unie of the t		
					1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	111 B 100 B 1000 B 100 B
				Wheel Her Brown of Brownshield		
						11 11 11 11 11 11 11 11 11 11 11 11 11
						88()9798()))))
1						
				a constraint of the second a second at	an faran ann an Anna Maria a	ndesertaries nation-water to t
1 11 13 14 14 1 1 1 1 1 1 1 1 1 1 1 1 1						
		1999 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19 		******		
				Analasia. 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199		
		******	an angenes to any fistalitato atom anana an an			Frank 1999 - 1 - 1 - 1

Section I

10 marks Attempt questions 1 - 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for questions 1-10

1. What is the value of $\operatorname{cosec} \frac{\pi}{3}$ to three significant figures?

- 1.00 (A) (B)
- 1.15
- (C) 1.41
- (D) 2.00
- What is the value of *c* for which the circle $(x-3)^2 + (y-2)^2 = c$ touches the *x* axis? 2.
 - (A) 2
 - (B) 3
 - (C)4
 - 9 (D)
- 3. What is the equation of the tangent to $y = x^2 3$ at x = -1?

(A)
$$y = -2x - 4$$

(B) $y = 2x - 4$
(C) $y = \frac{x}{2} - \frac{3}{2}$
(D) $y = -\frac{x}{2} - \frac{3}{2}$

- 4. Which statement is true for an ungrouped data set with no outliers?
 - (A) The largest possible range is 2 times the interquartile range.
 - (B) The largest possible range is 3 times the interquartile range.
 - (C) The largest possible range is 4 times the interquartile range.
 - (D) The largest possible range is 5 times the interquartile range.
- 5. Which one of the following is the set of all solutions to $2x^2 5x + 2 \ge 0$?

(A)
$$\left[\frac{1}{2}, 2\right]$$

(B) $\left(\frac{1}{2}, 2\right)$
(C) $\left(-\infty, \frac{1}{2}\right) \cup (2, \infty)$
(D) $\left(-\infty, \frac{1}{2}\right] \cup [2, \infty)$

6. The graph of y = f(x) has a stationary point at (2, -3).

Which one of the following is a guaranteed stationary point of $y = -f\left(\frac{x}{2}\right) - 5$?

- (A) (1, -2)
- (B) (1,2)
- (4,-2)
- (D) (4,2)

- 7. What is the period and amplitude for the curve $y = \sin \pi x$?
 - (A) Amplitude = 1; Period = 2
 - (B) Amplitude = π ; Period = 2
 - (C) Amplitude = 1; Period = 2π
 - (D) Amplitude = π ; Period = 2π
- 8. If the *z* scores on an examination are normally distributed and P(z < N) = 0.6 for some number *N*, what is the value of P(-N < z < N)?
 - (A) 0.1
 (B) 0.2
 (C) 0.3
 (D) 0.4
- 9. Which one of the following equations is NOT correct?

(A)
$$\int x (x^{2} - 1)^{2} dx = \frac{(x^{2} - 1)^{3}}{6} + c$$

(B)
$$\int_{-3}^{3} \sqrt{9 - x^{2}} dx = \frac{9\pi}{2}$$

(C)
$$\int_{-1}^{1} 3^{x} dx = \frac{1}{\ln 3} \left(3 - \frac{1}{3} \right)$$

(D)
$$\int_{-5}^{5} 4x^{4} - x^{3} + \cos x \, dx = 0$$

10. Consider the series $\sqrt{5} + \sqrt{45} + \sqrt{125} + \ldots + z = 225\sqrt{5}$, the value of z is:

(D) 35√5

Section II

90 marks Attempt all questions Allow about 2 hours and 45 minutes for this section

Answer each question in the spaces provided.

Your responses should include relevant mathematical reasoning and/or calculations. Extra writing space is provided at the back of the examination paper.

Question 11 (2 marks)

Marks

What angle does the line $2x + 3y + 6 = 0$ make with the positive <i>x</i> -axis? Round to the nearest	2
minute. $m = -\frac{2}{3}$	4
$d = 146^{\circ}19^{\prime}$	

Question 12 (2 marks)

Sketch a possible function which could have the gradient function as graphed below.

Question 13 (3 marks)

(a)

2

1

3

In triangle *ABC*, the length of *AB*=5cm, *AC*=13cm and $\cos\langle BAC = \frac{1}{8}\rangle$

(b) Find the area of triangle ABC

Question 14 (3 marks)

Solve $2\log x = \log(5x+6)$

Marks

Marks

Question 15 (3 marks)

Solve $|1-2\cos^2 x| = 1$ for $0 \le x \le 2\pi$ $1-2\cos^2 x = 1$ $2\cos^2 x = 0$ $\cos^2 x = 0$ $x = \frac{1}{2}, \frac{3\pi}{2}$ $x = 0, \pi, 2\pi$ $\therefore x = 0, \frac{\pi}{2}, \frac{3\pi}{2}, 2\pi$

Question 16 (5 marks)

Differentiate the following expressions.

2 (a) $\log_5(\tan x)$ da (log (tan x)) = secou - 2C 3 (b) $\frac{2^x}{e^x}$ 2.270 = 102.2 x 102 - 122

Question 17 (5 marks)

3

2

Consider the graph y = f(x). Both arcs have a radius of four units.

Question 18 (5 marks)

The discrete random variable X has probability distribution shown in the table below

x	-1	0	1	2	3
P(X=x)	а	b	0.2	0.15	0.13

and E(X) = 0.55

(a) By forming a pair of simultaneous equations, or otherwise, find the values of *a* and *b*. **3**

Question 19 (2 marks)

Marks

2

The length of steel rods produced by a machine is normally distributed with a standard deviation of 3 mm. It is found that 2.5% of all rods are less than 25 mm long. Find the mean length of rods produced by the machine.

0=3 x=25 3=-2 $\frac{1}{3} - 2 = \frac{25 - \mu}{3}$ IS-1 =- 6 M = 31

Question 20 (8 marks)

Consider the function $f(x) = x^3 + 6x^2 + 9x + 4$ in the domain $-4 \le x \le 1$

(a) Find the coordinates of any stationary points and determine their nature. 3 $'(x) = 3x^2 + 12x + 9$ f''(x) = 6x + 12stat. pts at f'(x) = 0 $3(x^2 + 4x + 3) = 0$ $(243)(\pi+1)=0$ 2c = -1= -18+1220 max turning ter (b) Determine the coordinates of its point(s) of inflexion. 2 poss. pt. inflex at y 62+12=0 x=-2 . chen in concavit : pt. infl

Question 20 continued on next page

Question 20 continued

Marks

1

(c) Draw a sketch of the curve y = f(x) in the domain $-4 \le x \le 1$ clearly showing all **2** essential features.

(d) What is the global maximum value of the curve in the domain $-4 \le x \le 1$

Question 21 (2 marks)

The diagram shows the graph of $y = a \sin(bx) + c$ for $0 \le x \le 2\pi$, where *a*, *b* and *c* are positive integers.

Marks

Find the values of *a*, *b* and *c*.

Question 22 (5 marks)

Marks

2

1

A pet ownership survey resulted in the following results:

$$P(C) = \frac{3}{7}$$
, $P(D | \overline{C}) = \frac{2}{5}$, and $P(\overline{D} | C) = \frac{3}{4}$

Where C is the event that "a person has a cat" and D is the event that "a person has a dog"

(a) Complete the probability tree by marking a probability on each branch.

Question 23 (5 marks)

The function *f* is defined by $f(x) = 2 + \sqrt{x-3}$ for $x \ge 3$. The function *g* is defined by $g(x) = \frac{12}{x} + 2$ for x > 0

~ ((())) -

(a) Write the domain and range of the function *f* using interval notation.

+2

(b) Write an expression for the composite function h(x) = g(f(x)) and hence find a value for g(f(12)) $g(f(x)) = \frac{12}{2+\sqrt{x-3}} + 2$

$$= \frac{22}{5}$$

Question 24 (5 marks)

The diagram shows the graphs $y = \sin x$ and $y = \cos x$, $0 \le x \le 2\pi$. The graphs intersect at *A* and *B*.

Question 24 continued on next page

Marks

3

3

Question 24 continued

(b) Find the area enclosed by the two graphs.

Solve TCRL B. +an x = 1for SIT :.. x= 5114 dre A= Sinx -- 605 20 T 4 STIL LOS 7 - SINJE = TI 517/4 2 +5102 + 7 = 2 =

Question 25 (3 marks)

In the diagram, the points A(-5,3), B(2,2) and C(1,-5) are shown.

Marks

Question 26 (5 marks)

A particle is moving in a straight line. Its velocity for $t \ge 0$ is given by $v = \frac{4}{t+1} - 2t$, where time is in seconds and displacement in metres.

(a) Find when the particle changes direction.

$$\begin{array}{c} \text{Change direction et } v=0 \\ \hline \begin{array}{c} 4 \\ -2t=0 \\ \hline t+1 \\ \end{array} & \begin{array}{c} t=-2,1 \\ t=-2,1 \\ +2t^2-2t=0 \\ \end{array} & \begin{array}{c} t=1 \\ \hline t^2+t-2=0 \\ \end{array} \end{array}$$

(b) Find the exact distance travelled in the first 2 seconds.

2

Question 27 (6 marks)

3

The continuous random variable X has probability density function f(x) given by

$$f(x) = \begin{cases} k(x^2 - 2x + 2) & 1 \le x \le 4\\ 0 & otherwise \end{cases}$$

Where k is a constant

(b) Fully define the cumulative distribution function F(x).

For
$$1 \le x \le 4$$

 $f(x) = \frac{1}{12} \int (x^2 - 2x + 2) dx$
 $= \frac{1}{12} \left[\frac{x^3}{5} - x^2 + 2x \right]^{-1}$
 $= \frac{1}{12} \left[\frac{x^3}{5} - x^2 + 2x - (\frac{1}{3} - 1 + 2) \right]$
 $= \frac{1}{12} \left[\frac{x^3}{5} - x^2 + 2x - \frac{4}{3} \right]$
 $= \frac{2^3}{35} - \frac{x^2}{12} + \frac{x}{5} - \frac{1}{4}$
 $\therefore F(x) = \left(\begin{array}{c} 0 & x \le 1 \\ \frac{x^3}{35} - \frac{x^2}{12} + \frac{x}{5} - \frac{1}{4} \\ \frac{1}{35} - \frac{x^2}{12} + \frac{x}{5} - \frac{1}{5} \\ \frac{1}{35} - \frac{x^2}{12} + \frac{x}{5} \\ \frac{1}{35} - \frac{x}{5} \\ \frac{1}{35} \\ \frac{1}{35} - \frac{x}{5} \\ \frac{1}{35} \\ \frac{1}{35} - \frac{x}{5} \\ \frac{1}{35} \\ \frac$

1

	F(3,2) =	3.23	$\frac{3.2}{12}$ +	3.2 -1
	~	0.479	40.5	4
	F(3.3) =	3.33 _	3.32	3.3 1
*******		36	12	6 0
1141-24-44-14	~ 0.	5296 .	>0.5	
	F(median)=0.5		
	i. media	- lies	betwee	x = 3.

2

Question 28 (3 marks) Marks Consider the geometric series $1 + \frac{4}{3}\sin^2 x + \frac{16}{9}\sin^4 x + \frac{64}{27}\sin^6 x + \dots$ When the limiting sum exists, find an expression for its value. (a) 1 r= 4 sin 2 3C $S_{a} = 1 - \frac{1}{4} \sin^{2} 2c$ a=1 2 (b) For what values of x in the interval $0 < x < \frac{\pi}{2}$ does the limiting sum of this series exist? $exists for |r| |L| ie -|L| |L| |4 sin^2 x |L| ie -|L| |4 sin^2 x |L| ie -|L| |4 sin^2 x |L| |L| |4 sin^2 x |L$ $0 < \frac{4}{3} \sin^2 x < 1 \quad \text{in Q1}$ $0 < \sin^2 x < \frac{3}{4}$ 53 0 < sinx < :. セイルと生 Question 29 (4 marks) Find $\int \sec^2(2x) \tan^4(2x) dx$ 2 (a) = 1/2 Sec2 (22) tan 4 (22) dx $=\frac{1}{2}\tan^{5}(2x) + c$ $= \frac{\tan^{5}(2\pi)}{\pi} + c$

(b) Find $\int \frac{5x^2}{x^3+1} dx$ +1 dae $\ln |x^{3}+1| + c$ =

Question 30 (4 marks)

Marks

2

Luke suspects that the rate at which he spends cash is affected by the amount of cash he withdrew at his previous visit to an ATM.

The table below shows the amount of cash withdrawn, x, from an ATM, and the time, y hours, until Luke's next withdrawal from an ATM.

Withdrawal	1	2	3	4	5	6	7	8	9	10
x	40	10	100	110	120	150	20	90	80	130
у	56	62	195	330	94	270	48	196	214	286

(a) Find the equation of the least squares regression line for *y* in terms of *x*, for the withdrawals 1 to 10 and hence estimate how much cash (to the nearest \$10) Luke would need to withdraw from the ATM at his previous visit in order to not need to visit an ATM again for 120 hours.

(b) Calculate the correlation coefficient between *x* and *y* for the withdrawals 1 to 10. Describe the nature of the correlation.

positive Stron - 10 correlation

Question 31 (4 marks)

Marks

The table below shows the future values of an annuity, for different rates of interest and for different numbers of compounding periods, where contributions of \$1 are made at the end of each compounding period.

n	1%	2%	3%	4%	5%	6%
1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2	2.0100	2.0200	2.0300	2.0400	2.0500	2.0600
3	3.0301	3.0604	3.0909	3.1216	3.1525	3.1836
4	4.0604	4.1216	4.1836	4.2465	4.3101	4.3746
5	5.1010	5.2040	5.3091	5.4163	5.5256	5.6371
6	6.1520	6.3081	6.4684	6.6330	6.8019	6.9753

Table of future value interest factors

(a) An annuity account is opened and contributions of \$1200 are made at the end of
 each half year for 3 years at an interest rate of 4% p.a. compounding half yearly.
 Calculate the final amount in the account immediately after the last contribution is made.

FV = 1200 x 6.3081 r= 2% half year = \$7569.72 n=6 ۲. המשפט הנוסר באוויים המשפט המשפט היינים המשפט היינים המשפט היינים המשפט היינים המשפט היינים היינים היינים המשפט

(b) Calculate the single lump sum amount that would need to be invested at the start
 2 to reach the same final amount at the end of the 3 years with the same interest rate of 4% compounding half yearly.

 756	9.77	2 =	P(1.	02)6		
		o_\$	472		2000 - 1998 - 1998 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 	
 			• / ~	1-69		

Question 32 (6 marks)

Marks

An open cone, of radius r cm and height h cm is made from a sector of a circle. The area of the sector used is 300 cm²

(a) Show from Figure 1 that the slant height *l* is given by $l^2 = \frac{450}{2}$ 2 A=210 300 3 2 Π (211 -50 Π In Figure 2 it is given that $h = \sqrt{l^2 - r^2}$ (do not prove this). (b) 2 Show that the volume of the cone is given by $V = \frac{1}{3}r^2\sqrt{450\pi - \pi^2 r^2}$ TTC2h V = 4 SDT Question 32 continued on next page

1

5

2

Question 32 continued

I [.] H	It is known that $\frac{dr}{dr} = \frac{500R^2 - R^2 r}{\sqrt{450\pi - \pi^2 r^2}}$ (do not prove this). Hence or otherwise, find the value of <i>r</i> for the volume of the cone to be a maxim
sentile	shat of at dV

heartann	$300\pi r - \pi r^{2} = 0$
*****	$\pi r (300 - \pi r^2) = 0 (70)$
******	$\pi r^2 = 300$
Terahar	$\frac{1}{\pi}$
0.000	$r = \sqrt{300} = 1053$

	C /290 / 300 320 TT / TT
	dV J= 13.46 0 -31.38
	i. max vol a
4-414.004	
147963485 Per 19996	
\$ 64143334	
17684411	•