STUDENT NUMBER: _____

STUDENT NAME: _____

THE HILLS GRAMMAR SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

2008

MATHEMATICS 2 UNIT ADVANCED

Teacher Responsible:

Mr K McClure

General Instructions:

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen.
- Marks may be deducted for careless, untidy or badly arranged work.
- Board approved calculators may be used.
- A table of standard integrals is supplied at the back of this paper.
- ALL necessary working should be shown in every question.
- Start each question in a new booklet.

Total marks – 120

- Attempt Questions 1-10
- All questions are of equal value.

Students are advised that this is a Trial Examination only and cannot in any way guarantee the content or the format of the Higher School Certificate Examination.

$$4(x-2) - 3(x-5) = 17$$

Calculate the sum to infinity of the series b)

$$2 + 1 + \frac{1}{2} + \frac{1}{4} + 2$$

c) Solve the equation
$$2x^2 + 7x - 15 = 0$$
 2

Find the perpendicular distance of the point (10, -2) from d) the line 3x + 4y - 7 = 02

e) Rationalise the denominator of
$$\frac{1}{2\sqrt{2}-1}$$
 2

The sector of a circle of radius 4 cm subtends an angle of $\frac{5\pi}{18}$ f) radians at the centre. Find the arc-length subtended by this angle. 2 Give your answer to 1 decimal place.

Question 2 (12 Marks)

a) Differentiate with respect to *x* and fully simplify your answer.

i)
$$y = x^2 e^x$$
 2

ii)
$$y = \frac{\sin x}{\cos x}$$
 2

b)

i) Find
$$\int \frac{x^2 + 1}{x^3 + 3x} dx$$
 2

- ii) Find the area under the curve $f(x) = \frac{2}{1-3x}$ from x = 2 to x = 1Leave your answer in exact form.
- c) The equation of the curve C is given by $y = \frac{4}{x}$. Find the equation of the tangent to the curve C at the point P(1, 4) 3

Question 3 (12 Marks) Marks Plot the points A (3, 3) B (8, 0) C (-1, 1) and D (-6, 4) 1 a) i) ii) Find the co-ordinates of the point of intersection of the lines AC and BD. 4 b) The first four terms of an arithmetic progression are 5, 11, 17 and 23. the 30th term Find i) 1 the sum of the first 30 terms. 2 ii) The sum to infinity of a geometric progression is 7 and the sum of the c) first two terms is $\frac{48}{7}$. Show that the common ration, r, satisfies the equation $1 - 49r^2 = 0$ 2 i)

ii) Find the first term of the geometric progression with a positive common ratio.

Question 4 (12 Marks)

c)

a) Solve
$$\cos^2 \theta = \frac{1}{2}$$
 for θ where $0^\circ \le \theta \le 360^\circ$ 3

b) Solve the equation
$$x^4 + 5x^2 - 14 = 0$$

(hint, let $m = x^2$)

- ii) The area of the shaded region
- d) Find the equation of the tangent to the curve $f(x) = \frac{1}{x^2}$ at the point P(-1, 1)

3

2

2

Question 5 (12 Marks)

- a) Find the values of the constant k given that the equation (5k + 1)x² 8kx + 3k = 0 has equal roots.
 b) Find the maximum area of a rectangle which has a perimeter of 28 units by first constructing a formula for area (A) in terms of the length of one side (x).
 c) Determine the intervals for which the function f(x) = x⁴ 8x² 3 is increasing and decreasing.
 - d) Find the area enclosed between the curve $y=x^2 2x 3$ and the line y = x + 1

Question 6	(12 Marks)	Marks
a)	Solve the equation $3^x = 10$ for <i>x</i> (to 1 decimal place).	2
b)	Consider the curve given by $f(x) = x^4 - 4x^3$.	
	i) find the stationary points	2
	ii) determine the nature of the stationary points	2
	iii) find any points of inflexion	1
	iv) sketch the curve clearly showing all relevant points.	2

c)	Find the centre and the radius of the circle $x^2 + y^2 + 2x - 4y - 4 = 0$	3
----	--	---

ii)	state the vertex	1		
iii)	state the focus	1		
iv)	find the equation of the directrix	1		
The are is rotat solid g	ea enclosed between the curve $y = 4 - x^2$ and the line $y = 4 - 2x$ ed through 2π radians about the x-axis. Find the volume of the enerated, leave your answer in terms of π .	4		
Consider the equation $y = 3\cos 2\theta$ for θ where $0^\circ < \theta < 360^\circ$				
i)	state the amplitude of the curve	1		
ii)	find the period of the curve	1		
iii)	Make a neat sketch of the curve	1		

Express $y = x^{2} + 6x + 6$ in the form $(x-h)^{2} = 4a (y-k)$

Question 7 (12 Marks)

a)

b)

c)

i)

a) Find the equation of the normal to the curve $y = \ln\left(\frac{x-1}{x+1}\right)$ at the point *P* where x = 3

- b) Using Simpson's rule with 5 ordinates, find an approximation for the area under the curve $f(x) = e^{-2x}$ between x=1 and x=3
- c) Solve the equation $4\cos^2 \theta + 3\sin \theta = 4$ where $0^\circ \le \theta \le 360^\circ$ (Hint: let $\cos^2 \theta = 1 - \sin^2 \theta$) 3

d) Find
$$\frac{dy}{dx}$$
 given that $y = \sqrt{6+x}\sqrt{3-2x}$ 3

3

Question 9 (12 Marks)

a) A particle moves in a straight line and at any time *t* seconds $(t \ge 0)$, its displacement from a fixed point 0 on the line

is given by $x(t) = 4 + 2 \cos \frac{\pi}{5}t$, $0 \le t \le 20$

i) Sketch the graph of the displacement against time.

3

ii) Find when the velocity of the particle is zero.

3

b) The population P(t) of persons in a new suburb increases at a rate given by the equation $\frac{dP}{dt} = kP$, where k is a constant

and t is the time in years. The population of the suburb is expected

to double every fifteen years.

It may be assumed that $P = P_0 e^{kt}$ where P_0 is the initial population.

i) Find the value of *k* .Leave your answer in exact form.
2
ii) In which year will the suburb attain a population four times that which it had at the beginning of the year 2000?
2
iii) It is known the population of the suburb at the beginning of the year 2000 was 30,000. What is the population expected to be in the year 2035?
2

Question 10 (12 Marks)

- a) A piece of wire of length 1 m is cut into two parts and each part is bent to form a square. If the total area of the two squares formed is 325 cm^2 , find the perimeter of each square.
- b) A closed, right circular cylinder of base radius r cm and height h cm has a volume of 54 π cm³.
 - i) Show that S, the total surface area of the cylinder is given by $S = \frac{108\pi}{r} + 2\pi r^2$

ii) Hence find the radius and height which make the surface area minimum.

3

3

END OF EXAMINATION

-Q(a) 4x - 8 - 3x + 15 = 17x + 7 = 17= 4 c) (2x-3)(x+5)=0 x=3/a, -5 $m(Ac) = \frac{1}{2} \qquad m(DB) = -2$ d) d = $\frac{30-8-7}{\sqrt{3^2+4^2}} = \frac{15}{5} = 3$ $\frac{z_{y}}{z_{y}} = -3 \qquad \qquad y = -2x$ $\frac{1}{\sqrt{2}-1} \times \frac{2\sqrt{2}+1}{\sqrt{2}+1} = \sqrt{2}\sqrt{2}+1$ $\frac{y}{y} = -\frac{2x}{7} + \frac{2^{3/7}}{7}$ $\frac{S_{0}|_{x_{y}}}{2x-2y} = -3} = \frac{2x-4y}{2x-4y} = -6$ $\frac{2x+7y}{2x+7y} = 16} = \frac{2x+7y}{2x+7y} = 16$ $f) l = v \theta = 4 \times ST = 3.5$ $(22) \frac{y'}{y'} = e^{\frac{x}{2}} \frac{2x + 2^2 e^{\frac{x}{2}}}{= e^{\frac{x}{2}} (2x + x^2)} = 2e^{\frac{x}{2}} (2 + x)$ ily=22 y=2, z=1 by IV y= taux y'= sec2x b) $T_{30} = 5 + (29)6$ = 179 $S_{30} = \frac{30}{2}(5 + 179)$ $= \frac{b}{14} \frac{1}{3} \frac{3x^2 + 3}{x^3 + 3} dx = \frac{1}{3} ln(x^3 + 3) + C$ = 2760 $c) S_{0} = a = 7$ $\frac{1}{2} \frac{1}{1-3x} dx = -\frac{2}{3} \frac{-3}{1-3x} dx$ $S_2 = a(1-r^2) = a(1-r)(1+r) = a(1+r) = \frac{48}{7}(1+r)$ 2 = -2 lii (1-3x) (lu [-5] -lu (-2) $\alpha = 7(1-r)$ $r_{1} = \frac{1}{2} - \frac{1}{2$ = 2 ln s49(1-r)(1+r)=48 y' = -4 at x = 1, y' = -4 $49(1-r^2) = 48$ $49 - 49v^2 = 48$ $1 - 49v^2 = 0$ y - 4 = -4(x-1) $\frac{r^2 = \bot}{Fq} \quad r = \pm \frac{1}{7}$ y = -4x + 4 + 4 y = -4x + 8a = 7(1-r) $\left(1-\frac{1}{7}\right) = 7 \times 6$ $\alpha = \gamma$ a = 6

 $\frac{\cos^2\theta}{2} = \frac{1}{2} \cos\theta = \pm \frac{1}{2}$ $f(x) = x^{4} - 8x^{2} - 3$ $\frac{p'(x)}{p} = 4x^3 - 16x^2$ find spls $cn\theta = 1$ V2 $=4x(x^2-4)$ cord = -1=4x(x-2)x+2 $\theta = 45^{\circ}, 315^{\circ}$ $\theta = 135^{\circ}, 325^{\circ}$ 2 -2 1 mc _m²+Sm-14=0. $\frac{(m-2)(m+7)}{x^2=2} = \frac{1}{x} = \pm \sqrt{2}$ $\frac{x^2 = 2}{x^2 = -7} = \frac{1}{10} = \frac{1}{10}$ $\frac{1}{x^2 = -7} = \frac{1}{10} = \frac{1}{10} = \frac{1}{10}$ der Use eitre la find where function is one or dee $c) \neq l = r \theta$ $S = 4\theta$ $\theta = 5$ rads $A = A(x+1) - (x^2 - 2x - 3) dx$ $\frac{W}{A} = \frac{1}{2}r^2 \left(\theta - s_{-}\theta\right)$ $= 8\left(\frac{5}{4} - \frac{5}{4}\right)$ = 2.408 13 4 $= \int (-x^{2} + 3x + 4) dx = \begin{bmatrix} -x^{3} + 3x^{2} + 4x \end{bmatrix}$ $\frac{y_{-1}}{\chi^2} \quad \frac{y' = -2}{\chi^3}$ - ar $\chi = -$ Equ y-1 = $\frac{2(x+i)}{2}$ = 125 0² $---- \underbrace{Y=2x+3}$ <u>5a</u> $\frac{(-8h)^2 - 4(5k + 1)(3h)}{64h^2 - (20k + 4)(3h)}$ $64h^2 - 60h^2 + 12h$ $\Delta = 0$ <u>~</u>0 $3^{2} = 10$ take logs = log 10 **~**∩ --0 2=1 log 3 = 2.10 4k2-12K -0 b) $y f(x) = x^{4} - 4x^{3}$ 4k(k-3) R=0 70. w S $\frac{f'(x) = 4x^3 - 12x^2}{f^2(x) = 4x^2(x-3)}$ for spls f'(x) = 0 x = 0, 3(0,0) x = 0, 33-27 $A = x(14-x), = 14x-x^{2}$ W f"(x)= 12x2-24x = 12x (x2-2) A' = 14 - 2x14-x fa spls Enpls of mill f"(si)=0 2 =0, 2 f <u>A'=0</u>,___ 14-2x=0 Max Area = 7 (14-7) = 4902 -- (0,0) have pt of mall (2,-16) non-hous pt of mill At = 3, y"(x)>0-: Aun TP at (3,-27) 3,-27

 $-6q = x^{2} + 2x + (1)^{2} + y^{2} - 4y + (-2)^{2} = 4 + 1 + 4$ $\frac{8a}{2} - \frac{y-l_{1}(x-1)}{x+1} - \frac{y-l_{1}(x-1)-l_{1}(x+1)}{y-l_{1}(x-1)-l_{1}(x+1)}$ $\frac{(x+1)^2 + (y-2)^2}{2} = 9$ $\frac{1}{2} - Radus (-1, 2) centre$ y' = 1 = 1 at x = 3, y = ln = 1 $y' = \pm - \pm = \pm$; grad normal = - 4 ; Equ q normal : y = ln/2 = -4(x-3), $y = -4x \pm 12 \pm ln^{\frac{1}{2}}$ φ7. $(4 = \chi^2 + 6_{21} + (3)^2 - 9 + 6.$ $\frac{x^{2}+6x+(3)^{2}}{(x+3)^{2}} = \frac{y+9-6}{=1(y+3)}$ $\frac{1}{9} \frac{1}{e^{-2}} \frac{1}{e^{-3}} \frac{2}{e^{4}} \frac{2}{e^{-5}} \frac{2}{e^{-5}} \frac{1}{e^{-5}} \frac{1}{e^{-$ <u>b)</u> $A = \frac{1}{6} \left(e^{-2} + 4e^{-3} + 2e^{-4} + 4e^{-5} + e^{-6} \right)$: Vertex (-3,-3) h= 1 <u>= 0.067</u> $(-3 - 2^{3}/4)$ 4020+35-0-4-0 Fours. $\int dut \cos^2 \theta = 1 - \sin^2 \theta$ 4-45-20+35-0-4=0 $\frac{4}{5}s^{2}\theta - 3s_{1}\theta = 0$ D_{11} , y = -3/4 $s_{10}\left(4s_{10}-3\right)=0$ i $s_{10}\theta=0$ or $s_{10}\theta=3$ $\left(\left[\left(4 - 2 \right)^2 \right]^2 \right)^2$ $V = \pi$ 6) <u>. 0 = 0°, 180°, 360°</u> Q = 48,6°, 131,4° <u>= T |</u> (24-12x2+16x) dx - y= V6+x J3-2x $u = (6+x)^{\frac{1}{2}}$ $u' = \frac{1}{2}(6+x)^{-\frac{1}{2}} =$ $= \frac{1}{5} \frac{1}{5} \frac{4x^3 + 8x^2}{5}$ y' = vu' + uv'N= V3-22 <u>= 32 T</u> $= \sqrt{3-2x}, \qquad \sqrt{6+2}, -1$ $= \sqrt{3-2x}$ $V_{1} = \frac{1}{2}(3-2x)^{-\frac{1}{2}} - 2$ <u>__)</u> <u>4= Zuo 20</u> - Y Ampl = 3 = <u>3-2</u>k V6tx 13-22 perced = 2T = T--nA 360 = -12-2x+3 -2x 2 V3-2x V6+x = -4x = 9 $2/3-2x)^{\frac{1}{2}(6+x)^{\frac{1}{2}}}$

 $\frac{\ln = 100 \text{ cm}}{100 - x}$ x=4+2co I ðr. Qb74 α 2/4 A_1 Az 100-2 Augl = 2 4 on graph mores up 4, 1 (lage 25y < 6) <u>100-x</u> * porced = 2T = 10 T/5 <u>x2</u> + $(100-2)^2 = 325$ $V = \dot{x} = -\frac{2\pi s_{\rm L}}{5} t$ 16 $\frac{x^2 + 10000 - 200x + x^2}{5200} = 5200$ Mier V=0, Su II E $2x^2 - 200x + 4800 = 0$ $\frac{\chi^2}{2} = 100 \times \pm 2400 = 0$ <u>+2</u> Sple (x=40)(x-60) <u>, I = 0, T, 2T, 3T, 4T</u> x= to ar 60 t=0,5,10, 15,20 ٩. = 40 cm $P_2 = 60 \text{ cm}$ P= le V= 54T cm 3 h t=15 P=26 Tr2h = 54 T 2=elst Teleplogs. log 2 = 15h h = 54 r^{2} K= 692 Surface Area = 2Tr2+2Trh P= 4P0 $A = 2\pi r^2 + 2\pi r \times 54$ 4ln = loo $A = 2\pi r^{2} + 2\pi x s 4 = 2\pi r^{2} + 108\pi r^{2}$ 1002 = 0 ____ $A^{\prime} = 4\pi r - 108\pi$ r2 =<u>15log</u> 4-log 2 30 For spls Al=0 108 7 $P = 30 000 e^{35(\frac{\log 2}{15})}$.___ lii/ $r^{3} = 27$ = 151 190 $h = 54_{-}$ 6