\qquad
\qquad

THE HILLS GRAMMAR SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

2008

MATHEMATICS
 2 UNIT ADVANCED

Teacher Responsible:
Mr K McClure

General Instructions:

- Reading time - 5 minutes
- Working time - 3 hours
- Write using blue or black pen.
- Marks may be deducted for careless, untidy or badly arranged work.
- Board approved calculators may be used.
- A table of standard integrals is supplied at the back of this paper.
- ALL necessary working should be shown in every question.
- Start each question in a new booklet.

Total marks - 120

- Attempt Questions 1-10
- All questions are of equal value.

Students are advised that this is a Trial Examination only and cannot in any way guarantee the content or the format of the Higher School Certificate Examination.

Question 1 (12 Marks)

a) Solve the equation

$$
4(x-2)-3(x-5)=17
$$

b) Calculate the sum to infinity of the series
$2+1+\frac{1}{2}+\frac{1}{4}+$
c) Solve the equation $2 x^{2}+7 x-15=0$
d) Find the perpendicular distance of the point $(10,-2)$ from the line $3 x+4 y-7=0$
e) Rationalise the denominator of $\frac{1}{2 \sqrt{2}-1}$
f) The sector of a circle of radius 4 cm subtends an angle of $\frac{5 \pi}{18}$ radians at the centre. Find the arc-length subtended by this angle.

Give your answer to 1 decimal place.
a) Differentiate with respect to x and fully simplify your answer.
i) $\quad y=x^{2} e^{x}$
ii) $y=\frac{\sin x}{\cos x}$

2

2
b)
i) Find $\int \frac{x^{2}+1}{x^{3}+3 x} d x$ 2
ii) Find the area under the curve $f(x)=\frac{2}{1-3 x}$ from $x=2$ to $x=1$ Leave your answer in exact form.
c) The equation of the curve C is given by $y=\frac{4}{x}$. Find the equation of the tangent to the curve C at the point $P(1,4)$

Question 3 (12 Marks)

a) i) Plot the points $A(3,3) B(8,0) C(-1,1)$ and $D(-6,4)$

1
ii) Find the co-ordinates of the point of intersection of the lines $A C$ and $B D$.
b) The first four terms of an arithmetic progression are 5, 11, 17 and 23 .

Find i) the $30^{\text {th }}$ term
1
ii) the sum of the first 30 terms.
c) The sum to infinity of a geometric progression is 7 and the sum of the first two terms is $\frac{48}{7}$.
i) Show that the common ration, r, satisfies the equation $1-49 r^{2}=0$
ii) Find the first term of the geometric progression with a positive common ratio.
a) Solve $\cos ^{2} \theta=\frac{1}{2}$ for θ where $0^{\circ} \leq \theta \leq 360^{\circ}$
b) Solve the equation $x^{4}+5 x^{2}-14=0$
(hint, let $m=x^{2}$)
c)

The diagram shows part of a circle, centre O and radius 4 cm . Given that the arc length $A B C$ is 5 cm , calculate
i) The size of angle $A O C$ in radians
ii) The area of the shaded region
d) Find the equation of the tangent to the curve $f(x)=\frac{1}{x^{2}}$ at the point $P(-1,1)$
a) Find the values of the constant k given that the equation $(5 k+1) x^{2}-8 k x+3 k=0$ has equal roots.
b) Find the maximum area of a rectangle which has a perimeter of 28 units by first constructing a formula for area (A) in terms of the length of one side (x).
c) Determine the intervals for which the function $f(x)=x^{4}-8 x^{2}-3$ is increasing and decreasing.
d) Find the area enclosed between the curve $y=x^{2}-2 x-3$ and the line $y=x+1$
a) Solve the equation $3^{x}=10$ for x (to 1 decimal place).
b) Consider the curve given by $f(x)=x^{4}-4 x^{3}$.
i) find the stationary points
ii) determine the nature of the stationary points
iii) find any points of inflexion
iv) sketch the curve clearly showing all relevant points.
c) Find the centre and the radius of the circle $x^{2}+y^{2}+2 x-4 y-4=0$
a) i) Express $y=x^{2}+6 x+6$ in the form $(x-h)^{2}=4 a(y-k)$
ii) state the vertex
iii) state the focus
iv) find the equation of the directrix
b) The area enclosed between the curve $y=4-x^{2}$ and the line $y=4-2 x$ is rotated through 2π radians about the x-axis. Find the volume of the solid generated, leave your answer in terms of π.
c) Consider the equation $y=3 \cos 2 \theta$ for θ where $0^{\circ}<\theta<360^{\circ}$
i) state the amplitude of the curve

1
ii) find the period of the curve
iii) Make a neat sketch of the curve
a) Find the equation of the normal to the curve $y=\ln \left(\frac{x-1}{x+1}\right)$ at the point P where $x=3$
b) Using Simpson's rule with 5 ordinates, find an approximation for the area under the curve $f(x)=e^{-2 x}$ between $x=1$ and $x=3$
c) Solve the equation $4 \cos ^{2} \theta+3 \sin \theta=4$ where $0^{\circ} \leq \theta \leq 360^{\circ}$ 3 (Hint: let $\cos ^{2} \theta=1-\sin ^{2} \theta$)
d) Find $\frac{d y}{d x}$ given that $y=\sqrt{6+x} \sqrt{3-2 x}$
a) A particle moves in a straight line and at any time t seconds $(t \geq 0)$, its displacement from a fixed point 0 on the line is given by $x(t)=4+2 \cos \frac{\pi}{5} t, \quad 0 \leq t \leq 20$
i) Sketch the graph of the displacement against time.
ii) Find when the velocity of the particle is zero.
b) The population $P(t)$ of persons in a new suburb increases at a rate given by the equation $\frac{d P}{d t}=k P$, where k is a constant and t is the time in years. The population of the suburb is expected to double every fifteen years.

It may be assumed that $P=P_{0} e^{k t}$ where P_{0} is the initial population.
i) Find the value of k.Leave your answer in exact form.
ii) In which year will the suburb attain a population four times that which it had at the beginning of the year 2000?
iii) It is known the population of the suburb at the beginning of the year 2000 was 30,000 . What is the population expected to be in the year 2035?
a) A piece of wire of length 1 m is cut into two parts and each part is bent to form a square. If the total area of the two squares formed is $325 \mathrm{~cm}^{2}$, find the perimeter of each square.
b) A closed, right circular cylinder of base radius $r \mathrm{~cm}$ and height $h \mathrm{~cm}$ has a volume of $54 \pi \mathrm{~cm}^{3}$.
i) Show that S, the total surface area of the cylinder is given by

$$
\begin{equation*}
S=\frac{108 \pi}{r}+2 \pi r^{2} \tag{3}
\end{equation*}
$$

ii) Hence find the radius and height which make the surface area minimum.

و(a) $4 x-8-3 x+15=17$

$$
x+7=17 \quad x=10
$$

b) $a=2, \quad r=\frac{1}{2} \quad S_{\infty}=\frac{a}{1-r}=\frac{2}{1 / 2}=4$
c) $(2 x-3)(x+5)=0 \quad x=3 / 2,-5$
d) $d=\frac{|30-8-7|}{\sqrt{3^{2}+4^{2}}}=\frac{15}{5}=3$
b) $\frac{1}{2 \sqrt{2}-1} \times \frac{2 \sqrt{2}+1}{2 \sqrt{2}+1}=\frac{2 \sqrt{2}+1}{7}$
f) $l=r \theta=+\times \frac{5 \pi}{18}=3.5$

Q2a) $y^{\prime}=e^{x} 2 x+x^{2} e^{x}$

$$
=e^{x}\left(2 x+x^{2}\right)=x e^{x}(2+x)
$$

a.) $11 y=\tan x \quad y^{\prime}=\sec ^{2} x$
b) $i \frac{1}{3} \int \frac{3 x^{2}+3}{x^{3}+3} d x=\frac{1}{3} \ln \left(x^{3}+3\right)+c$
b) $y \int_{1}^{2} \frac{-2}{1-3 x} d x \quad=\frac{-2}{3} \int \frac{-3}{1-3 x} d x$

$$
=-\frac{2}{3}[\ln (1-3 x)]_{1}^{2}=\left\lvert\,-\frac{2}{3}(\ln |-5|-\ln |(-2)|\right.
$$

$$
=\frac{2}{3} \log \frac{5}{2}
$$

c) $y^{\prime}=-\frac{4}{x^{2}} \quad$ al $\quad x=1, \quad y^{\prime}=-4$

$$
\begin{array}{ll}
y-4=-4(x-1) \\
y=-4 x+4+4 & y=-4 x+8
\end{array}
$$

c) $S_{\infty}=\frac{a}{1-r}=7$

$$
\left.\begin{array}{rl}
\mid x-2 y=-3 \\
2 x+7 y=16
\end{array}\right\} \left.\quad \begin{gathered}
2 x-4 y=-6 \\
2 x+7 y=16
\end{gathered} \right\rvert\, l y=22 \quad y=2 \quad x-1
$$

Soluy Sim.
i) $S_{2}=\frac{a\left(1-r^{2}\right)}{1-r}=\frac{a(1-r)(1+r)}{(1-r)}=a(1+r)=\frac{48}{7}($
$a=7(1-r) \sin$ (2) $\quad Z(1-r)(1+r)=\frac{48}{7}$

$$
\begin{array}{ll}
49(1-r)(1+r)=48 \\
49\left(1-r^{2}\right)=48 & 49-49 r^{2}=48 \\
r^{2}=\frac{1}{49} & r= \pm \frac{1}{7}
\end{array}
$$

$1 i /$

$$
a=7(1-r) \quad 7\left(1-\frac{1}{7}\right)=77 \times \frac{6}{7}
$$

$$
a=6
$$

$$
\begin{aligned}
& x-2 y=-3 \\
& \operatorname{Sq} D B \\
& y=-\frac{2 x}{7}+2 \frac{2}{7}
\end{aligned}
$$

$4 a_{2} \cos ^{2} \theta=\frac{1}{2} \quad \cos \theta=+\frac{1}{\sqrt{2}}$

$$
\cos \theta=\frac{1}{\sqrt{2}} \quad \cos \theta=-\frac{1}{\sqrt{2}}
$$

$$
\theta=45^{\circ}, 315^{\circ} \quad \theta=135^{\circ}, 225^{\circ} .
$$

b)

$$
\begin{aligned}
& m^{2}+5 m-14=0 . \\
& (m-2)(m+7)=0 \\
& x^{2}=2 \\
& x^{2}=-7
\end{aligned} \quad m=2 \text { ar }-7 \sqrt{2} .
$$

c) 1
ii

$$
\begin{aligned}
A & =\frac{1}{2} r^{2}(\theta-\sin \theta) \\
& =8\left(\frac{5}{4}-\sin \frac{5}{4}\right)=2.408
\end{aligned}
$$

d.) $y=\frac{1}{x^{2}} \quad y^{\prime}=\frac{-2}{x^{3}} \quad$ at $x=-1, \quad y^{\prime}=2$

Epee $\quad y-1=2(x+1) \quad y=2 x+3$
$5 a)$

$$
\begin{array}{r}
\Delta=0 \quad(-8 h)^{2}-4(5 k+1)(3 h)=0 \\
64 h^{2}-(20 k+4)(3 h)=0 \\
64 k^{2}-60 k^{2}-12 k=0 \\
4 k^{2}-12 k=0 \\
4 k(k-3)=0 .
\end{array}
$$

b)

$$
\int \begin{aligned}
A & =x(14-x)=14 x-x^{2} \\
14^{-x} & A^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& A^{\prime}=14-2 x \\
& f a \rho^{\prime} \text { s } A^{\prime}=0,14-2 x=0, \quad x=7
\end{aligned}
$$

Max Area $=7(14-7)=49 v^{2}$

Sc) $f(x)=x^{4}-8 x^{2}-3$.
Fed sols.

$$
\begin{aligned}
f^{\prime}(x) & =4 x^{3}-16 x \\
& =4 x\left(x^{2}-4\right) \\
& =4 x(x-2)(x+2) \\
& 1-2 x
\end{aligned}
$$

Use ache b fol where function a an ar dee

$$
\begin{aligned}
& f^{\prime}(x)>0 \\
& f^{\prime}(x)<0 \\
& \\
& \frac{1}{3}
\end{aligned}
$$

d)

$$
\begin{array}{ll}
x>2, & -2<x<0 \\
x<-2, & 0<x<2
\end{array}
$$

$$
\begin{aligned}
A & \left.=\int(x+1)=\left(x^{2}-2 x-3\right)\right] d x \\
& =\int\left(-x^{2}+3 x+4\right) d x=\left[\frac{-x^{3}}{3}+\frac{3 x^{2}}{2}+4 x\right] \\
& =\frac{125}{6} u^{2}
\end{aligned}
$$

Q(69) $3^{x}=10$ tale $\log 5 \quad x \log 3=\log 10$
b) $)$

$$
f(x)=x^{4}-4 x^{3}
$$

$$
f^{\prime}(x)=4 x^{3}-12 x^{2}=4 x^{2}(x-3)
$$

for sols $f^{\prime}(x)=0 \quad x=0,3 \quad(0,0)(3,-27)$
ii) $f^{\prime \prime}(x)=12 x^{2}-24 x^{2}=12 x\left(x^{2}-2\right)$

F ph e mp l $f^{\prime \prime}(x)=0, \quad x=0,2$
$\therefore(0,0)$ hang $p t$ of weft $(2,-16)$ now = homs pr of me
At $x=3, y^{-1 \prime}(x) \rightarrow 0 \therefore$ Ancon te at $(3,-27)$
$-60)=$

$$
\begin{aligned}
& x^{2}+2 x+(1)^{2}+y^{2}-4 y+(-2)^{2}=4+1+4 \\
& (x+1)^{2}+(y-2)^{2}=9
\end{aligned}
$$

\therefore Radur $3,(-1,2)$ centre
P7 $y=x^{2}+6 x+(3)^{2}-9+6$

$$
\frac{x^{2}+6 x+(3)^{2}}{(x+3)^{2}}=y+9-6
$$

is \therefore vedex $(-3,-3)$

$$
a=\frac{1}{4}
$$

-1/ Facus $\left(-3,-2^{3 / 4}\right)$
$\min / \operatorname{Der} \quad y=-31 / 4$
b)

$$
\begin{aligned}
V & =\pi \int_{0}^{2}\left[\left(4-x^{2}\right)^{2}-(4-2 x)^{2}\right] d x \\
& \equiv \pi \int_{0}^{2}\left(x^{4}-12 x^{2}+16 x\right) d x \\
& \left.=\frac{x^{5}}{5}-4 x^{3}+8 x^{2}\right]_{0}^{2} \\
& =\frac{32 \pi}{5}
\end{aligned}
$$

c) $y=3 \cos 2 \theta$

8a)

$$
\begin{aligned}
& y=\ln \left(\frac{x-1}{x+1}\right) \quad y=\ln (-x-1)-\ln (x+1) \\
& y^{\prime}=\frac{1}{x-1}-\frac{1}{x+1} \quad \text { al } \quad x=3, \quad y=\ln \frac{1}{2}
\end{aligned}
$$

$y^{\prime}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4} \quad, \quad$ grad novial $=-4$
Equ of nomel:
b)

$$
\begin{aligned}
& h=\frac{1}{2} \quad \equiv 0.067
\end{aligned}
$$

c)

$$
\begin{aligned}
& 4 \cos ^{2} \theta+3 \sin \theta-4=0 \\
& 4=4 \operatorname{sen}^{2} \theta+3 \sin \theta<4=0 \\
& \text { but } \cos ^{2} \theta=1-\sin ^{2} \theta \\
& 4 \sin ^{2} \theta-3 \sin \theta=0 \\
& \sin \theta(4 \sin \theta-3) 0 \quad \therefore \quad \sin \theta=0 \quad \text { or } \quad \operatorname{se} \theta=\frac{3}{4} \\
& \therefore \frac{\theta=0^{\circ}, 180^{\circ}, 360^{\circ}}{\left.\theta=48.6^{\circ},-13\right)-4^{\circ}}
\end{aligned}
$$

d)

$$
\begin{aligned}
& \quad y=\sqrt{6+x} \sqrt{3-2 x} \\
& y^{\prime}=v u^{\prime}+u v^{\prime} \\
& =\frac{\sqrt{3-2 x}}{2 \sqrt{6+x}}+\frac{\sqrt{6+x},-1}{\sqrt{3-2 x}} \\
& =\frac{\sqrt{3-2 x}}{2 \sqrt{6+x}}-\frac{\sqrt{6+x}}{\sqrt{3=2 x}}
\end{aligned}\left\{\begin{array}{l}
u=(6+x)^{\frac{1}{2}} \\
u^{\prime}=\frac{1}{2}(6+x)^{\frac{1}{2}}=\frac{1}{2 \sqrt{6+x}} \\
v=\sqrt{3-2 x} \\
v=\frac{-12-2 x+3-2 x)^{\frac{-}{2}}}{v}=x \\
=-\frac{1}{\sqrt{3-2 x}} \\
=\frac{2 \sqrt{3-2 x} \sqrt{6+x}}{2(3-2 x)^{1 / 2}(6+x)^{\frac{1}{2}}}
\end{array}\right.
$$

i

* Ampl $=2$
-n praph mores up 4 , (Rage $2<y<6)$
$*$ perced $=\frac{2 \pi}{\pi / 5}=10$
$i / \quad v \equiv \dot{x}=-\frac{2 \pi}{5} \sin \frac{\pi}{5} t$
Wher $r=0, \quad \sin \frac{\pi}{5} t=0$
spls)

$$
\begin{gathered}
1 \frac{\pi}{5} t=0, \pi, 2 \pi, 3 T, 4 \pi, \\
t=0,5,10,15,20
\end{gathered}
$$

b) $\rho=\rho_{0} e^{k t}$
i) whe $t=15, \quad P=2 \rho_{0} \quad$ P $\quad=6 / e^{k \times 15}$ $2=e^{15 t} \quad$ Telup $\log 3 \quad, \quad \log 2=15 k \log e$
ii) El whe $P=4 P$

$$
\begin{array}{rlrl}
40 & =\log ^{\log 2} \\
\log ^{15} t & 4 & =e^{\log 2-2-t} \\
\log _{5} \log 3 & \log 4 & =\frac{\log 2 t}{5} \log e
\end{array}
$$

iii $p=30000 e^{35\left(\log _{15}^{2}\right)}$

$$
t=\frac{15 \log 4}{\log 2} \div 30 \text { yrs }
$$

Q ${ }^{a}$

$$
\therefore P_{1}=40 \mathrm{~cm} \quad P_{2}=60 \mathrm{~cm}
$$

b)

$$
\begin{aligned}
& V=54 \pi \mathrm{~cm}^{3} \\
& \text { Tof } h \quad \not r^{2} h=\frac{54 \pi}{r^{2}} \\
& h=\frac{5}{2}
\end{aligned}
$$

$i y \therefore$ Su face Area $=2 \pi r^{2}+2 \pi r h$

$$
\begin{aligned}
& A=2 \pi r^{2}+2 \pi r \times \frac{54}{r^{2}} \\
& A=2 \pi r^{2}+\frac{2 \pi \times 54}{r}=-2 \pi r^{2}+\frac{108 \pi}{r} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \text { ii) } A^{\prime}=4 \pi r-\frac{108 \pi}{r^{2}} \\
& \text { far sP } P^{\prime} A^{\prime}=0 \quad \frac{108 \not X^{\prime}}{r^{2}}=4 \pi r \\
& r^{3}=27
\end{aligned}
$$

$$
h=\frac{54}{9}=6
$$

