Question 1 (12 marks)

(a) Factorise the expression
$$2x^2 - 7x - 15$$
. 2

(b) Fully factorise
$$x^3 + 27$$
.

(c) Find the values of x for which
$$|x+2| \ge 3$$
.

(d) Find a and b such that
$$(2-\sqrt{3})^2 = a + b\sqrt{3}$$
.

(e) Differentiate
$$y = 3x^3 - \frac{4}{x}$$
, with respect to x. 2

(f) Express in simplest surd form the expression
$$2\sqrt{27} + \sqrt{12} - \sqrt{75}$$
.

Question 2 (12 marks) Start a new booklet

(a) Solve for x:
$$\frac{x+2}{3} - \frac{x-3}{4} = 2.$$
 2

(b) Differentiate the following with respect to *x*:

(i)
$$y = 2x^3 \log x$$
. 2

(ii)
$$y = (3 + \sin x)^4$$
. 2

(c) Find:

(i)
$$\int 4e^{3x} dx$$
. 1

(ii)
$$\int \frac{x+1}{x^2+2x} dx.$$

(d) Solve
$$8^{2x-1} = 4\sqrt{8}$$
 3

Question 3 (12 marks) Start a new booklet

(a) Find the equation of the normal to the curve $y = \sqrt{x+2}$ at the point (2, 2).

(b) For the geometric series
$$\frac{2}{3} - \frac{4}{9} + \frac{8}{27} - \dots$$
, find:

- (i) the common ratio (r). 1
- (ii) the limiting sum. 2

(c) Evaluate
$$\int_{0}^{\frac{\pi}{4}} \cos x \, dx$$
.

(d) Solve
$$\log_{10}(x+3) - \log_{10} x = 1$$
.

3

2

4

Question 4 (12 marks) Start a new booklet

(a) Given that $\frac{dy}{dx} = 12x + 2$, and that there exists a stationary point at (1, 2), find

the equation of the curve.

(b)
$$U$$
 X V Z

2

The lines UZ and WY intersect at X.

Given that $UW \parallel YZ$. UW = 10 cm, WX = 9 cm, UX = 8 cm and XZ = 12 cm:

(i)Draw a neat sketch of this figure, and mark all information it.1(ii)Prove that $\Delta UWX \parallel \Delta XYZ$.2(iii)Hence, or otherwise, find the length of ZY.2

Question 4 continues on page 5

(c) A sector AOB is to be cut from a circle of radius 40cm so that the area of the sector is 2400cm².

(i) Find the size of the angle (θ) at the centre of the sector AOB, giving your answer in radians.

2

1

2

- (ii) Find the length of the arc cut off by the sector AOB.
- (iii) Find the area of the shaded segment correct to the nearest cm^2 .

End of Question 4

1

1

1

Question 5 (12 marks) Start a new booklet

- (a) The quadratic equation $x^2 + (k-3)x + k = 0$, has real roots. Find all possible values for k.
- (b) A parabola has the equation $2y = x^2 4x + 6$.
 - (i) Rewrite the equation in the form $(x-h)^2 = 4a(y-k)$ by completing the square.
 - (ii) State the coordinates of the vertex.
 - (ii) Find the focal length.
- (c) Consider the function $y = 1 + 3x x^3$, for $-2 \le x \le 3$.

(i)	Find all stationary points and determine their nature.	3
(ii)	Find the point of inflexion.	1
(iii)	Sketch the curve for $-2 \le x \le 3$.	1
(iv)	What is the minimum value for the curve over the stated domain?	1

1

Question 6 (12 marks) Start a new booklet

(a) The sum of the first *n* terms of an AP is given by
$$S_n = \frac{n(3n+1)}{2}$$
. Find:
(i) S_1 and S_2 .

(ii) the first two terms of the AP.
$$(T_1 \text{ and } T_2)$$
. 2

(iii) an expression for the "*n*"th term.

Copy this diagram into your booklet.

(i)	Show that XY is parallel to OZ	2
(ii)	Show why $\angle XYO = \angle YOZ$.	1
(iii)	Prove that <i>OXYZ</i> is a parallelogram if OY divides OXYZ into 2 congruent triangles.	1

(c) Find the volume generated when the curve $y = x^4$, between the origin and the point (2, 16), is rotated **about the** *y***-axis**. Give your answer in exact form. 3

3

Question 7 (12 marks) Start a new booklet

(a) Find the domain and range of
$$y = \frac{1}{\sqrt{4-x^2}}$$
.

(b) Solve
$$4\cos^2\theta - 6 = 6\sin\theta$$
, for $0^\circ \le \theta \le 2\pi$.

(c) (i) Draw on the same diagram :

$$y = \sin 2x$$
 and $y = \frac{1}{3}x$, for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$.

(ii) Use the graph to find approximate solutions for the equation

$$\sin 2x = \frac{1}{3}x.$$

(d) Find the area enclosed by the curve $y = \frac{x}{x^2 + 1}$ and the *x*- axis, from x = 1 to x = 3. Give your answer in exact form.

Question 8 (12 marks) Start a new booklet

(a)	The m	The mass of a radioactive substance is given by $M = 10e^{-kt}$.		
	(i)	What is the initial mass?	1	
	(ii)	If, after 100 years, the mass has reduced to 5 kg, find the value of ' k ', correct to 4 decimal places.	2	
	(iii)	How many years would it take to reduce to 8kg? Give answer to the nearest year.	3	
	(iv)	What mass would remain after 1 000 years? Give answer to nearest gram.	2	

(b) A particle moves in a straight line. At time "t" seconds, its displacement in "x" metres, from a fixed point *O*, is given by $x = 3 - \cos 2t$ for $0 \le t \le \pi$.

(i)	Find an expression for the velocity (v) of the particle.	1
(ii)	Sketch a graph of 'v' relative to time.	1
(iii)	Hence, or otherwise, find when the particle is at rest.	2

Question 9 (12 marks) Start a new booklet

(a)	The points P and Q have coordinates $(4, -1)$ and	(1, 3) respectively.
-----	---	----------------------

	(i)	The line <i>k</i> has the equation $x + 2y - 2 = 0$. Verify that <i>P</i> lies on this line.	1
	(ii)	Draw a neat sketch showing P, Q and the line k .	1
	(iii)	Find the perpendicular distance of Q from the line k , giving your answer in simplest surd form.	1
(b)	Jane b to be r	orrows \$30 000 from a building society, with interest at 11.5% pa. It is epaid in equal yearly instalments.	
	(i)	(α) How much must be repaid each year if the loan is to be repaid over 30 years?	2
		(β) using the repayment calculated in part (α), how much will be outstanding at the end of 18 years?	1
	(ii)	If the loan is repaid at \$4500 per year, when will it be paid off?	3
(c)	A part from a	icle moves in a straight line so that at time <i>t</i> seconds, its distance <i>x</i> cm fixed point <i>O</i> is given by $x = 4\log_e(1+t) - 2t \ge 0$, $t \ge 0$.	
	(i)	Find the initial position.	1
	(ii)	Find the initial velocity.	1
	(iii)	Find an expression for the acceleration in terms of ' t ', and show that it is always negative.	1

1

Question 10 (12 marks) Start a new booklet

- (a) Jane has a bottle containing 200 millilitres of water. She pours more water in for 20 seconds until it is full. During this time, the flow rate (*R*) of the water is given by R = 4(20-t) millilitres/sec.
 - (i) Find an expression for the volume after 't' seconds, where $t \le 20$.
 - (ii) How many millilitres are in the bottle when it is full.
 - (iii) How long was it before the bottle was half full? Give your answer 2 in exact form.

Question 10 continues on page 12

2

3

(b) The diagram below is a two dimensional representation of a cylinder of radius x cm, and height h cm, inscribed in a right circular cone of radius 9cm and height 12cm.

- (i) Using similar triangles, express h in terms of x.
- (ii) Show that the volume of the cylinder is given by $V = \frac{4\pi}{3} (9x^2 x^3)$.
- (iii) Find the value of x for which this volume is a maximum. You must provide a reason why your calculation results in a maximum volume.

End of Paper