(a) Factorise completely $y^{3}-3 y^{2}+y-3$.
(b) Solve $x^{2}-2 x-3 \geq 0$.
(c) Find a and b if $(4-2 \sqrt{7})^{2}=a+b \sqrt{7}$.
(d) Solve $|2 x-1|=9$.
(e) Evaluate $\log _{3} 7$ correct to 3 significant figures.
(f) If the line $k x+3 y-7=0$ has a gradient of 2 , find the value of k.
(a) Solve the following simultaneous equations:

$$
\begin{aligned}
& 3 x-y=8 \\
& 2 x+3 y=-2
\end{aligned}
$$

(b) Differentiate the following:
(i) $y=\left(5 x^{3}-4\right)^{5}$.
(ii) $y=\frac{2 x}{x-3}$.
(iii) $\quad f(x)=3 x e^{2 x}$.
(iv) $f(x)=\ln \left(3 x^{2}+3 x\right)$, giving your answer in simplest form.
(c) Find the exact value of $\sin 240^{\circ} \times \sec 45^{\circ}$.
(a) Find $\int \frac{x}{x^{2}+4} d x$.
(b) Evaluate $\int_{0}^{\frac{\pi}{6}} \sec ^{2} 2 x d x$, giving your answer in exact form.
(e) Evaluate $\sum_{r=1}^{10} 2^{r}$.
(a) In the rectangle $A B C D$ below, $A E=E B$ and $\angle B A E=15^{\circ}$.

Copy and label the diagram above into your booklet.
(i) Explain why $\angle D A E=\angle C B E$. 1
(ii) Prove $\triangle D A E \equiv \triangle C B E$.
(iii) Hence prove that $\triangle D E C$ is isosceles.
(b) (i) Express $y^{2}-2 x-8=0$, in the form $(y-k)^{2}=4 a(x-h)$, and hence find:
(ii) the focal length.
(iii) the co-ordinates of the vertex.
(iv) the co-ordinates of the focus.
(v) the equation of the directrix.
(vi) the equation of the focal chord which also passes through 3 the point $(4,4)$.
(a) $\quad A, B$, and C are points $(3,2),(-2,4)$, and $(5,-1)$ respectively.
(i) Draw a diagram in your booklet, representing A, B and C.
(ii) Find the gradient of $B C$.
(iii) Find the equation of $B C$ in general form.
(iv) Find the perpendicular distance of A to $B C$, giving your answer in simplest surd form.
(b) Show that $\frac{\tan \theta \sec \theta}{1+\tan ^{2} \theta}=\sin \theta$.
(c) (i) Find the locus of the point $P(x, y)$, which moves so that the line $P A$ is perpendicular to the line $P B$ where A is $(4,3)$ and B is $(-2,-1)$.
(ii) Interpret this locus geometrically.
I -
(a) (i) On the same axes, sketch the graphs of $y=3 x^{2}+2$ and $y=7 x$.
(ii) Find the x co-ordinates of the points of intersection.
(iii) Hence, use the graphs to solve the inequation $7 x \geq 3 x^{2}+2$.
(b) Sketch the region simultaneously defined by $y \geq|x-3|$ and $y<3$, labelling all intercepts, and points of intersection.
(c)

Not to scale
(i) Show that $\triangle A B C \mid \| \triangle A D E$.
(ii) Hence find the values of x and y.
(a) Given that $y=2 x \log _{e} x$, find, giving your answers in exact form:
(i) $\frac{d y}{d x}$.
(ii) the co-ordinates of the stationary point, and determine its nature.
(b) Ayla is saving for a holiday. In the first month she saves $\$ 30$. In the second month she saves $\$ 35$. In each subsequent month her savings are $\$ 5$ more than the month before.
(i) How much will she save in the $17^{\text {th }}$ month?
(ii) How much money will she have saved in total by the $17^{\text {th }}$ month?
(iii) Ayla needs $\$ 2100$ to pay for her plane ticket. How long will it take her to save this amount?
(c) Rory decided to donate $\$ 3000$ to charity. A year later he donated $\frac{7}{8}$ of this amount to the same charity. He continued to donate in this way each succeeding year.
(i) In which year would Rory first make a donation of less than $\$ 1000$?
(ii) What is the greatest total amount that the charity can expect to receive?
(a) Use Simpson's Rule with 3 function values to find an approximation for $\int_{1}^{3} 3 \log _{e} x d x$, giving your answer correct to 2 decimal places.
(b) Solve $3 \tan 2 x=\sqrt{3}, \quad 0 \leq x \leq 2 \pi$.
(c) A particle is travelling in a straight line, starting from rest at the origin, such that $\frac{d^{2} x}{d t^{2}}=\frac{8}{(t+1)^{2}}$, where x is displacement in metres and t is time in seconds.
(i) Show that the acceleration is always positive.
(ii) Find an expression for the velocity.
(iii) Show that the distance covered between $t=2$ seconds and $t=5$ seconds is $\left(24-8 \log _{e} 2\right)$ metres.
(a) A quadratic function is given by $f(x)=x^{2}+m x-3$, and $f(-1)=5$.
(i) Find the value of m. 1
(ii) If the roots of the function are α and β, find the value of $\alpha^{2}+\beta^{2}$.
(b) Calculate the volume of solid of revolution if the hyperbola $y=\frac{4}{x}$ is
rotated about the x axis from $x=1$ to $x=4$.
(c) The number of bacteria in a culture is growing according to the formula $N=300 e^{k t}$, where t is time in hours.
(i) What was the initial number of bacteria in the culture?
(ii) If, after 8 hours, the number of bacteria has doubled, calculate the value of k correct to 4 decimal places.
(iii) How long would it take for the number of bacteria to rise to 3000 ? Give your answer correct to the nearest minute.
(iv) How many bacteria would there be after 16 hours?
(v) At what rate will the bacteria be increasing after 16 hours?
(a) $A D$, an upright tower of height h metres, is standing on level ground. The angles of elevation to the top of the tower from points C and B on the ground, are 30° and 45° respectively, and $\angle D C B=30^{\circ}$.

(i) Find the lengths of $B D$ and $C D$ in terms of h.
(ii) By considering $\triangle D C B$, show that $2 h^{2}=3 x h-x^{2}$.
(b) A sector $A O B$, with radius R and $\angle A O B=\theta$, has an area of $625 \mathrm{~cm}^{2}$.
(i) Show that $\theta=\frac{1250}{R^{2}}$.
(ii) Show that the perimeter (P) of the sector can be given

$$
\text { by: } \quad P=2 R+\frac{1250}{R} \text {. }
$$

(iii) Find the value of R that is required to give a minimum perimeter.
(c) Angus takes out a student loan of $\$ 5000$ at 2.25% interest per month,
reducible monthly. Regular repayments are made at monthly intervals.
What should each repayment be if he wishes to pay off the loan in 5 years?

END OF EXAMINATION

Solutions 2011 ZUNIT

Q1 (a)

$$
\begin{align*}
y^{3}-3 y^{2}+y-3 & =y^{2}(y-3)+1(y-3) \\
& =\left(y^{2}+1\right)(y-3) \tag{1}
\end{align*}
$$

(b)

$$
\begin{aligned}
& x^{2}-2 x-3 \geqslant 0 \\
& (x+1)(x-3) \geqslant 0 \text {. } 1 \\
& x \geqslant 3 \text { ar } x \leqslant-1
\end{aligned}
$$

(c)

$$
\begin{gather*}
(4-2 \sqrt{7})(4-2 \sqrt{7})=16-16 \sqrt{7}+28 \\
\therefore a+b \sqrt{7}=44-16 \sqrt{7} \tag{1}\\
a=44, \quad b=-16 \tag{1}
\end{gather*}
$$

(d)

$$
|2 x-1|=9
$$

$$
2 x-1=9 \quad a
$$

$$
2 x-1=-9
$$

$$
2 x=10
$$

$$
2 x=-8
$$

(1) $\quad x=5$
(1) $x=-4$
(e) $\log _{3} 7=\frac{\log _{10} 7}{\log _{10} 3}=1.77(3 \mathrm{sf})$
(f)

$$
\begin{array}{ll}
k x+3 y-7=0 & 3 y=-k x+7 \\
y=\frac{-k}{3} x+\frac{7}{3} \\
-\frac{k}{3}=2 \quad \underline{k=-6} \tag{1}
\end{array}
$$

Q2 (a)

$$
\begin{array}{ccl}
3 x-y=8 & -1 & \times 3
\end{array} \quad 9 x-3 y=24
$$

(1)

+ (2)

$$
\begin{align*}
11 x & =22 \tag{1}\\
x & =2 \tag{1}
\end{align*}
$$

$$
y=3(2)-8
$$

$$
=-2
$$

(b) y $y=\left(5 x^{3}-4\right)^{5}$

$$
\begin{align*}
y^{\prime} & =5\left(5 x^{3}-4\right)^{4}\left(15 x^{2}\right) \tag{1}\\
& =75 x^{2}\left(5 x^{3}-4\right)^{4} \tag{1}
\end{align*}
$$

ii $y=\frac{2 x}{x-3}$

$$
\begin{align*}
y^{\prime} & =\frac{(x-3) 2-2 x(1)}{(x-3)^{2}}=\frac{2 x-6-2 x}{(x-3)^{2}} \\
& =\frac{-6}{(x-3)^{2}} \tag{1}
\end{align*}
$$

(iii)

$$
\begin{align*}
f(x) & =3 x e^{2 x} \\
f^{\prime}(x) & =e^{2 x} 3+3 x \cdot 2 e^{2 x} \tag{1}\\
& =3\left(e^{2 x}+2 x e^{2 x}\right) \\
& =3 e^{2 x}(1+2 x)
\end{align*}
$$

(v)

$$
\begin{aligned}
f(x) & =\ln \left(3 x^{2}+3 x\right) \\
f(x) & =\frac{6 x+3}{3 x^{2}+3 x}=\frac{7(2 x+1)}{\beta\left(x^{2}+x\right)} \\
& =\frac{2 x+1}{x^{2}+x}
\end{aligned}
$$

(d) $\operatorname{sen} 240 \times \sec 45=-\frac{\sqrt{3}}{2} \times \sqrt{2}=\frac{-\sqrt{6}}{2}$

Q3(c)

$$
\begin{align*}
\int \frac{x}{x^{2}+4} d x & =\frac{1}{2} \int \frac{2 x}{x^{2}+4} d x \tag{1}\\
& =\frac{1}{2} \ln \left(x^{2}+4\right)+C \tag{0}
\end{align*}
$$

(b)

$$
\begin{align*}
\int_{0}^{\pi / 6} \sec ^{2} 2 x d x & =\left[\frac{\tan 2 x}{2}\right]_{0}^{\pi / 6} \tag{1}\\
& =\frac{1}{2}\left[\operatorname{ta} \frac{\pi}{3}-\tan 0\right] \\
& =\frac{1}{2}[\sqrt{3}-0]=\frac{\sqrt{3}}{2} . \tag{1}
\end{align*}
$$

(c)

$$
\begin{align*}
\int_{0}^{2} 2 x e^{3 x^{2}} d x & =\frac{1}{3} \int_{0}^{2} 6 x e^{3 x^{2}} d x \tag{1}\\
& =\frac{1}{3}\left[e^{3 x^{2}}\right]_{0}^{2} \\
& =\frac{1}{3}\left[e^{12}-e^{0}\right] \\
& =\frac{e^{12}-1}{3} \tag{1}
\end{align*}
$$

(d) $\int_{0}^{k}(3+2 x) d x=4$

$$
\begin{align*}
& {\left[3 x+x^{2}\right]_{0}^{k}=4} \tag{1}\\
& {\left[\left(3 k+k^{2}\right)-(0)\right]=4} \\
& \therefore k^{2}+3 k-4=0 \\
& \therefore k=1 \text { ar }-4
\end{align*}
$$

but $k>0 \quad \therefore \quad k=1$
(e) $\sum_{r=1}^{10} 2^{r}=2+2^{2}+2^{3}+\ldots 2^{10}$. $\therefore a$ gp with $a=2, r=2$.

$$
S_{10}=\frac{2(20-1)}{2-1}=2046
$$

(1)

$$
\begin{align*}
& \angle E A B=\angle E B A \quad(1 s 0 s \triangle) . \\
& \therefore \angle D A E=\angle C B E \quad(\text { Hght angles }) . \tag{1}
\end{align*}
$$

(11)

$$
\begin{aligned}
& \ln \triangle S D A E, C B E \\
& A D=C B \text { (qppsidoprect) } \\
& D A E=C B E \text { (praved). } \\
& A E=B E \text { (quen). } \\
& \therefore \triangle D A E \equiv \triangle C B E \quad \text { (sAS) }
\end{aligned}
$$

(ii) $D E=E C$ (cor sides, cong Δs)
$\therefore \triangle D E C$ is isos.
(b) $\begin{array}{ll}y^{2}-2 x-8=0 & y^{2} \\ \text { (1) } & =2 x+8 \\ y^{2} & =2(x+4)\end{array}$
(ii) $4 a=2 \quad \therefore \quad a=\frac{1}{2}$
(iii) Vestex $=(-4,0)$
(iv) Fous $=\left(-3 \frac{1}{2}, 0\right)$
(v) Dir: $x=-4 \frac{1}{2}$
(vi) grad focal cherd $=\frac{4-0}{4+3 \frac{1}{2}}=\frac{8}{15}$
\therefore Equ: $\quad y-0=\frac{8}{15}\left(x+3 \frac{1}{2}\right)$

$$
\begin{align*}
& 15 y=8 x+28 \\
\therefore \quad 8 x-15 y+28 & =0 \tag{1}
\end{align*}
$$

Q5 (a) (i)

(ii) $m(B C)=\frac{-1-4}{5--2}=\frac{-5}{7}$
(iii) Equ $B C \quad y-4=-\frac{5}{7}(x+2)$

$$
\begin{align*}
7 y-28 & =-5 x-10 \tag{1}\\
5 x+7 y-18 & =0 \tag{1}
\end{align*}
$$

(iv)

$$
\begin{align*}
d=\frac{|3 \times 5+2 \times 7-18|}{\sqrt{25+49}} & =\frac{11}{\sqrt{74}} \\
d & =\frac{11 \sqrt{14}}{74} \tag{1}
\end{align*}
$$

(b)

$$
\begin{align*}
\frac{\operatorname{ta} \theta \sec \theta}{1+\operatorname{ta}^{2} \theta} & =\frac{\tan \theta \sec \theta}{\sec ^{2} \theta} \\
& =\frac{\sin \theta}{\cos \theta} \div \frac{1}{\cos \theta} \\
& =\frac{\sin \theta}{\cos \theta} \times \cos \theta \tag{1}
\end{align*}
$$

$$
\begin{align*}
& m(P A)=\frac{y-3}{x-4} \quad m(P B)=\frac{y+1}{x+2} \\
& m_{1} \mu_{2}=-1 \tag{1}\\
& \frac{y-3}{x-4} \times \frac{y+1}{x+2}=-1
\end{align*}
$$

(i) $y^{2}-2 y-3=-\left(x^{2}-2 x-8\right) \quad y^{2}-2 y-3=-x^{2}+2 x+8$
(ii) $\begin{aligned} y^{2}-2 y+x^{2}-2 x & =11 \\ y-1)^{2}+(x-1)^{2} & =11+1\end{aligned}$
(ii) $(y-1)^{2}+(x-1)^{2}=11+1+1$
$46(a)(1)$

(ii)

$$
\begin{align*}
& 3 x^{2}+2=7 x \\
& x=\frac{1}{3}, \quad y=\frac{1}{8}=/ 2 \frac{1}{3} \tag{1}\\
& x=2, y \neq 14
\end{align*}
$$

$$
3 x^{2}-7 x+2=0
$$

$$
(3 x-D)(x-2)=0
$$

$$
x=\frac{1}{3}, \quad 2
$$

(iii) $7 x \geqslant 3 x^{2}+2$

$$
\begin{equation*}
\frac{1}{3} \leq x \leq 2 \tag{1}
\end{equation*}
$$

(b) $y \geqslant|x-3| \quad y<3$

(c)(1) In \triangle s $A B C, ~ A D E$

$$
\begin{align*}
& \angle A B C=\angle A D E \quad(\text { com L's, } \| \text { hines) } \\
& \angle B A C=\angle D A E \quad(\text { comman }) \tag{1}\\
& \therefore \triangle A B C\|\| \triangle A D E \quad(A A) \tag{1}
\end{align*}
$$

(II)

$$
\begin{array}{ll}
\frac{5}{5+x}=\frac{4}{10}=\frac{y}{12} \\
50=20+4 x(1) & 48=10 y \\
30=4 \dot{x} & \frac{48}{10}=y \\
7 \frac{1}{2}=x & 4.8=y
\end{array}
$$

Q7(a) $\quad y=2 x \log x$
(1)

$$
\begin{align*}
\frac{d u}{d x} & =\log x \cdot 2+2 x \frac{1}{x} \\
& =2 \log x+2=2(\log x+1) \tag{1}
\end{align*}
$$

(ii) for SPs $\frac{d y}{d x}=0$.

$$
\begin{align*}
& 2(\log x+1)=0 \quad \therefore \log _{e} x=-1 \\
& e^{-1}=x \tag{1}\\
& \therefore x=\frac{1}{e}, y=\frac{2}{e} \log e^{-1} \\
&=\frac{2}{e} \cdot-1=\frac{-2}{e} \tag{1}
\end{align*}
$$

$\therefore S P$ ar $\left(\frac{1}{e}, \frac{-2}{e}\right)$
Test Natwe: $\frac{d^{2} y}{d x^{2}}=\frac{2}{x}$ (1)
at $x=\frac{1}{e} \quad \frac{d^{2} y}{d x^{2}}=2 e>0 \therefore \mathrm{Mm}_{\mathrm{TP}}>$
(b) $30+35+40+\ldots$ AP with $a=30, d=5$
(1) $T_{17}=30+(16 \times 5)=\$ 110$
(ii) $S_{17}=\frac{17}{2}\left[\begin{array}{c}60+16 \times 5 \\ \text { (1) }\end{array}\right]=\$ 1190$
(iii)

$$
\begin{align*}
& 2100=\frac{n}{2}[60+(n-1) 5] \tag{1}\\
& 4200=n[60+5 n-5] \tag{1}\\
& 4200=55 n+5 n^{2}
\end{align*}
$$

$$
5 n^{2}+55 n-4200=0
$$

(-5)

$$
\begin{align*}
& n^{2}+11 n-840=0 \\
& (n+35)(n-24)=0 \tag{1}\\
& \therefore n=-35,24
\end{align*}
$$

$\therefore 24$ manths bo get $\$ 2100$
(c) $a=3000 \quad r=\frac{7}{8}$
(1) $T_{n}<1000$

$$
\begin{aligned}
3000\left(\frac{7}{8}\right)^{n-1} & <1000 \\
\left(\frac{7}{8}\right)^{n-1} & <\frac{1}{3}
\end{aligned}
$$

Takelogs $(n-1) \log \left(\frac{7}{8}\right)<\log \left(\frac{1}{3}\right)$

$$
\begin{aligned}
n-1 & <\frac{\log 1 / 3}{\log 7 / 8}<\left(\begin{array}{c}
(-v e) \\
n-1
\end{array}>8.22\right. \\
n & >9.22
\end{aligned}
$$

\therefore In the 10 th yeer.
(ii) $S_{\infty}=\frac{3000}{1-7 / 8}=\$ 24000$

Q8(a)

$$
\begin{align*}
& \begin{array}{|c|ccc|}
\hline x & 1 & 2 & 3 \\
\hline y & 0 & 3 \ln 2 & 3 \ln 3 \\
\hline
\end{array} \\
& \begin{aligned}
\int_{1}^{3} 3 \ln x d x & =\frac{1}{3}[0+4(3 \ln 2)+3 \ln 3] \\
& =\frac{1}{3}[12 \ln 2+3 \ln 3] \\
& =3.87(2 d p)
\end{aligned}
\end{align*}
$$

(b) $3 \tan 2 x=\sqrt{3} \quad$ ta $2 x=\frac{\sqrt{3}}{3}=\frac{1}{\sqrt{3}}$ $\begin{aligned} & \text { Let } u=2 x \\ & (0 \leq u \leq 4 \pi)\end{aligned} \quad \tan u=\frac{1}{\sqrt{3}}$

$$
\begin{align*}
u & =\frac{\pi}{6}, \frac{7 \pi}{6}, \frac{13 \pi}{6}, \frac{19 \pi}{6} \tag{1}\\
\therefore x & =\frac{\pi}{12}, \frac{7 \pi}{12}, \frac{13 \pi}{12}, \frac{19 \pi}{12}
\end{align*}
$$

(c) $\frac{d^{2} x}{d t^{2}}=\frac{8}{(t+1)^{2}}=8(t+1)^{-2}$
(1) $t>0,(t+1)^{2}>0 \quad \therefore \frac{d^{2} x}{d t^{2}}>0$
(ii) $v=\int 8(t+1)^{-2} d t=\frac{8(t+1)^{-1}}{-1}+c$

Wen $t=0, v=0 \quad 0=-8+c \quad \therefore c=8$

$$
\begin{equation*}
\therefore \quad V=\frac{-8}{(t+1)}+8 \tag{1}
\end{equation*}
$$

$8 c$ (iii)

$$
\begin{align*}
x & =\int_{2}^{5}\left(\frac{-8}{t+1}+8\right) d t \\
& =-8 \int_{2}^{5} \frac{1}{t+1} d t+\int_{2}^{5} 8 d t \\
& =[-8 \ln (t-1)]_{2}^{5}+[8 t]_{2}^{5} \\
& =[(-8 \ln 6+8 \ln 3)]+[(40-16)] \tag{1}\\
& =[-8(\ln 6-\ln 3)]+24 \\
& =-8 \ln 2+24 \\
& =24-8 \ln 2 \tag{1}
\end{align*}
$$

ar

$$
\begin{array}{rl}
t=2, & x=16-8 \ln 3 \\
t=5 & x=40-8 \ln 6 \\
(40-8 \ln 6)-(16-8 \ln 3) \\
& =24-8(\ln 6-\ln 3) \\
& =24-8 \ln 2
\end{array}
$$

Q9(a) $\quad f(x)=x^{2}+m x-3$
(1)

$$
\begin{align*}
f(-1)=5 \quad \therefore \quad 5 & =1-m-3 \\
m & =-7 \tag{1}
\end{align*}
$$

(II)

$$
\begin{aligned}
\alpha+\beta & =7 \\
\alpha \beta & =-3 \\
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =49+6 \\
& =55
\end{aligned}
$$

(b)

$$
\begin{align*}
V & =\pi \int_{16}^{4} \frac{16}{x^{2}} d x=\pi \int_{1}^{4} 16 x^{-2} d x \tag{0}\\
& =\pi\left[\frac{16 x^{-1}}{-1}\right]_{1}^{4}=\pi\left[\frac{-16}{x}\right]_{1}^{4} \\
& =\pi[(-4)-(-16)]=12 \pi v^{3} \tag{1}
\end{align*}
$$

(c) $N=300 e^{k t}$
(i) $t=0, N=300$
(iI)

$$
\begin{gathered}
t=8, \quad N=600 \\
600=300 e^{8 k} \\
2=e^{8 k}
\end{gathered}
$$

Take logs $\quad \ln _{2}=8 k$ he

$$
\begin{equation*}
\frac{l 2}{8}=k \quad \therefore \quad k=0.0866 \tag{1}
\end{equation*}
$$

(III)

$$
\begin{align*}
3000 & =3006 e^{0.0866 t} \\
10 & =e^{0.0866 t} \tag{1}\\
\ln 10 & =0.0866 t \ln t
\end{align*}
$$

$$
\begin{aligned}
t=\frac{\ln 10}{0,0866} & =26,5887 \cdots \\
& =26 \operatorname{hrs} 35 \mathrm{mins}
\end{aligned}
$$

(iv) $t=16$

$$
N=300 e^{16 \times 0.0866}
$$

$$
\begin{equation*}
N=1199 \tag{1}
\end{equation*}
$$

(v)

$$
\begin{align*}
\frac{d N}{d t}=K N & =0.0866 \times 1199 \\
& =103 \mathrm{bact} / \mathrm{hr} \tag{1}
\end{align*}
$$

Q10(a)

(i) To fod BD

In $\triangle A B D \quad \tan 45=\frac{h}{B D}$

$$
\begin{equation*}
\therefore B D=\frac{h}{\tan 45}=h \tag{1}
\end{equation*}
$$

to ttco

$$
\begin{align*}
\ln \triangle A(B \quad \tan 30 & =\frac{h}{D C} \\
\therefore \quad D C & =\frac{h}{\operatorname{th} 30}=\sqrt{3} \mathrm{~h} \tag{1}
\end{align*}
$$

(ii) In $\triangle D C B$ Uif Cosme Rule:

$$
\begin{align*}
& D B^{2}=B C^{2}+D C^{2}-2 B C \cdot D C \cos C \tag{1}\\
& h^{2}=x^{2}+3 h^{2}-2 x \cdot \sqrt{3} h \cos 30 \\
& h^{2}=x^{2}+3 h^{2}-2 \sqrt{3} x h \frac{\sqrt{3}}{2} \\
& h^{2}=x^{2}+3 h^{2}-3 x h \\
& \therefore 2 h^{2}=3 x h-h^{2} \tag{1}
\end{align*}
$$

(b)

(i)

0

$$
\begin{align*}
& 625=\frac{1}{2} R^{2} \theta \\
& \frac{1250}{R^{2}}=\theta \tag{1}
\end{align*}
$$

(ii)

$$
\begin{array}{ll}
P=2 R+l & \text { and } l=R \theta \\
P=2 R+R \theta & \text { but } \theta=\frac{1250}{R^{2}} \\
P=2 R+\frac{1250}{R} & \tag{1}
\end{array}
$$

(iii)

$$
\begin{align*}
P & =2 R+1250 R^{-1} \\
\frac{d P}{d R} & =2-1250 R^{-2} \\
& =2-\frac{1250}{R^{2}} \tag{1}
\end{align*}
$$

for SPs $\frac{d P}{d R}=0 \quad \frac{1250}{R^{2}}=2$

$$
\begin{align*}
R^{2} & =625 \\
R & =\sqrt{625} \\
& =25 \tag{1}
\end{align*}
$$

Test Natuve

$$
\begin{align*}
& \frac{d^{2} P}{d R^{2}}=2500 R^{-3}=\frac{2500}{R^{3}}>0 \\
& \therefore M I N T P \text { Wh } R=25 \tag{0}
\end{align*}
$$

10(c) loau $=\$ 5000$ a 2.25% pim

$$
\begin{align*}
& A_{n}=5000(1.0225)^{60}-\frac{m\left(1.0225^{60}-1\right)}{0.0225} \\
& A_{n}=0 \\
& \therefore \frac{m\left(1.0225^{60}-1\right)}{0.0225}=5000(1.025)^{60} \\
& \therefore M=\frac{5000(1.0225)^{60} \times 0.0225}{1.0225^{60}-1} \\
&=\$ 152.68 \tag{1}
\end{align*}
$$

