QUESTION ONE

(12 MARKS)

(a) Factorise completely
$$y^3 - 3y^2 + y - 3$$
. 2

(b) Solve
$$x^2 - 2x - 3 \ge 0$$
. 2

(c) Find a and b if
$$(4-2\sqrt{7})^2 = a + b\sqrt{7}$$
. 2

(d) Solve
$$|2x-1|=9$$
. 2

(e) Evaluate
$$\log_3 7$$
 correct to 3 significant figures. 2

(f) If the line
$$kx + 3y - 7 = 0$$
 has a gradient of 2, find the value of k. 2

END OF QUESTION ONE

QUESTION TWO - Start a new booklet.

(12 MARKS)

2

(a) Solve the following simultaneous equations: 3r = y = 8

$$3x - y = 8$$
$$2x + 3y = -2$$

(b) Differentiate the following:

(i)
$$y = (5x^3 - 4)^5$$
. 2

(ii)
$$y = \frac{2x}{x-3}$$
. 2

$$f(x) = 3xe^{2x}.$$

(iv)
$$f(x) = \ln(3x^2 + 3x)$$
, giving your answer in simplest form. 2

(c) Find the exact value of
$$\sin 240^\circ \times \sec 45^\circ$$
. 2

END OF QUESTION TWO

Page **2** of **10**

QUESTION THREE- Start a new booklet.

(12 MARKS)

(a) Find
$$\int \frac{x}{x^2 + 4} dx$$
. 2

(b) Evaluate
$$\int_{0}^{\frac{\pi}{6}} \sec^2 2x \, dx$$
, giving your answer in exact form. 3

(c) Evaluate
$$\int_{0}^{2} 2x e^{3x^2} dx$$
, giving your answer in exact form. 2

(d) Find k such that
$$\int_{0}^{k} (3+2x) dx = 4.$$
 3

(e) Evaluate
$$\sum_{r=1}^{10} 2^r$$
. 2

END OF QUESTION THREE

QUESTION FOUR- Start a new booklet.

(a)

(b)

(12 MARKS)

In the rectangle *ABCD* below, AE = EB and $\angle BAE = 15^{\circ}$.

Copy and label the diagram above into your booklet.

(i)	Explain why $\angle DAE = \angle CBE$.	1
(ii)	Prove $\Delta DAE \equiv \Delta CBE$.	2
(iii)	Hence prove that $\triangle DEC$ is isosceles.	1
(i)	Express $y^2 - 2x - 8 = 0$, in the form $(y - k)^2 = 4a(x - h)$.	1
(1)	and hence find:	1
(ii)	the focal length.	1
(iii)	the co-ordinates of the vertex.	1
(iv)	the co-ordinates of the focus.	1
(v)	the equation of the directrix.	1
(vi)	the equation of the focal chord which also passes through	3
	the point (4, 4).	

END OF QUESTION FOUR

QUESTION FIVE - Start a new booklet.

(12 MARKS)

(a)	A, B, and C	are points $(3, 2)$,	(-2, 4), and (2)	5, -1) respectively.
-----	-------------	-----------------------	--------------------	----------------------

(i)	Draw a diagram in your booklet, representing <i>A</i> , <i>B</i> and <i>C</i> .	1
(ii)	Find the gradient of <i>BC</i> .	2
(iii)	Find the equation of <i>BC</i> in general form.	2
(iv)	Find the perpendicular distance of <i>A</i> to <i>BC</i> , giving your answer in simplest surd form.	2

(b) Show that
$$\frac{\tan\theta \sec\theta}{1+\tan^2\theta} = \sin\theta$$
. 2

(c) (i) Find the locus of the point
$$P(x, y)$$
, which moves so 2
that the line *PA* is perpendicular to the line *PB* where
A is (4, 3) and *B* is (-2, -1).

END OF QUESTION FIVE

QUESTION SIX - Start a new booklet.

(12 MARKS)

(a)	(i)	On the same axes, sketch the graphs of $y = 3x^2 + 2$ and $y = 7x$.	1
	(ii)	Find the <i>x</i> co-ordinates of the points of intersection.	2
	(iii)	Hence, use the graphs to solve the inequation $7x \ge 3x^2 + 2$.	1

(b) Sketch the region simultaneously defined by $y \ge |x-3|$ and y < 3, 2 labelling all intercepts, and points of intersection.

(ii) Hence find the values of *x* and *y*.

4

2

END OF QUESTION SIX

QUESTION SEVEN - Start a new booklet.

(12 MARKS)

(a) Given that $y = 2x \log_e x$, find, giving your answers in exact form:

(i)	$\frac{dy}{dx}$.				1

- (ii) the co-ordinates of the stationary point, and determine its nature. 4
- (b) Ayla is saving for a holiday. In the first month she saves \$30. In the second month she saves \$35. In each subsequent month her savings are \$5 more than the month before.

(i)	How much will she save in the 17 th month?	1
(ii)	How much money will she have saved in total by the 17 th month?	2
(iii)	Ayla needs \$2100 to pay for her plane ticket. How long will it take	2
	her to save this amount?	

- (c) Rory decided to donate \$3000 to charity. A year later he donated $\frac{7}{8}$ of this amount to the same charity. He continued to donate in this way each succeeding year.
 - (i) In which year would Rory first make a donation of less than \$1000? 1
 - (ii) What is the greatest total amount that the charity can 1 expect to receive?

END OF QUESTION SEVEN

QUESTION EIGHT - Start a new booklet.

(**12 MARKS**)

(a) Use Simpson's Rule with 3 function values to find an approximation for 3 $\int_{1}^{3} 3\log_{e} x \, dx, \text{ giving your answer correct to 2 decimal places.}$

(b) Solve
$$3 \tan 2x = \sqrt{3}$$
, $0 \le x \le 2\pi$. 3

(c) A particle is travelling in a straight line, starting from rest at the origin, such that $\frac{d^2x}{dt^2} = \frac{8}{(t+1)^2}$, where x is displacement in metres and t is time in seconds.

- (i) Show that the acceleration is always positive. 1
- (ii) Find an expression for the velocity. 2
- (iii) Show that the distance covered between t = 2 seconds 3 and t = 5 seconds is $(24-8\log_e 2)$ metres.

END OF QUESTION EIGHT

QUESTION NINE - Start a new booklet.

(12 MARKS)

(a)	A qua	A quadratic function is given by $f(x) = x^2 + mx - 3$, and $f(-1) = 5$.					
	(i)	Find the value of <i>m</i> .	1				
	(ii)	If the roots of the function are α and β , find the value of $\alpha^2 + \beta^2$.	2				
(b)	Calcı	that the volume of solid of revolution if the hyperbola $y = \frac{4}{x}$ is	2				
	rotate	ed about the x axis from $x = 1$ to $x = 4$.					
(c)	The r	number of bacteria in a culture is growing according to the formula					
	N = 3	$300e^{kt}$, where <i>t</i> is time in hours.					
	(i)	What was the initial number of bacteria in the culture?	1				
	(ii)	If, after 8 hours, the number of bacteria has doubled, calculate the value of k correct to 4 decimal places.	2				
	(iii)	How long would it take for the number of bacteria to rise to 3000? Give your answer correct to the nearest minute.	2				
	(iv)	How many bacteria would there be after 16 hours?	1				
	(v)	At what rate will the bacteria be increasing after 16 hours?	1				

END OF QUESTION NINE

QUESTION TEN - Start a new booklet.

(**12 MARKS**)

(a) AD, an upright tower of height h metres, is standing on level ground. The angles of elevation to the top of the tower from points C and B on the ground, are 30° and 45° respectively, and $\angle DCB = 30^{\circ}$.

(i)	Find the lengths of <i>BD</i> and <i>CD</i> in terms of <i>h</i> .	2

- (ii) By considering $\triangle DCB$, show that $2h^2 = 3xh x^2$. 3
- (b) A sector AOB, with radius R and $\angle AOB = \theta$, has an area of 625cm².

(i) Show that
$$\theta = \frac{1250}{R^2}$$
. 1

- (ii) Show that the perimeter (P) of the sector can be given 1 by: $P = 2R + \frac{1250}{R}$.
- (iii) Find the value of R that is required to give a minimum perimeter. 3
- (c) Angus takes out a student loan of \$5000 at 2.25% interest per month,
 2 reducible monthly. Regular repayments are made at monthly intervals.
 What should each repayment be if he wishes to pay off the loan in 5 years?

END OF EXAMINATION

Solutions 2011 2UNIT */ = · · · · · TRIAL Q1 (a) $y^{3} - 3y^{2} + y - 3 = y^{2}(y - 3) + 1(y - 3)$ (1) $= (y^{2}+1)(y-3)$ (1) $x^{2} - 2x - 3 \ge 0$ $(x + 1)(x - 3) \ge 0$. (1) -1 3 (6) 273 or x = -1 () $(4-2\sqrt{7})(4-2\sqrt{7}) = 16 - 16\sqrt{7} + 28$ -- $a+b\sqrt{7} = 44 - 16\sqrt{7}$ (\mathbf{q}) a=44, b=-16 () |2x-1| = 92x - 1 = 9 or 2x - 1 = -9 $2x = 10 \qquad 2x = -8$ $(1) \quad \frac{\chi=S}{\chi=-4}$ $log_3 7 = log_{10} 7 = 1.77 (3sf)$ $log_{10} 3 0$ 3y = -kx + 7 $y = -\frac{k}{3}x + \frac{7}{3}$ (1) Kx+ 3y-7=0 $-\frac{k}{3} = 2 \quad k = -6 \quad (D)$

(b) $i = (52c^3 - 4)^{5}$ $y' = 5(5x^{3}-4)^{4}(15x^{2})$ (1) $= 75x^{2}(5x^{3}-4)^{4}$ \bigcirc $\frac{y}{x-3} = \frac{2x}{x-3}$ ĩý_ $y' = (x-3)^2 - 2x(1) = \frac{2x-6-2x}{(x-3)^2}$ = -6 $(x-3)^2$ (1) $f(x) = 3xe^{2x}$ $f'(x) = e^{2x} 3 + 3x \cdot 2e^{2x}$ $= 3(e^{2x} + 2xe^{2x})$ $= 3e^{-2x}(1 + 2x)$ (ii) $f(x) = \ln(3x^{2} + 3x) = \tilde{f}(2x+i)$ $f'(x) = \frac{6x+3}{3x^{2}+3x} = \tilde{f}(2x+i)$ $B(x^{2}+x)$ (w)____ = 22+1 x2+x = - 16 $= -\sqrt{3} \times \sqrt{2}$ (c). = 240 × sec 45 m

 $= \frac{1}{2} / \frac{2\chi}{\chi^2 + 4}$ $(P_3(c)) \int \frac{x}{x^2+4} dx$ $= \frac{1}{2} \ln \left(\pi^2 + 4 \right) + C \quad \bigcirc$ $\begin{array}{c} \overline{T}/6\\ (\overline{b}) \int \sec^2 2x \, dsc &= \left[\frac{\tan 2x}{2}\right]^{-1/6} \\ \hline \end{array}$ $= \pm \left[t_{n} \frac{\pi}{3} - t_{n} \phi \right] \left[f_{n} \right]$ $= \frac{1}{2} \left[\sqrt{3} - 0 \right] = \frac{\sqrt{3}}{2}$ $\begin{array}{c}
2\\
(-) \int 2x e^{3x^2} dx = \frac{1}{3} \int 6x e^{3x^2} dx \\
0 \\
= \frac{1}{3} \int e^{3x^2} dx \\
= \frac{1}{3} \int e^{3x^2} dx \\
= \frac{1}{3} \int e^{3x^2} \int e^{3x^2} dx \\
=$ $= \frac{1}{3} \int e^{i2} - e^{i3} \int e^{i3} e^{i3} e^{i3} = e^{i3} \int e^{i3} e$ $= \frac{e^{i^2} - 1}{3}$ \bigcirc $(d) \int (3+2x) dx = 4$ $\left[\frac{3x+x^2}{2}\right]^k = 4$ $\left[(3k+k^2) - (0) \right] = 4$ $\frac{k^{2}+3k-4=0}{-k=1} + \frac{1}{2} +$ but k>0 :- k=1 ()

10 $52^{n} = 2 + 2^{3} +$ $2^{3} + \ldots 2^{10}$ (e \bigcirc i = a gP inthe a = 2, r = 2. $S_{10} = \frac{2(2^{10}-1)}{2-1} = \frac{2046}{2}$

ſ $L EAB = LEBA (1805 \Delta).$ (i).". LDAE = LCBE (hight angles (\mathbf{i}) In AS DAE, CBE AD = CB (oppsides rect) DAE = CBE (prived). AE = BE (quen) -'. A DAE = DOBE (SAS) (III) DE=EC (con sides, cong ds) - ADEC is 1805. $\frac{y^2 - 2x - 8}{y^2 - 2x - 8} = 0 \qquad y^2 = 2x + 8$ (1) $\frac{y^2 - 2x - 8}{y^2 - 2(x + 4)}$ (6) $\hat{\tau}$ $(11) 4a = 2 : a = \frac{1}{2}$ (IV) Verstey = (-4,0) $(\cap$ $fours = (-3\frac{1}{2}, 0)$ (\mathbf{N}) (\mathbf{v}) x = -42Dir: grad focal chard (\mathbf{v}_1) $= \frac{4-0}{4+3^{\frac{1}{2}}} = \frac{8}{15}$ (n): Equ: $y=0=\frac{8}{15}(2+3\frac{1}{2})$ 15y = 8z + 2828z - 15y + 28 = 0

(-2,4)B A(3,2)Q5 (a) (i T c(s,-i)M(BC) = -1 - 4 = -5 $8^{-2} - 7$ (\mathbf{i}) \bigcirc (11) $g_{\mu}BC$ y-4=-5 (2C+2) Æ $\frac{7y-28 = -5x - 10}{5x + 7y - 18} = 0$ $d = \frac{3 \times 5 + 2 \times 7 - 18}{\sqrt{25 + 49}} = \frac{11}{\sqrt{74}}$ (1) \bigcirc d = 11574 \bigcirc 74 6 the seco = tro seco sec²0 -----(I) $1+h^2\Theta$ Sub 1 1 = SO X LOF = sub pA(43) m(pA) = y-3x-4 $m(P\theta) = \frac{y+1}{y+2}$ (c $m_1 m_2 = -1$ $\left(-2,-1\right)\beta$ P(x,y)(1) $\frac{y-3}{2c-4} \times \frac{y+1}{2t^2} = -1$ (i) $y^2 - 2y - 3 = -(x^2 - 2x - 8)$ $y^2 - 2y = 3 = -x^2 + 2x + 8$ $(i) (y^{-1})^{2} + (x^{-1})^{2} = 11 + 1 + 1 \quad (i)$

 $y = 3x^2 + 2$ Q6/a (Π) y = 7x(ii) $3x^2 + 2 = 7x$ $3x^2 - 7x + 2 = 0$. (3)-1()-2)=0 $x = \frac{1}{3}, 2$ $x = \frac{1}{3}, y = \frac{7}{3} = 2\frac{1}{3}$ \bigcirc $x=2, y\neq$ $7x \ge 3x^2 + 2$ (m) $\frac{1}{3} \leq \mathcal{X} \leq \mathcal{Q}$ (b) $y \ge |x-3|$ y < 3Ź (c) (i) In As ABC, ADE <u>LABC = LADE</u> (com L's, Il lines) <u>LBAC = LDAE</u> (common) (D - A ABC II A ADE (A A) \bigcirc $\underbrace{ \begin{pmatrix} 1 \\ 1 \end{pmatrix} \underbrace{5}_{5+\gamma} = 4 = 4 \\ 5+\gamma = 10 \\ 12$ Stx 50 = 20 + 4x (1) + 8 = 10y (1) 30 = 4x + 48 = y $7\frac{1}{2} = x (1) + 10$ 4.8 = 4 D

Q7(a) y= 2x log x (i) $dy = \log x + 2x \perp$ $= 2\log_2(+2) = 2\left(\log_2(+1)\right)$ (11) for SPs dy =0. $2(\log_{2}(1)=0) \cdot \log_{2}(x) = -1$ $e^{-1} = \infty$ x = 1, $y = 2 \log e^{-1}$ = 2 - 1 = -2 (1) $: SP at \left(\frac{L}{e}, -\frac{2}{e}\right)$ Test Nadwe: $\frac{d^2y}{dx^2} = \frac{2}{x}$ at x = 1 $e \frac{d^2y}{dx^2} = 2e > 0$ '. Mm TP (b) 30 + 35 + 40 + - - AP with a = 30, d = 5(i) $T_{17} = 30 + (16 \times 5) = 4110$ (ii) $S_{17} = \frac{17}{2} \begin{bmatrix} 60 + 16 \times 5 \end{bmatrix} = \frac{190}{10}$ (111) $S_n = 2100$ $2100 = \frac{n}{2} \left[60 + (n-1)5 \right]$ $\frac{1}{4200} = n \left[\frac{60}{5n} + \frac{5n}{5n} \right]$ $\frac{1}{4200} = 55n + 5n^{2}$

 $5n^2 + 55n - 4200 = 0$ $\begin{array}{c} (\pm 5) & n^2 \pm 11n - 840 = 0 \\ (n \pm 35)(n - 24) = 0. \end{array}$ -'. n=-35, 24 -. 24 months to get \$2100 (c) a = 3000 $r = \frac{7}{8}$ (1) $T_{\rm h} < 1000$ $3000 \left(\frac{7}{8}\right)^{n-1} \le 1000$ $\left(\frac{7}{8}\right)^{n-1} \le \frac{1}{3}$ Take logs (n-1) log $\left(\frac{7}{8}\right) < \log\left(\frac{1}{3}\right)$ $n-1 \leq \frac{\log 1/3}{\log 7/s}$ (ve) mendety n-1 > 8,22n > 9,221) in the 10-th year. $(1) \quad S_{\infty} = \frac{3000}{1 - 7/8} = \frac{\$24000}{1} \quad (1)$

Q8(a) 21 2 3 ~ Supson's Rule $\int 3 \ln x \, dx = \frac{1}{3} \left[0 + 4 \left(3 \ln 2 \right) + 3 \ln 3 \right]$ = 1/2 lat 3 la 3 () = 3,87 (2dp). O b) $3t_{1} 2x = \sqrt{3}$ $t_{2} 2x = \sqrt{3} = \frac{1}{3}$ $\begin{array}{ccc} \text{Lel} & u = 2x & \text{tan} & u = 1 \\ (0 \le u \le 4\pi) & \sqrt{3} \end{array}$ $u = \pi, 7\pi, 13\pi, 19\pi$ $\frac{1}{2} = \frac{1}{12}, \frac{7\pi}{12}, \frac{13\pi}{12}, \frac{19\pi}{12}$ (c) $\frac{d^2 x}{dt^2} = \frac{8}{(6+1)^2} = 8((6+1)^{-2})^{-2}$ (1) t_{70} , $(t+1)^2 > 0$: $\frac{d^2 k}{dt^2} > 0$ (1) (11) $V = \int 8(t+t)^{-2} dt = \frac{8(t+t)^{-1}}{-1} + C$ We t=0, v=0 0=-8+C : C=8 $\frac{1}{(E+1)} + 8 \quad (1)$

 $\chi = \int \left(\frac{-8}{6+1} + 8 \right) dt$ 8c (11) $= -8 \int \frac{1}{6+1} dt + \int \frac{8}{8} dt$ (H-) $= \left[-8 \ln(t+t) \right]_{2}^{5} + \left[8t \right]_{2}^{5}$ $= \left[\left(-8 \ln 6 + 8 \ln 3 \right) + \left[\left(40 - 16 \right) \right] \right]$ $= \left[-8(l_{16} - l_{13}) \right] + 24$ $= -8l_{2} + 24$ = 24 - 8 lu 2 t=2, x=16-8 lu 3t=5 z=40-8 lu 6on (40-8h 6)-(16-8 lu 3) = 24 - 8(lu 6 - lu 3) $= 24 - 8 l_{2}$

{ • (i) f(-i) = 5 : 5 = 1 - m - 3m = -7(ii) $d+\beta = 7$ $\alpha\beta = -3$ (i) $f(x) = x^2 - 7x - 3$ $\chi^2 + \beta^2 = (\chi + \beta)^2 - 2 \chi \beta$ $= \frac{49 + 6}{55}$ $= \frac{49 + 6}{55}$ $= \frac{4}{55}$ $V = T \int \frac{16}{x^2} dx = T \int \frac{16x^{-2}}{x^2} dx$ $\left(b\right)$ $= \pi \left[\frac{16x^{-1}}{-1} \right]^{\frac{1}{2}} = \pi \left[\frac{-16}{7c} \right]^{\frac{1}{2}},$ $(-4) - (-16) = 12TU^{3}$ = π (c N = 300 ett (i) t=0, N = 300(ii) t=8, N = 600 $\widehat{(1)}$ $600 = 300 e^{8k}$ (1) $2 = l^{Sh}$ Take logs li 2 = 8k li c $\frac{l_{12}}{8} = 12 \qquad \frac{1}{2} \quad \frac{k}{k} = 0.0866 \quad (1)$ $\begin{array}{c} (11) \quad 3000 = 3000^{0.08666} \\ 10 = 0.08666 \end{array}$ l- 10 = 0,0866t let

 $t = \frac{l_{10}}{0.0866} = 26.5887 - ---$ = 26 hrs 35 mins () E = 16 N = 300e^{16x0.0866} (\mathbf{v}) (i)N = 1199(v) $\frac{dN}{dF} = KN = 0.0866 \times 1199$ = 103 bact/hr $\widehat{(1)}$

* Q10 (a) 4 30 (30) C 45 B (i) To find BD ta 45 = hRD In SABD $\therefore BD = \frac{h}{4\pi 45} = \frac{1}{8}$ $(\Gamma$ to ful co $t_2 30 = h$ In A ACD $\frac{1}{2}Dc = \frac{h}{420} = \sqrt{3}h$ (1) In A DCB this Cosme Rule: $DB^{2} = Bc^{2} + Dc^{2} - 2BC, DC cos C$ (1) $h^2 = \chi^2 + 3h^2 - 2\chi, \sqrt{3}h$ on 30 $h^2 = x^2 + 3h^2 - 2\sqrt{3} xh \sqrt{3}$ $h^2 = 3c^2 + 3h^2 - 3xh$ $\frac{1}{2}h^2 = 3zh - h^2$ (1)

A (i) $A = \frac{1}{2}R^2\Theta$ (b) $625 = \perp R^2 \Theta$ B (Γ) $\frac{1250}{R^2} = 0$ 例 P = 2R + land l=RO but $\Theta = \frac{1250}{R^2}$ $P = 2R + R\Theta$ $\frac{P=2R+1250}{R}$ (11) $P = 2R + 1250R^{-1}$ $\frac{dP}{dR} = 2 - 1250R^{-2}$ = 2 - 1250 R^2 T for SPs dP =0 dR $\frac{1250}{R^2} = 2$ $\frac{1250}{R^2} = 625$ • $R = \sqrt{625}$ = 25 () $\frac{\text{Test Nashve}}{d^2 p} = 2500 R^{-3}$ = 2500 $>_0$ - MIN TP when R=25

) loan = \$5000 a 2.25% p.m $A_{n} = 5000 (1.0225) - m (1.0225 - 1)$ 0.0225 $A_n = 0$ $\frac{-1}{0.0225} = 5500 (1.0235)^{60}$ $M = \frac{5000(1.0235)}{1.0225} \times 0.0225$ 1 = \$152,68