Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

- 1. Which of the following is equal to $\frac{x^2 36}{x 6}$?
 - (A) x 6
 - (B) x + 6
 - (C) *x*-3
 - (D) x + 3.
- 2. What are the solutions to $3x^2 7x 1 = 0$?

(A)
$$x = \frac{-7 \pm \sqrt{37}}{6}$$

(B) $x = \frac{-7 \pm \sqrt{61}}{6}$
(C) $x = \frac{7 \pm \sqrt{37}}{6}$
(D) $x = \frac{7 \pm \sqrt{61}}{6}$.

3. What are the exact solutions of $2\cos x = -\sqrt{3}$ for $0 \le x \le 2\pi$?

(A)
$$\frac{\pi}{6}$$
 and $\frac{11\pi}{6}$
(B) $\frac{5\pi}{6}$ and $\frac{7\pi}{6}$
(C) $\frac{\pi}{3}$ and $\frac{5\pi}{3}$
(D) $\frac{2\pi}{3}$ and $\frac{4\pi}{3}$.

- 4. Which of the following define the domain and range of the function $f(x) = \log_e x$?
 - (A) Domain: all real *x* and Range: all real *y*.
 - (B) Domain: x > 0 and Range: y > 0
 - (C) Domain: all real x and Range: y > 0
 - (D) Domain: x > 0 and Range: all real y.
- **5.** What is the derivative of $(e^{3x} + 1)^{-2}$?
 - (A) $-2e^{3x}(e^{3x}+1)^{-3}$ (B) $-2e^{3x}(e^{3x}+1)^{-1}$ (C) $-6e^{3x}(e^{3x}+1)^{-3}$ (D) $-6e^{3x}(e^{3x}+1)^{-1}$.
- 6. What is the perpendicular distance of the point (4,5) from the line 3x 2y + 10 = 0?

(A)
$$\frac{12}{\sqrt{13}}$$

(B) $\frac{17}{\sqrt{13}}$
(C) $\frac{2}{\sqrt{5}}$
(D) $\frac{12}{\sqrt{41}}$.

- 7. What is the solution of $5^x = 20$?
 - (A) $\log_4 5$
 - (B) $\log_5 4$
 - (C) $1 + \log_4 5$
 - (D) $1 + \log_5 4$.

8. A parabola has a focus (3,1) and directrix x = 5. What is the equation of the parabola?

- (A) $(y-1)^2 = -4(x-4)$
- (B) $(y-1)^2 = 8(x-3)$
- (C) $(x-3)^2 = -8(y-3)$
- (D) $(x-3)^2 = -16(y-1)$.
- 9. The diagram below shows the graph y = f(x).

Where is the function increasing, at a decreasing rate?

- (A) (2,0)
- (B) (6, -1.8)
- (C) (10,1.8)
- (D) (14,0).

- (C) 544
- (D) 706.

Section II

90 marks

Attempt Questions 11-16

Allow about 2 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Question 11-16, your responses should include relevant mathematical reasoning and /or calculations.

Question 11 (15 marks)

a)	Evaluate $\frac{\ln 5}{3}$ correct to three significant figures.	1
b)	Evaluate $\lim_{x \to 3} \frac{x^3 - 3x^2}{x - 3}$	2
c)	Differentiate $(1 + \tan x)^4$	2
d)	Differentiate $x \ln x$	2
e)	Find $\int 4xe^{x^2+1}dx$	2
f)	Evaluate $\int_{0}^{2} \frac{3x}{x^2 + 1} dx$	3

g) Sketch the region defined by $x^2 + (y-1)^2 \ge 9$ 3

Question 12 (15 marks) Start a new booklet.

- a) Given that $\int_{0}^{k} kx + 2dx = 12$, and k is a constant, find the value of k.
- b) A(-5,-2) and C(11,10) are two points on the number plane. *M* is the midpoint of *AC* and the perpendicular bisector of *AC* meets

i.	Find the coordinates of <i>M</i> .	1
ii.	Show that the equation of the perpendicular bisector of AC ,	
	i.e. line <i>BMD</i> , is $4x + 3y - 24 = 0$	2
iii.	Hence find the coordinates of the points <i>B</i> and <i>D</i> .	2
iv.	Show that the quadrilateral <i>ABCD</i> is a rhombus.	2

c) Chairs are arranged in rows in front of a stage in a concert hall, so the row closest to the stage is the first row. Each row has two more chairs than the row in front of it. There are forty-two chairs in the tenth row.

i.	How many chairs are in the first row?	2
ii.	The seating arrangement has a total of 680 chairs. How many rows of chairs are in the concert hall?	3
iii	How many chairs are in the last row?	1

2

1

3

Question 13 (15 marks) Start a new booklet.

a) The population P(t) of turtles in a conservation park is given by:

$$P(t) = 200 - 75\sin\left(\frac{\pi t}{3}\right).$$

where *t* is time in months.

- i. Find all times during the first 12 months when the population equals 275 turtles.
- ii. Sketch the graph of P(t) for $0 \le t \le 12$.
- b) The diagram shows the graphs of the function g(x) = 3x and $f(x) = 5x^3 5x^2 27x$ The graphs meet at *O* and *T*.

- i. Find the *x*-coordinate of *T*.
- ii. Find the area of the shaded region between the graphs of the functions.
- c) Tina borrows \$5000 at 1.5% per month reducible interest and pays the loan off in equal monthly instalments. Tina is to repay the loan in 3 years. Calculate the value of each monthly instalment.
 3

d) The diagram shows two quadrants, centre *O*. $OA = 3 \text{ cm}, OD = 2 \text{ cm}, \angle AOP = \theta$ radians.

Diagram is NOT drawn to scale.

i.	Show that $\frac{5}{2}\theta$ is an expression for the area of the shaded region <i>APQC</i> .	1
ii.	If the area of the shaded region APQC is $\frac{5\pi}{6}$ squared centimetres.	
	Find the size of $\angle AOP$.	1
iii.	Hence find the exact area of shaded sector OQD.	2

Question 14 (15 marks) Start a new booklet.

a) A particle travels so that its displacement (x metres), after t seconds is given by: $x = 12t - 3t^2$.

i.	Where is the particle 3 seconds after it starts?	1
ii.	When does the particle turn around?	1
iii.	How far does the particle travel during the first 5 seconds?	2
iv.	Find the greatest speed during the first 5 seconds.	1

b) A cylinder is to be cut from a solid sphere. The diagram below shows a cross section of the sphere and cylinder. The sphere has a diameter of 8 cm. The cylinder has a height of h cm and a radius of r cm.

Diagram is NOT drawn to scale.

- i. Show that the volume (V) of the cylinder is given by: 2 $V = \pi \left(\frac{64 - h^2}{4}\right)h$ 3
- ii. Find the value of h such that the volume of the cylinder is a maximum.
- c) On an island, the population P after t years is given by: $P = P_0 e^{kt}$. The initial population of the island is halved in 25 years.
 - Show that $k = \frac{\ln 0.5}{25}$ i. 1 How long will it take for the population to reduce from 5000 people to 2000 people ? 2 ii.
 - iii. What percentage of the original population will be present after 75 years?

2

2

2

1

Question 15 (15 marks) Start a new booklet.

a) i. Copy this table and complete it, leave your answers as fractions.

x	1	2	3	4	5
$\frac{2}{x(x+1)}$					

ii. Use the 5 functional values from part i, and Simpson's rule, to find an approximation to 2

$$\int_{1}^{5} \frac{2}{x(x+1)} dx$$
. Write your approximation using two decimal places

iii. Show that
$$\frac{2}{x} - \frac{2}{x+1} = \frac{2}{x(x+1)}$$
. 2

- iv. Deduce the value of the integral in part ii, correct to two decimal places.
- b) In the diagram, *ABCD* is a quadrilateral and *BD* is a diagonal. $CB = 8 \text{ cm}, AB = 9 \text{ cm}, AD = 6 \text{ cm} \text{ and } BD = 12 \text{ cm}. \angle DAB = \angle CBD.$

Diagram is NOT drawn to scale.

- i. Prove triangle *ABD* and *BDC* are similar.
- ii. Find the length of *CD*.
- iii. Prove that *AB* and *CD* are parallel

c) The graphs of $y = \sin x$ and $y = 1 + \cos x$ are shown intersecting at $x = \frac{\pi}{2}$ and $x = \pi$ Calculate the total area of the two shaded regions.

Question 16 (15 marks) Start a new booklet.

a) The region bounded by the curve $y = \sec x$, the lines $x = \frac{\pi}{4}$ and $x = \frac{\pi}{3}$ is rotated through one complete revolution about the x axis.

Find the volume of the solid of revolution. Give your answer in exact form.

b) The acceleration of a particle is given by:

$$\ddot{x} = -12e^{-2t}$$

where x is displacement in metres and t is time in seconds. Initially its velocity is 7 ms⁻¹ and its displacement is 4 m.

i. Show that the velocity of the particle is given by: $\dot{x} = 6e^{-2t} + 1$	2
ii. Graph the velocity with respect to time.	2
iii. Find the displacement when $t = 3$ seconds.	2

c) Consider the function $y = 1 + 3x - x^3$, for $-2 \le x \le 3$.

i.	Find all stationary points and determine their nature.	3
ii.	Find the point of inflexion.	1
iii.	Sketch the curve for $-2 \le x \le 3$. Do not find the <i>x</i> - intercepts.	1
iv.	What is the minimum value for the curve over the stated domain?	1

END OF THE EXAMINATION

Suggested solution(s)	<u>comments</u>
Multiple Choice	
Q1 Factorise, then simplify	
$\frac{(x+6)(x-6)}{(x-6)} = x+6$ (B)	
Q2 Quadratic Formula	
a = 3 $b = -7$ $c = -1$	
$\chi = \frac{-7 \pm \sqrt{(-7)^2 - 4(3)(-1)}}{2(3)}$	
$\chi = 7 \pm \sqrt{49 + 12} = 7 \pm \sqrt{61}$	
6 6 D	
Q3. Solve, using the 4 quadrants.	
2005x - 53 / 5 A	
$\cos \chi = -\frac{\sqrt{3}}{2}$	
$x = \Pi - \Pi_{6}$ and $\Pi + \Pi_{6}$ is	
$x = 5\pi$ and $\frac{7\pi}{6}$	
Q4, $y=f(x)=lagex$.	
danain: x70 range: all really	
D D	

Suggested solution(s)	comments
Q5. Function of a Function - Chain Rule	
$y = (e^{32} + 1)^{-2}$	
$\frac{dy}{dx} = -2(e^{32}+1)^{-3} \times 3e^{32}$	
$\frac{dy}{dt} = -6e^{3t}(e^{3t}+1)^{-3}$	
$\begin{array}{rcl} x,y & a=3 & b=-2 & c=10 \\ 06. & (4,5) & 3\chi-2y+10=0 \end{array}$	
$d = 0 \times + b + c 3(4) - 2(5) + 10 $	
$\sqrt{a^2 + b^2}$ $\sqrt{(3)^2 + (-2)^2}$	
$C_{1}^{1} = \frac{12}{\sqrt{13}} \qquad (A)$	
Q7. change index form to log form	
$\log_{5} 20 = 20$	
$lc_{G_5}(5\times4) = X$	
1095 + 1095 + = x	
$1 + \log_5 4$ (D)	
Q8. $\frac{ \operatorname{directrix}_{x=5}}{ x=5} (y-h)^{\frac{1}{2}} - 4a(x-k)$	
$\frac{F(31)}{(y-1)^2} = -4(x-4)$	
3 4 5	
vertex (4,1)	

Suggested solution(s)	comments
Q9. y 	
- 4 1 × 12 =	
function is increasing between $x = 4^{"}$ and $x = 12^{"}$	
rate is increasing between $x = "4"$ and $x = 8"$	
rate is decreasing between x="s" and x="lz"	
\bigcirc	
Q10. $\int_{3}^{5} 4x^{3} dx = \left[\frac{4x^{4}}{4}\right]_{3}^{5}$	
5 ⁴ -3 ³ = 544	
Q11. a) 0.536 (3.5.F)	
b) $\lim_{x \to 3} \frac{\chi^2(x-3)}{(x-3)} = \lim_{x \to 3} \chi^2 = 9$ (1)	
c) $y = (1 + \tan x)^4$ $\frac{Cly}{Clx} = 4 (1 + \tan x)^3 \times SEC^2 x$	
$\frac{dy}{dx} = 4 \sec^2 x \left(1 + \tan^2 x\right)^3 $	

Suggested solution(s)	comments	
$Q(1)d) y = xc \ln xc$		
$\frac{\partial y}{\partial x} = (1) \ln x + x \left(\frac{1}{2}\right) 0$	Do not write 4x esca+1)	
$\frac{dy}{dk} = \ln \chi + 1 ()$	You will be penalic	ed in HSC.
e) $\int 4\pi e^{\chi^2 + 1} dx = 2e^{\chi^2 + 1}$	students did not	
$\int dt = 2e + c$	differentiating	
$\int_{0}^{2} \int \frac{3x}{x^{2}+1} dx = \left[\frac{3}{2} \ln(x^{2}+1)\right]^{2}$	after finding integral.	
3 ln 5 - 3 ln 1 = 3 ln 5	2 M	
2 2 N 2 Connect substitution (
9) circle centre (0,1) radius 3		
() () () test (0,0)		
$0^{2} + 1^{2} \leq 9$		
-3 -2 3 contride of circle required		
$G_{12} \alpha$ $[K_{\chi^2}, 2\chi]^4$ 12	Need to distingui	ish
$\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}_{0}$	ionstants from	
(91, 8) - (0+0) = 12	Constants are us	st #
(0K+3) $(-)$	changed by diff	ferentia
K = 1/2 (1)	0	

Suggested solution(s)	comments
Q12b) (i) Midpoint of AC = $\left(\frac{-5+11}{2}, \frac{-2+10}{2}\right)$	
M = (3, 4)	
(ii) gradient of AC = $\frac{10-2}{11-5} = \frac{12}{16} = \frac{3}{4}$	
gradient of $BD = -\frac{4}{3}$ (m, xm ₂ =-1)	
using $(3, 4)$ and $m = -\frac{4}{3}$	
$y - 4 = -\frac{1}{3}(2(-3))$ 3y - 12 = -4x + 12	
4x + 3y - 24 = 0	
(iii) cuts > caxis when y=0	
4x - 24 = 0 x = 6 D(6,0)	
(uts y axis when x=0 0	
y = s = B(0,s)	
(iv) midpoint of BD = $\begin{pmatrix} 6+0 \\ 2 \end{pmatrix}, \frac{0+8}{2}$	
Since diagonals bisect a	Some students
other at 90°, ABCD is a rhombus	sides to be equal.
(1)	

Suggested solution(s)	comments
Q12c) a, a+2, a+4 A.P	
(i) $T_n = O + (n-1)O$	
42 = 0 + 9(2)	Welle done.
a= 42 -18 = 24 chairs ()	
(11) $5_{n} = 680$	
$S_n = \frac{n}{2} (2a + (n - 1)d)$	Some students
680 = n(2(24) + (n-1)2)	did not get whole number
680 = n(24 + n - 1)	indicates an error
680 = 0 (n+23)	
$n^2 + 23n - 680 = 0$ ()	
(n + 40)(n - 17) = 0	
n = - 40 n= 17 rows ()	
(111) $T_{17} = 24 + 16(2)$	
$T_{17} = 24 + 32 = 56 \text{ chairs}$. 600
Q13 a) P(t) = 275	Manne students
$200 - 75_{A}^{sin}(I_{3}t) = 275$	could not solve this
$\sin\left(\frac{\pi}{3}t\right) = -1$ (1)	
$\frac{1}{3}t = \frac{311}{2}, \frac{11}{2},$	
t = 9/2, $21/2$ 4.5 and 10.5	months.

Suggested solution(s) comments Curve oscillater QBa (11)300about 200. 200 125 Need labels 100 and seales 103 12 41 à (2) $b)_{11}q(x) = 3x$ $f(x) = 5x^3 - 5x^2 - 27x$ g(x) = f(x) at point of intersection T $5\tau^{3} - 5\tau^{2} - 27x = 3x$ $52c^3 - 57^2 - 30x = 0$ $5x(x^2-x-6)=0$ 5x(x-3)(x+2)=0X=3 X=2 in domain shown When x = 3 y = 9 (3,9) The cuave (1) g(x) is above f(x) underneath is subtracted is $\int 3x - 5x^3 + 5x^2 + 27x \, dx$ the integral $\int -5x^3 + 5x^2 + 30x dx$ $\begin{bmatrix} -\frac{5x^{4}}{4} + \frac{5x^{3}}{3} + \frac{30x^{2}}{2} \end{bmatrix}_{0}^{3}$ $\left(-\frac{5(3)^{4}}{3}+\frac{5(3)^{3}}{3}+\frac{30(3)^{2}}{2}\right) - 0 = 78.75$ squared units

Suggested solution(s)
Q13 c), 15t month = 5000 (1:015) - R
2not month = 5000 (1:015)³ - R(1+1:015)
31d month = 5000 (1:015)³ - R(1+1:015)
31d month = 5000 (1:015)³ - R(1+1:015+1:015³)
After 36'In month = 5000 (1:015)³ - R(1+1:015+1:015³)
After 36'In month = 1:005² + ... +1:015³⁰)
R = 5000 (1:015)³⁶
(1+1:015+1:015² + ... +1:015³⁰)
R = \$180.76 (D marke
Chii \$\$ haded region APQC
=
$$\frac{1}{2}(3)^3 O - \frac{1}{2}(2)^3 O$$

= $\frac{1}{2}50 - \frac{5}{2}O$ (0
(ii)) $\frac{5}{2}O = \frac{5\pi}{6}$
 $O = \frac{5\pi}{2} - \frac{\pi}{3} = \frac{\pi}{6}$ (0
Sector DOQ = $\frac{1}{2} \times 2^3 \times \frac{\pi}{6} = \frac{\pi}{3} \text{ cm}$ (0)

Suggested solution(s)	comments
$Q 4a(i) = 12(3) - 3(3)^{2}$	
DC = 9 metres from the origin	
(ii) $\hat{x} = 0$ whilst turning	
sc = 12 − 6 t	
12-6t=0 when $t=2$ second.	5
(iii) when $t=0$ $c=0$	
when $t = 2$ $\chi = 12(2) - 3(2)^2 = 12$	m, very few people
when $t = 5$ $x = 12(5) - 3(5)^2 = -$	15m graphed the application
total distance = $12 + 27 = 39 \text{ m}$ $\frac{12}{9}$	people who did graph managed more correct responses
-15	
(iv) greatest speed occurs when the gradient is steepest.	
test \hat{x} when $t = 0$ $\hat{x} = 6 \text{ ms}^{-1}$	
test \dot{x} when t= 5 $\dot{x} = 12 - 6(s) = -18ms^{-1}$	1
greatest speed occurs when t=5	

Suggested solution(s) comments QH b. (1) Using Pythagoras' theorem Many students and the diagram provided missed the Pythagoras $(2r)^{2} + h^{2} = 8^{2}$ Application. $(2r)^2 = 8^2 - h^2$ $4r^2 = 64 - h^2$ $\Gamma^2 = \frac{64 - h^2}{4}$ $(\widehat{})$ Given Volume of cylinder some used incorrect formula here $V = \pi r^2 h$ $V = \overline{\Pi} \left(\frac{64 - h^2}{2} \right) h$ 6) $V = 16 \pi h - \pi h^3$ (ii) Max occurs when V = 0test for maximum Volume is required. and V" < O either V"20 $V' = 16 \Pi - 3 \Pi h^2$ (1)or h 4 46 5 V'=0 when $h=16T \div 3T$ $h = \sqrt{64}_{3} = \frac{8}{\sqrt{3}}$ = 4.6cm $V'' = -\frac{6\pi}{4}h < 0 \quad \text{is maximum}$ Volume occurs when $h = \frac{8}{\sqrt{3}} cm$ 4.62cm also accepted.

Suggested solution(s)	comments
Suggested solution(s) (3) 14 c (i) $P_{25} = \frac{1}{2} P_{0}$ $\frac{1}{2} P_{0} = P_{0} e^{K^{25}}$ $\frac{1}{2} = e^{K^{25}}$ $\ln \frac{1}{2} = k^{25}$ (i) $12000 = 5000 e^{\frac{\ln^{0.5}{25}t}}$ (i) $2000 = 5000 e^{\frac{\ln^{0.5}{25}t}}$ $0 \cdot 4 = e^{\frac{\ln^{0.5}{25}t}}$ $\ln (0 \cdot 4) = \frac{\ln(0 \cdot 5)t}{25}$ $t = \ln (0 \cdot 4) \div \frac{\ln(0 \cdot 5)}{25}$ t = 33 years (iii) $P = 5000 e^{\frac{\ln^{0.5}{25} *^{75}}}$ $P = 5000 e^{\frac{\ln^{0.5}{25} *^{75}}}$ P = 625 (i) $0 \cdot 6 \text{ foriginal} = \frac{625}{5000} \times 100$	<u>Randing</u> Wasn't penalised

Suggested solution(s)	comments
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c} (11) \\ A \stackrel{\circ}{=} \frac{1}{3} \left(1 + \frac{4}{3} + \frac{1}{6} \right) + \frac{1}{3} \left(\frac{1}{6} + \frac{4}{10} + \frac{1}{15} \right) \\ 0 \stackrel{\circ}{=} \frac{47}{10} + \frac{1}{10} \left(1 + \frac{4}{3} + \frac{1}{6} \right) + \frac{1}{3} \left(\frac{1}{6} + \frac{4}{10} + \frac{1}{15} \right) \\ \end{array} $	using a formula incorrectly for
(iii) LHS = $\frac{2}{x} - \frac{2}{x+1}$	multiple applications
$=\frac{2(x+i)-2x}{2x(x+i)}$	
$= \frac{2}{2((2(+)))}$	
$= RHS \qquad (1)$ $(iv) \int_{1}^{5} \frac{2}{\tau(\chi+1)} dx = \int_{1}^{5} \frac{2}{\chi} - \frac{2}{\chi+1} dx$	
$= \left[2\ln \chi - 2\ln(\chi + i) \right]_{1}^{5}$	
$= (2\ln 5 - 2\ln 6) - (2\ln 1 - 2\ln 2)$	
$= 2\ln 5 - 2\ln 6 + 2\ln 2$	
= 1.02 (2dp) ()	

Suggested solution(s)	comments
Q15b)	
(1) $\ln \triangle ABD$ and $\triangle BDC$	
$\angle DAB = \angle CBD (given)_{0}$ AB : BD (9:12 = 3:4) AD : BC (6:8 = 3:4)	
: A ABD // ABDC Two sides in same proportion and included angles are equal	the abbreviations SAS is only appropriate for congrue
(ii) since $\triangle ABD \triangle BDC$	triangles.
Then DB: CD (3:4) DB=12 12: CD $\therefore CD = \frac{12\times4}{3} = 16 \text{ cm}$	
corresponding sides on similiar triangles have the same ratio	
(iii) SINCE & ABP // & BDC	
then LABD = L BDC	
alternate angles are equal	
therefore AB is parallel to CD	

5

Suggested solution(s)	comments	
QISC)		
Area = JI+cosz-sinxdz +		
O T		
$\int_{\frac{1}{2}} \sin x - (1 + \cos x) dx.$		
$\left[x+\sin x+\cos x\right]_{0}^{x_{1/2}}+\left[-\cos x-x-\sin x\right]_{0}^{x_{1/2}}$		
$\left[\left(\frac{\pi}{2}+\sin\frac{\pi}{2}+\cos\frac{\pi}{2}\right)-\left(0+\sin(0+\cos(0))\right]+\left[\left(-\cos(\pi-\pi-\pi-\sin(1))\right)\right]$	$\overline{\Pi} - \left(-\cos \overline{\Pi}_{2} - \overline{\Pi}_{2} - 5\right)$	inty)
$\left[\left(\pi_{1/2}+1+0\right)-\left(0+0+1\right)\right] + \left[\left(1-\pi-0\right)-\left(0-1\right)\right]$	$[h_2 - i)$	
$= TT_{12} + 2 - tT_{12}$		
= 2 unit ()		

Suggested solution(s)	comments
$(016a)$ V = TI $\int_{174}^{114} \sec^2 x dx$ (1)	
$= TT \left[tanz \right]_{T/4}^{T/3} (i)$	
$= TT \left(\tan \pi_3 - \tan \pi_4 \right)$	
= TT (J3 - 1) cubic units	
b) $\dot{x}_{=} - 12e^{-2t}$ ()	
$\dot{x} = \int -12e^{-2t} dt$	
$\ddot{x} = -\frac{12e^{-2t}}{-2} + C$	
$\hat{\mathcal{T}} = 6e^{-2t} + C$	
when $t=0$ $\vec{x}=7$	
$\tilde{\mathcal{X}} = 6\tilde{e} + c = 7$	
C =	
L = 6E + 1 ()	
(ii) 27 (isrape (0,7)	
x = 1 () asympt	ole.
E.	

Suggested solution(s) comments $Olbb(iii) x = \int 6e^{-2t} + 1 dt$ $\chi = \frac{6e^{-2b}}{-7} + t + c$ $\chi = -3e^{-2t} + t + c$ when t=0, x=4 $x = -3e^{\circ} + 0 + c = 4$ C = 7 $x = -3e^{-2t} + t + 7$ (1)When $t=3 = -3e^{-6} + 3 + 7$ $\chi = 10 - 3e^{-6}$ a Q16c (i) $y = 1 + 3x - x^3$ $y' = 3 - 3x^2$ $\overline{y}'' = -6x$ (1) st pat occur when y'=0 3-3x²=0 $3(1-x^2)=0$ when (1,3) and (-1,-1)When x = 1 y = 3 y"= -6 (1,3) max () When x = -1 y = -1 y'' = 6 (-1, -1) min. (1) (ii) y"=0 when x=0 $\frac{x|o|o|o|}{y|+|o|-}$ change of sign i (0,1) change of sign $\frac{y}{y|+|o|-}$ change of sign $\frac{y}{z|+|o|-}$ (0,1) test often omitted. is a point of inflexion. (1)