Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1. Which of the following is equal to $\frac{x^{2}-36}{x-6}$?
(A) $x-6$
(B) $x+6$
(C) $x-3$
(D) $x+3$.
2. What are the solutions to $3 x^{2}-7 x-1=0$?
(A) $x=\frac{-7 \pm \sqrt{37}}{6}$
(B) $x=\frac{-7 \pm \sqrt{61}}{6}$
(C) $x=\frac{7 \pm \sqrt{37}}{6}$
(D) $x=\frac{7 \pm \sqrt{61}}{6}$.
3. What are the exact solutions of $2 \cos x=-\sqrt{3}$ for $0 \leq x \leq 2 \pi$?
(A) $\frac{\pi}{6}$ and $\frac{11 \pi}{6}$
(B) $\frac{5 \pi}{6}$ and $\frac{7 \pi}{6}$
(C) $\frac{\pi}{3}$ and $\frac{5 \pi}{3}$
(D) $\frac{2 \pi}{3}$ and $\frac{4 \pi}{3}$.
4. Which of the following define the domain and range of the function $f(x)=\log _{e} x$?
(A) Domain: all real x and Range: all real y.
(B) Domain: $x>0$ and Range: $y>0$
(C) Domain: all real x and Range: $y>0$
(D) Domain: $x>0$ and Range: all real y.
5. What is the derivative of $\left(e^{3 x}+1\right)^{-2}$?
(A) $-2 e^{3 x}\left(e^{3 x}+1\right)^{-3}$
(B) $-2 e^{3 x}\left(e^{3 x}+1\right)^{-1}$
(C) $-6 e^{3 x}\left(e^{3 x}+1\right)^{-3}$
(D) $-6 e^{3 x}\left(e^{3 x}+1\right)^{-1}$.
6. What is the perpendicular distance of the point $(4,5)$ from the line $3 x-2 y+10=0$?
(A) $\frac{12}{\sqrt{13}}$
(B) $\frac{17}{\sqrt{13}}$
(C) $\frac{2}{\sqrt{5}}$
(D) $\frac{12}{\sqrt{41}}$.
7. What is the solution of $5^{x}=20$?
(A) $\log _{4} 5$
(B) $\log _{5} 4$
(C) $1+\log _{4} 5$
(D) $1+\log _{5} 4$.
8. A parabola has a focus $(3,1)$ and directrix $x=5$. What is the equation of the parabola?
(A) $(y-1)^{2}=-4(x-4)$
(B) $(y-1)^{2}=8(x-3)$
(C) $(x-3)^{2}=-8(y-3)$
(D) $(x-3)^{2}=-16(y-1)$.
9. The diagram below shows the graph $y=f(x)$.

Where is the function increasing, at a decreasing rate?
(A) $\quad(2,0)$
(B) $(6,-1.8)$
(C) $(10,1.8)$
(D) $(14,0)$.
10. What is the value of $\int_{3}^{5} 4 x^{3} d x$
(A) 192
(B) 408
(C) 544
(D) 706 .

Section II

90 marks

Attempt Questions 11-16

Allow about $\mathbf{2}$ hours and 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available.
In Question 11-16, your responses should include relevant mathematical reasoning and /or calculations.

Question 11 (15 marks)

a) Evaluate $\frac{\ln 5}{3}$ correct to three significant figures.
b) Evaluate $\lim _{x \rightarrow 3} \frac{x^{3}-3 x^{2}}{x-3}$
c) Differentiate $(1+\tan x)^{4}$
d) Differentiate $x \ln x$
e) Find $\int 4 x e^{x^{2}+1} d x$
f) Evaluate $\int_{0}^{2} \frac{3 x}{x^{2}+1} d x$
g) Sketch the region defined by $x^{2}+(y-1)^{2} \geq 9$

Question 12 (15 marks) Start a new booklet.
a) Given that $\quad \int_{0}^{4} k x+2 d x=12$, and k is a constant, find the value of k.
b) $A(-5,-2)$ and $C(11,10)$ are two points on the number plane.
M is the midpoint of $A C$ and the perpendicular bisector of $A C$ meets the x axis at D and the y axis at B.

i. Find the coordinates of M. 1
ii. Show that the equation of the perpendicular bisector of $A C$,
i.e. line $B M D$, is $4 x+3 y-24=0$
iii. Hence find the coordinates of the points B and D.
iv. Show that the quadrilateral $A B C D$ is a rhombus.
c) Chairs are arranged in rows in front of a stage in a concert hall, so the row closest to the stage is the first row. Each row has two more chairs than the row in front of it. There are forty-two chairs in the tenth row.
i. How many chairs are in the first row?
ii. The seating arrangement has a total of 680 chairs.

How many rows of chairs are in the concert hall?
iii. How many chairs are in the last row?

Question 13 (15 marks) Start a new booklet.
a) The population $P(t)$ of turtles in a conservation park is given by:

$$
P(t)=200-75 \sin \left(\frac{\pi t}{3}\right)
$$

where t is time in months.
i. Find all times during the first 12 months when the population equals 275 turtles.
ii. Sketch the graph of $P(t)$ for $0 \leq t \leq 12$.
b) The diagram shows the graphs of the function $g(x)=3 x$ and $f(x)=5 x^{3}-5 x^{2}-27 x$ The graphs meet at O and T.

i. Find the x-coordinate of T.
ii. Find the area of the shaded region between the graphs of the functions.
c) Tina borrows $\$ 5000$ at 1.5% per month reducible interest and pays the loan off in equal monthly instalments. Tina is to repay the loan in 3 years.
Calculate the value of each monthly instalment.
d) The diagram shows two quadrants, centre O.
$O A=3 \mathrm{~cm}, O D=2 \mathrm{~cm}, \angle A O P=\theta$ radians.

Diagram is NOT drawn to scale.
i. Show that $\frac{5}{2} \theta$ is an expression for the area of the shaded region $A P Q C$.
ii. If the area of the shaded region $A P Q C$ is $\frac{5 \pi}{6}$ squared centimetres.

Find the size of $\angle A O P$.
iii. Hence find the exact area of shaded sector $O Q D$.

Question 14 (15 marks) Start a new booklet.
a) A particle travels so that its displacement (x metres), after t seconds is given by: $x=12 t-3 t^{2}$.
i. Where is the particle 3 seconds after it starts?
ii. When does the particle turn around?
iii. How far does the particle travel during the first 5 seconds?
iv. Find the greatest speed during the first 5 seconds.
b) A cylinder is to be cut from a solid sphere.

The diagram below shows a cross section of the sphere and cylinder.
The sphere has a diameter of 8 cm . The cylinder has a height of $h \mathrm{~cm}$ and a radius of $r \mathrm{~cm}$.

Diagram is NOT drawn to scale.
i. \quad Show that the volume (V) of the cylinder is given by:

$$
V=\pi\left(\frac{64-h^{2}}{4}\right) h
$$

ii. Find the value of h such that the volume of the cylinder is a maximum.
c) On an island, the population P after t years is given by: $P=P_{0} e^{k t}$.

The initial population of the island is halved in 25 years.
i. Show that $k=\frac{\ln 0.5}{25}$
ii. How long will it take for the population to reduce from 5000 people to 2000 people ?
iii. What percentage of the original population will be present after 75 years?

Question 15 (15 marks) Start a new booklet.
a) i. Copy this table and complete it, leave your answers as fractions.

x	1	2	3	4	5
$\frac{2}{x(x+1)}$					

ii. Use the 5 functional values from part i, and Simpson's rule, to find an approximation to
$\int_{1}^{5} \frac{2}{x(x+1)} d x . \quad$ Write your approximation using two decimal places.
iii. Show that $\frac{2}{x}-\frac{2}{x+1}=\frac{2}{x(x+1)}$.
iv. Deduce the value of the integral in part ii, correct to two decimal places.
b) In the diagram, $A B C D$ is a quadrilateral and $B D$ is a diagonal. $C B=8 \mathrm{~cm}, A B=9 \mathrm{~cm}, A D=6 \mathrm{~cm}$ and $B D=12 \mathrm{~cm} . \angle D A B=\angle C B D$.

i. Prove triangle $A B D$ and $B D C$ are similar.
ii. Find the length of $C D$.

Diagram is NOT drawn to scale.
iii. Prove that $A B$ and $C D$ are parallel
c) The graphs of $y=\sin x$ and $y=1+\cos x$ are shown intersecting at $x=\frac{\pi}{2}$ and $x=\pi$

Calculate the total area of the two shaded regions.

Question 16 (15 marks) Start a new booklet.
a) The region bounded by the curve $y=\sec x$, the lines $x=\frac{\pi}{4}$ and $x=\frac{\pi}{3}$ is rotated through one complete revolution about the x axis.

Find the volume of the solid of revolution. Give your answer in exact form.
b) The acceleration of a particle is given by:

$$
\ddot{x}=-12 e^{-2 t}
$$

where x is displacement in metres and t is time in seconds.
Initially its velocity is $7 \mathrm{~ms}^{-1}$ and its displacement is 4 m .
i. Show that the velocity of the particle is given by: $\dot{x}=6 e^{-2 t}+1$
ii. Graph the velocity with respect to time.
iii. Find the displacement when $t=3$ seconds.
c) Consider the function $y=1+3 x-x^{3}$, for $-2 \leq x \leq 3$.
i. Find all stationary points and determine their nature.
ii. Find the point of inflexion.
iii. Sketch the curve for $-2 \leq x \leq 3$. Do not find the x - intercepts.
iv. What is the minimum value for the curve over the stated domain?

Suggested Solutions, Marking Scheme and Markers' comments
Suggested solutions)
Multiple Chore
Q1 Factorise, then simplify

$$
\begin{equation*}
\frac{(x+6)(x-6)}{(x-6)}=x+6 \tag{B}
\end{equation*}
$$

Q2. Quadratic Formula

$$
\begin{aligned}
& a=3 \quad b=-7 \quad c=-1 \\
& x=\frac{--7 \pm \sqrt{(-7)^{2}-4(3)(-1)}}{2(3)} \\
& x=\frac{7 \pm \sqrt{49+12}}{6}=\frac{7 \pm \sqrt{61}}{6}
\end{aligned}
$$

Q3. Solve, using the 4 quadrants.

$$
\begin{aligned}
& 2 \cos x=-\sqrt{3} \\
& \cos x=-\frac{\sqrt{3}}{2} \\
& x=\pi-\pi / 6 \text { and } \pi+\pi / 6 \\
& x=\frac{5 \pi}{6} \text { and } \frac{7 \pi}{6}
\end{aligned}
$$

End + 3rd Questions

(B)

QU
 darnain: $x>0$ range: all really

Suggested Solutions, Marking Scheme and Markers' comments
Suggested solutions) comments

Q5. Function of a Function - Chain Rule

$$
\begin{aligned}
& y=\left(e^{3 x}+1\right)^{-2} \\
& \frac{d y}{d x}=-2\left(e^{3 x}+1\right)^{-3} \times 3 e^{3 x} \\
& \frac{d y}{d x}=-6 e^{3 x}\left(e^{3 x}+1\right)^{-3}
\end{aligned}
$$

Q6. \quad| x, y | $a=3 \quad b=-2 \quad c=10$ |
| :--- | :--- |
| $(4,5)$ | $3 x-2 y+10=0$ |

$$
d=\frac{|a x+b y+c|}{\sqrt{a^{2}+b^{2}}}=\frac{|3(4)-2(5)+10|}{\sqrt{(3)^{2}+(-2)^{2}}}
$$

$$
\begin{equation*}
d=\frac{12}{\sqrt{13}} \tag{A}
\end{equation*}
$$

Q7. Change index form to \log form

$$
\begin{aligned}
& \log _{5} 20=x \\
& \log _{5}(5 \times 4)=x \\
& \log _{5} 5+\log _{5} 4=x \\
& 1+\log _{5} 4
\end{aligned}
$$

QB.

$$
\begin{aligned}
& (y-h)^{2}=-4 a(x-k) \\
& (y-1)^{2}=-4(x-4)
\end{aligned}
$$

$$
\text { vertex }(4,1)
$$

Suggested Solutions, Marking Scheme and Markers' comments
Suggested solution (s)

	comments
gradient indicated by $+む-$ signs.	
"approximate"	
dive to scale.	

function is increasing between $x=4$ " and $x=" 12$ "
rate is increasing between $x=" 4$ " and $x=" 8$ " rate is decreasing betiveen $x=" \$$ " and $x=" 12$ "

Q10. $\int_{3}^{5} 4 x^{3} d x=\left[\frac{4 x^{4}}{+}\right]_{3}^{3}$

$$
5^{4}-3^{3}=544
$$

Q11. a) 0.536 (3.5.F)
b) $\lim _{x \rightarrow 3} \frac{x^{2}(x-3)}{(x-3)}=\lim _{x \rightarrow 3} x^{2}=9$
c)

$$
\begin{align*}
& y=(1+\tan x)^{4} \tag{1}\\
& \frac{d y}{d x}=4(1+\tan x)^{3} \times \sec ^{2} x \\
& \frac{d y}{d x}=4 \sec ^{2} x(1+\tan x)^{3} \tag{1}
\end{align*}
$$

Suggested Solutions, Marking Scheme and Markers' comments

$$
\begin{aligned}
& \text { Suggested solutions) } \\
& \text { QUId) } \quad \begin{aligned}
y & =x \ln x \\
\frac{d y}{d x} & =(1) \ln x+x\left(\frac{1}{x}\right) \\
\frac{d y}{d x} & =\ln x+1
\end{aligned}
\end{aligned}
$$

e)

$$
\int 4 x e^{x^{2}+1} d x=2 e^{x^{2}+1}+c
$$

$$
\begin{aligned}
& \text { f) } \int_{0}^{2} \frac{3 x}{x^{2}+1} d x=\left[\frac { 3 } { 2 } \operatorname { l n } \left(x^{2}\right.\right. \\
& \frac{3}{2} \ln 5-\frac{3}{2} \ln 1=\frac{3}{2} \ln 5
\end{aligned}
$$

correct substitution
9) circle centre $(0,1)$ radius 3

test $(0,0)$

$$
0^{2}+1^{2} \leqslant 9
$$

\therefore outside of circle required (1)

Q12 a) $\left[\frac{k x^{2}}{2}+2 x\right]_{0}^{4}=12$

$$
\begin{equation*}
(8 k+8)-(0+0)=12 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
k=1 / 2 \tag{1}
\end{equation*}
$$

$$
8 k=4
$$

Need to distinguish constants from x variables. Constants are not changed by diffferentri or integration

Suggested Solutions, Marking Scheme and Markers' comments
Suggested solutions)
comments
Q12b)
(i) Midpoint of $A C=\left(\frac{-5+11}{2}, \frac{-2+10}{2}\right)$

$$
M=(3,4)
$$

(ii)

$$
\text { gradient of } A C=\frac{10--2}{11--5}=\frac{12}{16}=\frac{3}{4}
$$

gradient of $B D=-\frac{4}{3} \quad\left(m_{1} \times m_{2}=-1\right)$
using $(3,4)$ and $m=-\frac{4}{3}$

$$
\begin{gather*}
y-4=-\frac{4}{3}(x-3) \\
3 y-12=-4 x+12 \tag{1}\\
4 x+3 y-24=0
\end{gather*}
$$

(iii) cuts x axis when $y=0$

$$
\begin{gathered}
4 x-24=0 \\
x=6 \quad D(6,0)
\end{gathered}
$$

cuts y axis when $x=0$

$$
\begin{gather*}
3 y-24=0 \\
y=8 \tag{0,5}
\end{gather*}
$$

(iv) midpoint of $B D=\left(\frac{6+0}{2}, \frac{0+8}{2}\right)$

$$
(3,4)
$$

Some students
since diagonals bisect each other at $90^{\circ}, A B C D$ is a rhombus calculated the sides to be equal.

Suggested Solutions, Marking Scheme and Markers' comments
Suggested solutions)
comments
$Q 12 c)$

$$
a, a+2, a+4
$$

(i)

$$
\begin{align*}
& T_{n}=a+(n-1) d \\
& 42=a+9(2) \tag{1}\\
& a=42-18=24 \text { chairs }
\end{align*}
$$

(ii)

$$
\text { (ii) } \begin{align*}
& S_{n}=680 \\
& S_{n}=\frac{n}{2}(2 a+(n-1) d) \\
& 680=\frac{n}{2}(2(24)+(n-1) 2) \tag{1}\\
& 680=n(24+n-1) \\
& 680=n(n+23) \\
& n^{2}+23 n-680=0 \tag{1}\\
&(n+40)(n-17)=0 \\
& n \neq-40 \tag{1}\\
& \text { (iii) } T_{17}=24+16(2) \\
& T_{17}=24+32=56 \text { chaws (1) } \tag{1}
\end{align*}
$$

Q13
a)

$$
\begin{aligned}
& P(t)=275 \\
& 200-75_{n}^{\sin }\left(\frac{\pi}{3} t\right)=275 \\
& \sin \left(\frac{\pi}{3} t\right)=-1 \\
& \frac{\pi}{3} t=\frac{3 \pi}{2}, \frac{7 \pi}{2}
\end{aligned}
$$

Many students called not solve this,

$$
t=9 / 2,21 / 2 \quad 4.5 \text { and } 10.5 \text { months. }
$$

Suggested Solutions, Marking Scheme and Markers' comments

b) $(1) g(x)=3 x$

$$
f(x)=5 x^{3}-5 x^{2}-27 x
$$

$$
g(x)=f(x) \text { at point of intersection } T
$$

$$
5 x^{3}-5 x^{2}-27 x=3 x
$$

$$
5 x^{3}-5 x^{2}-30 x=0
$$

$$
5 x\left(x^{2}-x-6\right)=0
$$

$$
5 x(x-3)(x+2)=0
$$

$$
x=3 \quad x \neq-2 \text { in domain shown }
$$

when $x=3 \quad y=9 \quad(3,9)$
(ii) $g(x)$ is above $f(x)$

$$
\begin{aligned}
& \int_{0}^{3} 3 x-5 x^{3}+5 x^{2}+27 x d x \\
& \int_{0}^{3}-5 x^{3}+5 x^{2}+30 x d x \\
& {\left[\frac{-5 x^{4}}{4}+\frac{5 x^{3}}{3}+\frac{30 x^{2}}{2} \text { the integral. }\right]_{0}^{3}} \\
& \left(\frac{-5(3)^{4}}{4}+\frac{5(3)^{3}}{3}+\frac{30(3)^{2}}{2}\right)-0
\end{aligned}
$$

Suggested Solutions, Marking Scheme and Markers' comments

Suggested solutions)
Q13 c), Is month $=5000(1.015)-R$ Ind month $=5000(1.015)^{2}-R(1+1.015)$
(1) mark Ord month : $5000(1.015)^{3}-R\left(1+1.015+1.015^{2}\right)$

After 36 th month Ian has been repaid

$$
\begin{aligned}
\therefore \quad R & =\frac{5000(1.015)^{36}}{\left(1+1.015+1.015^{2}+\ldots+1.015\right.} \\
R & =\$ 180.76 \quad \text { (1) mark e }
\end{aligned}
$$

d) (i) shaded region $A P Q C$

$$
\begin{align*}
& =\text { sector OPA }- \text { sector } O Q C \\
& =\frac{1}{2}(3)^{2} O-\frac{1}{2}(2)^{2} \theta \\
& =\frac{1}{2} 5 \theta=\frac{5}{2} Q \tag{1}
\end{align*}
$$

(ii)

$$
\begin{align*}
\frac{5}{2} \theta & =\frac{5 \pi}{6} \\
\theta & =\frac{5 \pi}{6} \div \frac{5}{2}=\frac{\pi}{3} \tag{1}
\end{align*}
$$

(iii) $\angle D O Q=\frac{\pi}{2}-\frac{\pi}{3}=\frac{\pi}{6}$
(1)
$\frac{\pi}{6}=\frac{\pi}{3} \mathrm{~cm}^{2}$
(1)

Q14 a) (i) $x=12(3)-3(3)^{2}$
$x=9$ metres from the origin (1)
(ii) $\dot{x}=0$ whilst turning

$$
\begin{aligned}
& \dot{x}=12-6 t \\
& 12-6 t=0 \text { when } t=2 \text { seconds }
\end{aligned}
$$

(iii) when $t=0 \quad x=0$
when $t=2 \quad x=12(2)-3(2)^{2}=12 m$. very few people When $t=5 \quad x=12(5)-3(5)^{2}=-15 \mathrm{~m}$ graphed the displacement total distance $=12+27=39 \mathrm{~m}$

- people who did graph managed more correct responses
(iv) greatest speed occurs When the gradient is steepest. test \dot{x} when $t=0 \quad \dot{x}=6 \mathrm{~ms}^{-1}$
test \dot{x} when $t=5 \quad \dot{x}=12-6(5)=-18 \mathrm{~ms}^{-1}$
greatest speed occurs when $t=5$

Q14 b. (i) Using Pythagoras' theorem and the diagram provided

$$
\begin{aligned}
(2 r)^{2}+h^{2} & =8^{2} \\
(2 r)^{2} & =8^{2}-h^{2} \\
4 r^{2} & =64-h^{2} \\
r^{2} & =\frac{64-h^{2}}{4}
\end{aligned}
$$

Given Volume of cylinder

$$
\begin{aligned}
& V=\pi r^{2} h \\
& V=\pi\left(\frac{64-h^{2}}{4}\right) h . \\
& V=16 \pi h-\frac{\pi}{4} h^{3}
\end{aligned}
$$

$$
\text { (ii) max Occurs when } v^{\prime}=0
$$

$$
\text { and } V^{\prime \prime}<0
$$

$$
\begin{equation*}
V^{\prime}=16 \pi-\frac{3 \pi}{4} h^{2} \tag{1}
\end{equation*}
$$

$V^{\prime}=0 \quad$ when $h=\sqrt{16 \pi \div \frac{3 \pi}{4}}$

$$
\begin{aligned}
h=\sqrt{64 / 3} & =\frac{8}{\sqrt{3}} \\
& =4.6 \mathrm{~cm}
\end{aligned}
$$

$$
v^{\prime \prime}=-\frac{6 \pi}{4} h<0
$$

Some used incorrect formula here
test for maximum volume is required. either $V^{\prime \prime}<0$ or $\left.\left.\frac{h}{}\right|^{4}|46| 5 \right\rvert\,$
volume occurs when $h=\frac{8}{\sqrt{3}}$
4.62 cm also accepted.

Suggested Solutions, Marking Scheme and Markers' comments

Q 14
c (i) $P_{25}=\frac{1}{2} P_{0}$

$$
\begin{align*}
& \frac{1}{2} P_{0}=P_{0} e^{k 25} \\
& \frac{1}{2}=e^{k 25} \\
& \ln \frac{1}{2}=k 25 \\
& k=\frac{\ln (0.5)}{25} \tag{1}
\end{align*}
$$

(ii)

$$
\begin{aligned}
& 2000=5000 e^{\frac{\ln 0.5}{25} t} \\
& 0.4=e^{\frac{\ln 0.5 t}{25}} \\
& \ln (0.4)=\frac{\ln (0.5) t}{25} \\
& t=\ln (0.4) \div \frac{\ln (0.5)}{25} \\
& t=33 \text { years }
\end{aligned}
$$

(iii)

$$
\begin{align*}
& P=5000 e^{\frac{\ln 0.5}{25} \times 75} \\
& P=5000 e^{3 \operatorname{lin} 0.5} \\
& P=625 \\
& \% \text { of original }=\frac{625}{5000} \times 100 \\
& \% \text { of original }=1212 \% \tag{1}
\end{align*}
$$

Suggested Solutions, Marking Scheme and Markers' comments

$\left\lvert\,$Suggested solutions) Q15a(i) x $\frac{x}{x(x+1)}$ 1\right.

(ii)

$$
\begin{align*}
& A \div \frac{1}{3}\left(1+\frac{4}{3}+\frac{1}{6}\right)+\frac{1}{3}\left(\frac{1}{6}+\frac{4}{10}+\frac{1}{15}\right) \\
& A \doteqdot \frac{47}{45}=1.04 \quad(21 p) \tag{1}
\end{align*}
$$

(iii)

$$
\begin{align*}
\text { LHS } & =\frac{2}{x}-\frac{2}{x+1} \\
& =\frac{2(x+1)-2 x}{x(x+1)} \tag{1}\\
& =\frac{2}{x(x+1)} \\
& =\text { RHS } \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \text { (iv) } \int_{1}^{5} \frac{2}{x(x+1)} d x=\int_{1}^{5} \frac{2}{x}-\frac{2}{x+1} d x \\
& =[2 \ln x-2 \ln (x+1)]_{1}^{5} \tag{1}\\
& =(2 \ln 5-2 \ln 6)-(2 \ln 1-2 \ln 2) \\
& =2 \ln 5-2 \ln 6+2 \ln 2 \\
& =1.02
\end{align*}
$$

Q15b)
(i) In $\triangle A B D$ and $\triangle B D C$

$$
\begin{align*}
& \angle D A B=\angle C B D \quad \text { (given })_{(1)} \\
& A B: B D \quad(9: 12=3: 4) \\
& A D: B C \quad(6: 8=3: 4) \\
& \therefore \triangle A B D \| \triangle B D C \tag{1}
\end{align*}
$$

Two sides in same proportion and included angles are equal
(ii) since $\triangle A B D \| \triangle B D C$
the abbreviations SAS is only appropriate for congruent triangles.
Then $\quad \begin{gathered}D B \\ 3\end{gathered} 4 \quad(3: 4)$
$D B=12$

$$
\begin{align*}
& 12^{3}:{ }^{4} C D \\
& \therefore C D=\frac{12 \times 4}{3}=16 \mathrm{~cm} \tag{1}
\end{align*}
$$

corresponding sides on similiar triangles have the same ratio
(iii) since $\triangle A B D \| \triangle B D C$ then $\angle A B D=\angle B D C$ alternate angles are equal therefore $A B$ is parallel to $C D$

Suggested Solutions, Marking Scheme and Markers' comments
Suggested solutions)
QISC)

$$
\begin{align*}
\text { Area }= & \int_{0}^{\pi / 2} 1+\cos x-\sin x d x+ \\
& \int_{\pi / 2}^{\pi} \sin x-(1+\cos x) d x . \tag{1}
\end{align*}
$$

$$
[x+\sin x+\cos x]_{0}^{x / 2}+[-\cos x-x-\sin x]_{x / 2}^{\pi}
$$

$$
[(\pi / 2+\sin \pi / 2+\cos \pi / 2)-(0+\sin 0+\cos 0)]+[(-\cos \pi-\pi-\sin \pi)-(-\cos \pi / 2-\pi / 2-\sin \pi / 2)]
$$

$$
[(\pi / 2+1+0)-(0+0+1)]+[(1-\pi-0)-(0-\pi / 2-1)]
$$

$$
=\pi / 2+2-\pi / 2
$$

$=2$ unit 2

Suggested Solutions, Marking Scheme and Markers' comments

Suggested Solutions, Marking Scheme and Markers' comments
Suggested solutions)
comments
Q16b (iii)

$$
\begin{aligned}
& x=\int 6 e^{-2 t}+1 d t \\
& x=\frac{6 e^{-2 t}}{-2}+t+c \\
& x=-3 e^{-2 t}+t+c
\end{aligned}
$$

when $t=0, x=4$

$$
\begin{align*}
x & =-3 e^{0}+0+c=4 \\
c & =7 \\
x & =-3 e^{-2 t}+t+7 \tag{1}
\end{align*}
$$

When $t=3$

$$
\begin{align*}
& x=-3 e^{-6}+3+7 \\
& x=10-3 e^{-6} \tag{1}
\end{align*}
$$

Q16c (i)

$$
\begin{align*}
& y=1+3 x-x^{3} \\
& y^{\prime}=3-3 x^{2} \\
& y^{\prime \prime}=-6 x \tag{1}
\end{align*}
$$

st put occur when $y^{\prime}=0 \quad 3-3 x^{2}=0$ $3\left(1-x^{2}\right)=0$ when $(1,3)$ and $(-1,-1)$
When $x=1 \quad y=3 \quad y^{\prime \prime}=-6 \quad(1,3)$ max (1)
When $x=-1 \quad y=-1 \quad y^{\prime \prime}=6 \quad(-1,-1)$ min. (1)

(ii) $y^{\prime \prime}=0$ when $x=0$	x	0	$0+$
y^{\prime}	$+01-0$	change of $\operatorname{sign} \therefore(0,1)$	is a point of inflexion.

Suggested Solutions, Marking Scheme and Markers' comments

