\qquad

\qquad

Founded 1982

THE HILLS GRAMMAR SCHOOL

TASK 4 Trial Examination 2015 YEAR 12

MATHEMATICS

Time Allowed:
Weighting:

Three hours (plus five minutes reading time)
40\%

Instructions:

- Approved calculators may be used
- Attempt all questions
- Start all questions on a new sheet of paper
- The marks for each question are indicated on the examination
- Show all necessary working

MCQ	Question 11	Question 12	Question 13	Question 14	Question 15	Question 16	TOTAL
10	15	15	15				

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 What is the value of $\frac{(1.49)^{2}-1.98}{\sqrt{11.62+8.34 \times 2.72}}$ correct to three significant figures?
(A) 0.040
(B) 0.0410
(C) 0.0409
(D) 0.041

2 Which graph best represents $y=\sqrt{4-x^{2}}$?
(A)

(B)

(C)

(D)

3 What is the correct expression for $A C$ in triangle $A B C$?

(A) $\frac{15 \sin 80^{\circ}}{\sin 40^{\circ}}$
(B) $\frac{15 \sin 80^{\circ}}{\sin 60^{\circ}}$
(C) $\frac{15 \sin 40^{\circ}}{\sin 60^{\circ}}$
(D) $\frac{\sin 40^{\circ}}{15 \sin 80^{\circ}}$

4 The line $6 x-k y=2$ passes through the point $(3,2)$. What is the value of k ?
(A) $\frac{10}{3}$
(B) $-\frac{10}{3}$
(C) -8
(D) 8

5 In the diagram below, $A B$ is parallel to $F D, \angle A B C=100^{\circ}$ and $\angle C E F=130^{\circ}$

What is the value of $\angle B C E$?
(A) 100°
(B) 110°
(C) 120°
(D) 130°
$6 \quad$ What is the value of $f^{\prime}(3)$ if $f(x)=3 x-x^{3}$?
(A) $\quad f^{\prime}(3)=-18$
(B) $\quad f^{\prime}(3)=-24$
(C) $\quad f^{\prime}(3)=0$
(D) $\quad f^{\prime}(3)=9$

7 The diagram below shows part of the graph of $y=x^{2}-2 x-8$.

What is the correct expression for the area bounded by the x-axis and the curve $y=x^{2}-2 x-8$ between $0 \leq x \leq 6$?
(A) $\quad A=\int_{0}^{5} x^{2}-2 x-8 d x+\left|\int_{5}^{6} x^{2}-2 x-8 d x\right|$
(B) $\quad A=\int_{0}^{4} x^{2}-2 x-8 d x+\left|\int_{4}^{6} x^{2}-2 x-8 d x\right|$
(C) $\quad A=\left|\int_{0}^{5} x^{2}-2 x-8 d x\right|+\int_{5}^{6} x^{2}-2 x-8 d x$
(D) $\quad A=\left|\int_{0}^{4} x^{2}-2 x-8 d x\right|+\int_{4}^{6} x^{2}-2 x-8 d x$

8 What is the solution to the inequation $x^{2}+4 x+3 \geq 0$?
(A) $x \leq 1$ or $x \geq 3$
(B) $x \leq-1$ or $x \geq-3$
(C) $x \geq 1$ or $x \leq 3$
(D) $x \geq-1$ or $x \leq-3$

9 The sector below has an area of 10π square units.

Not to scale

What is the value of r ?
(A) $\sqrt{60}$
(B) $\sqrt{60} \pi$
(C) $\sqrt{\frac{\pi}{3}}$
(D) $\sqrt{\frac{1}{3}}$

10 An infinite geometric series has a first term of 8 and a limiting sum of 12 . What is the common ratio?
(A) $\frac{1}{6}$
(B) $\frac{1}{4}$
(C) $\frac{1}{3}$
(D) $\frac{1}{2}$

Section II

90 marks

Attempt Questions 11-16
Allow about $\mathbf{2}$ hours and 45 minutes for this section
Answer each question in the appropriate writing booklet. Extra writing booklets are available.
In Question 11-16, your responses should include relevant mathematical reasoning and /or calculations.

Question 11 (15 marks) Use the Question 11 Writing Booklet.
(a) Find the natural domain of the function $f(x)=\sqrt{3-x}$.
(b) Find $\int x^{2}+1 d x$ 1
(c) Solve $x^{2}-x-1=0$ writing your answer in simplest surd form.
(d) Differentiate $y=\sqrt{9-2 x^{3}}$.
(e) Evaluate $\int_{0}^{3} x^{2}-3 d x$.
(f) Evaluate $\lim _{x \rightarrow 3} \frac{5 x-15}{x^{2}+4 x-21}$.
(g) Fully simplify $(3 \sqrt{5}-2 \sqrt{3})^{2}$.
(h) Simplify $\frac{x-3 y}{x^{3} y} \div \frac{3 y-x}{x y^{3}}$.

End of Question 11

Question 12 (15 marks) Use the Question 12 Writing Booklet.
(a) If $f^{\prime}(x)=6 x^{2}+5 x-1$ and $f(-1)=5$, find an expression for $f(x)$.
(b) (i) Show that $\frac{d}{d x}(x \ln x-x)=\ln x$.
(ii) Hence, or otherwise, evaluate $\int_{1}^{e^{3}} \ln (x) d x$. Leave your answer in exact form. $\quad 2$
(c) A particle moves so that its displacement from the origin is given by $x=-t^{2}+7 t+8$ (where x is displacement in metres and t is time in seconds).
(i) Show that the initial displacement of the particle is 8 metres.
(ii) At what time will the particle be at the origin?
(d) The line l_{1} makes an angle of 135° at the point $B(3,0)$. It cuts the y-axis at A. The line l_{2} is parallel to the line l_{1}. Its y-intercept is $D(0,1)$ and its x-intercept is C.

(i) Show that the equation of the line l_{1} is $x+y-3=0$
(ii) Hence, or otherwise, find the equation of the line l_{2}.
(iii) Find the perpendicular distance between the lines l_{1} and l_{2}.
(iv) Find the area of the quadrilateral $A B C D$.

End of Question 12

Question 13 (15 marks) Use the Question 13 Writing Booklet.
(a) What is the derivative of $\frac{e^{x}}{x^{2}}$?
(b) In the diagram, the line $F C$ bisects $A E$ at F and $A D$ at B. The line $A E$ is parallel to $C D$.

(i) Explain why $E D=2 B F$. 1
(ii) Prove that $\triangle A B F \equiv \triangle D B C$.
(c) A population of a country grows over time according to $P=P_{0} e^{k t}$. The population grew from 350000 in 2001 to 460000 in 2005. The rate of population growth is proportional to the population size.
(i) Find the growth rate per year, correct to 3 decimal places.
(ii) Find the population of the country in 2015, correct to the nearest person.
(iii) Calculate the rate of change of the population in 2021.
(d) The area enclosed between the curve $y=4-x^{2}$ and the line $y=4-2 x$ is rotated about the x-axis.
(i) Sketch the region between the two graphs.
(ii) Find the volume of the solid generated between these two graphs, leaving your answer in terms of π.

End of Question 13

Question 14 (15 marks) Use the Question 14 Writing Booklet.
(a) Let α and β be roots of the equation $x^{2}-8 x+5=0$. Find the value of $\alpha^{2}+\beta^{2} .2$
(b) For the function $y=x e^{2 x}$,
(i) Find the stationary point and determine its nature. 3
(ii) Find any points of inflection.
(iii) Sketch the function in the domain $-3 \leq x \leq 0.5$.
(c) Madison is learning to drive. Her first lesson is 10 minutes long. Her second lesson is 15 minutes long. Each subsequent lesson is 5 minutes longer than the previous lesson.
(i) How long will Madison's fifteenth lesson be?

1
(ii) How many minutes of lessons will Madison have completed after her fifteenth lesson?
(iii) During which lesson will Madison have completed a total of 1150 minutes of driving lessons?

End of Question 14

Question 15 (15 marks) Use the Question 15 Writing Booklet.
(a) What are the exact solutions to the equation $e^{6 x}-7 e^{3 x}+6=0$?
(b) Find the equation of the parabola which has its vertex at (2,0) and its directrix is given by $x=5$.
(c) Shown below is a graph of the derivative function $y=g^{\prime}(x)$.

(i) If the function $y=g(x)$ were to be drawn using information from the graph above, what feature would exist on the graph at $x=2$? Justify your answer.
(ii) In your answer booklet, draw a neat sketch of a possible function for $y=g(x)$ given that $g(0)=0$.
(d) Alex borrowed $\$ 60000$ to buy a small business. He was charged 6% p.a. compounding monthly on the balance owing and he repaid the loan plus interest in equal monthly repayment over 5 years.
(i) Show that Alex owed \$ (60 300-M) immediately after making his first monthly repayment of $\$ M$.
(ii) Show that Alex owed $\$\left[60000(1.005)^{3}-M\left(1.005^{2}+1.005+1\right)\right]$ immediately after he made three monthly repayments. 2
(iii) Calculate his monthly repayment, $\$ M$ to the nearest five cents. 2
(iv) Calculate the total amount of interest paid. 1
End of Question 15

Question 16 (15 marks) Use the Question 16 Writing Booklet.
(a) For the curve $y=\ln (x-2)$,
(i) Sketch the curve. 1
(ii) State its domain and range.
(b) Sketch the function $y=-3 \sin \frac{x}{2}$ in the domain $-2 \pi \leq x \leq 4 \pi$
(c) For the function $y=\frac{1}{2} \cos \frac{x}{2}$ below,

(i) Find the area between the curve and the lines $x=\frac{\pi}{2}$ and $x=2 \pi$.
(ii) Use one application of Simpson's Rule to find an approximation for the area between the curve and the lines $x=-\pi$ and $x=\pi$.
(iii) What is the percentage error of your approximation from (ii) compared with the actual area between the curve and the lines $x=-\pi$ and $x=\pi$?
(d) The area enclosed by the curve $y=\sqrt{r^{2}-x^{2}}$ is rotated about the x-axis.
(i) What is the name given to the solid that is generated?

1
(ii) Explain why the volume of the solid of revolution between $x=-r$ and $x=r$ is twice the integral $\pi \int_{0}^{r}\left(r^{2}-x^{2}\right) d x$.
(iii) Show that the volume of the solid formed is $\frac{4}{3} \pi r^{3}$ 2 3

End of paper

ANSWER SHEET FOR MULTIPLE CHOICE SECTION

Student Exam number: \qquad
Teacher:

1. $\mathbf{A} \bigcirc \mathbf{B} \bigcirc \mathbf{C} \bigcirc \mathbf{D} \bigcirc$
2. $\mathbf{A} \bigcirc \mathbf{B} \bigcirc \mathbf{C} \bigcirc \mathbf{D} \bigcirc$
3. $\quad \mathbf{A} \bigcirc \mathbf{B} \bigcirc \mathbf{C} \bigcirc \mathbf{D} \bigcirc$
4. $\quad \mathbf{A} \bigcirc \mathbf{B} \bigcirc \mathbf{C} \bigcirc \mathbf{D} \bigcirc$
5. $\quad \mathbf{A} \bigcirc \mathbf{B} \bigcirc \mathbf{C} \bigcirc \mathbf{D} \bigcirc$
6.

A B
$\mathbf{C O D} \bigcirc$
7. $\quad \mathbf{A} \bigcirc \mathbf{B} \bigcirc \mathbf{C} \bigcirc \mathbf{D} \bigcirc$
8. $\quad \mathbf{A} \bigcirc \mathbf{B} \bigcirc \mathbf{C} \bigcirc \mathbf{D} \bigcirc$
9. $\quad \mathbf{A} \bigcirc \mathbf{B} \bigcirc \mathbf{C} \bigcirc \mathbf{D} \bigcirc$
10. $\mathbf{A} \bigcirc \mathbf{B} \bigcirc \mathbf{C} \bigcirc \mathbf{D} \bigcirc$

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, \quad x>0$

Suggested Solutions, Marking Scheme and Markers' comments

Suggested solutions)

Multiple Choice

1) ans $=0.04099$. .

$$
=0.0410(35+) \rightarrow \text { (B) }
$$

2) (D)
3) $\frac{A C}{\sin 80}=\frac{15}{\sin 40}$

$$
\begin{equation*}
A C=\frac{15 \sin 80}{\sin 40} \rightarrow \tag{A}
\end{equation*}
$$

4) $6(3)-(2) k=2$

$$
\begin{align*}
-2 k & =-16 \\
k & =8 \rightarrow \tag{D}
\end{align*}
$$

5) (D)
6) $f^{\prime}(x)=3-3 x^{2}$
$f^{\prime}(3)=3-3(3)^{2}$
$=3-27$
$=-24 \longrightarrow B$
Suggested Solutions. Marking Scheme and Markers' comments

Suggested Solutions, Marking Scheme and Markers' comments

Suggested Solutions, Marking Scheme and Markers' comments

gested Solutions, Marking Scheme and Markers' comments

Suggested Solutions, Marking Scheme and Markers' comments

Suggested solution(s)	comments
Question 13 $\text { a) } \begin{aligned} \frac{d}{d x}\left(\frac{e^{x}}{x^{2}}\right) & =\frac{u^{\prime} v-v^{\prime} u}{v^{2}} \\ & =\frac{e^{x} x^{2}-2 x e^{x}}{x^{4}} \\ & =\frac{e^{x} x(x-2)}{x^{4}} \\ & =\frac{e^{x}(x-2)}{x^{3}} \end{aligned}$	Several students wrote this as a product, but were unsuccessful i the derivative of a product \Rightarrow learn the rules.
b)i) $\triangle A F B I I \triangle A E D$ (equiangler) $\begin{aligned} & \frac{A F}{A E}=\frac{A B}{A D}=\frac{1}{2} \\ & \therefore E D=2 B F \end{aligned}$ ii) $\begin{aligned} & A: \angle A B F=\angle C B D \text { (vert. opp. } \angle \text { 's) } \\ & A: \angle A F B=\angle B C D \text { (alt. } \angle \text { 's equal) } \\ & \text { S: } A B=B D \text { (given) } \\ & \therefore \triangle A B F \equiv \triangle B B C(A A S) \end{aligned}$ (or $S A S, F B=B C$)	Other versions accepted. and other vencius

Suggested Solutions, Marking Scheme and Markers' comments

Suggested solution(s)	comments
C) i) $P=P_{0} e^{k t}$ $P_{0}=350,000$. When $t=4, P=460,000$ $\begin{aligned} 460,000 & =350,000 e^{4 k} \\ e^{4 k} & =\frac{46}{35} \\ \log _{e} e^{4 k} & =\log _{2}\left(\frac{46}{35}\right) \\ 4 k & =\ln \frac{46}{35} \\ k & =\ln \frac{46}{35} \div 4 \\ & =0.068\left(3 d_{p}\right) \end{aligned}$ ii) i.e fird l wher $t=14$ $\begin{aligned} P & =350,000 e^{14 k} \\ & =910,924.32 \ldots \\ & =910,924 \text { (reerest person) } \end{aligned}$ iii) i.e. find $\frac{d P}{d f}$ when $t=20$ $\begin{aligned} \frac{d P}{d t} & =k P \\ & =k P_{0} e^{k t} \\ & =k 350,000 e^{20 k} \\ & =93,774 \text { peop } / y r \end{aligned}$	usually well done, although some students used $t=5$. ECF ECF.

accept 92729 people for using $k=0.068$.

Suggested Solutions, Marking Scheme and Markers' comments

Suggested Solutions, Marking Scheme and Markers' comments

Suggested Solutions, Marking Scheme and Markers' comments

Suggested solution(s)

ii) $y^{\prime}=e^{2 x}(1+2 x)$

$$
\begin{aligned}
y^{\prime \prime} & =u^{\prime} v+v^{\prime} u \\
& =2 e^{2 x}(1+2 x)+2 e^{2 x}
\end{aligned}
$$

$=2 e^{2 x}(1+2 x+1)$

- $2 e^{2 x}(2+2 x)$
$=4 e^{2 x}(1+x)$
POI's exist when $y^{\prime \prime}=0$ and concaxity. $\begin{array}{r}\text { changes. }\end{array}$

$$
4 e^{2 x}(1+x)=0
$$

$$
4 e^{2 x}=0 \text { or } 1+x=0
$$

no soln.
$x=-1$

$$
\begin{array}{|c|c|c|c|}
\hline x & -1.1 & -1 & -0.9 \\
\hline y^{\prime \prime} & -0.04 & 0 & 0.07
\end{array}
$$

when $x=-1, y=-e^{-2}=-\frac{1}{e^{2}}$

$$
\therefore \text { POI exiots of }\left(-1,-\frac{1}{e^{2}}\right)
$$

iii) when: $x=-3, y=-0.007$

$$
x=0.5, y=1.36
$$

comments
\square
\square

Suggested Solutions, Marking Scheme and Markers' comments

Suggested solution(s)	comments
C) $10,15,20, \ldots$. i) AP with $a=10, d=5$ $\begin{aligned} T_{15} & =a+(n-1) d \\ & =10+5(15-1) \\ & =80 \text { mins } . \end{aligned}$	Good
ii) i.e find S_{15} $\begin{aligned} & S_{n}=\frac{n}{2}(a+e) \\ & S_{15}=\frac{15}{2}(10+80) \\ &=675 \cdot 11 \text { min } \\ & \rightarrow 11 \text { min } \end{aligned}$	Good.
iii) i.e. fird n wher $S_{n}=1150$ $\begin{aligned} & S_{n}=\frac{n}{2}(2 a+(n-1) d) \\ & 1150=\frac{n}{2}(20+5(n-1)) \\ &=\frac{n}{2}(20+5 n-5) \\ &=\frac{n}{2}(15+5 n) \\ & 2300=15 n+5 n^{2} \\ & 5 n^{2}+15 n-2300=0 \\ & n^{2}+3 n-460=0 \\ &(n+23)(n-20)=0 \\ & \therefore n=20 \text { (i.e. the } 20+6 \text { lesson) } \end{aligned}$	Emar in quertion: 1150 is in minutes, not hours. Markig wias anarded for this verswin of working and also for Students working on merif (ie correct units worked through as best as possible.

ggested Solutions, Marking Scheme and Markers' comments

Suggested solutions)

comments

C) i)

\therefore horizontal point of infection
at $x=2$ since $g^{\prime}(2)=0$ and (2)
$g^{\prime}(x)<0$ on either side of $x=2$.

inaime stated
SP, ho follow
throw ge
very poorly
answered as
Student fouldol
to increspret
$g^{\prime}(x)$ to $f(x)$ esp point $x=$

Suggested Solutions, Marking Scheme and Markers' comments

Suggested solution(s)	comments
Question 16	
a) $y=\ln (x-2)$ i)	Some failed to show the asymptote $a \perp x=2$.
ii) domain: $\left\|\frac{x>2}{\text { all red } y \mid 1}\right\|$	done wele. 'eef! marks awandid
$\begin{aligned} & \text { b) } y=-3 \sin \frac{x}{2},-2 \pi \leq x \leq 4 \pi \\ & \text { amp }=-3, \text { period }=\frac{2 \pi}{6}=\frac{2 \pi}{1 / 2}=4 \pi \end{aligned}$	
$1 / 2$	Some used +3 as the amylitude or failed to realise period was 4π.

Suggested Solutions, Marking Scheme and Markers' comments
Suggested solutions)
C) $y=\frac{1}{2} \cos \frac{x}{2}$
i)

$$
A=\int_{\pi / 2}^{\pi} \frac{1}{2} \cos \frac{x}{2} d x+\left|\int_{\pi}^{2 \pi} \frac{1}{2} \cos \frac{x}{2} d x\right|_{1}^{2 \pi}
$$

$$
=\left[\sin \frac{x}{2}\right]_{\pi / 2}^{\pi}+\left|\left[\sin \frac{x}{2}\right]_{\pi}^{2 \pi}\right|
$$

$$
=\left(\sin \frac{\pi}{2}-\sin \frac{\pi}{4}\right)+\left(\left(\sin \pi-\sin \frac{\pi}{2}\right)\right)
$$

$$
=\left(1-\frac{1}{\sqrt{2}}\right)+|(0-1)|
$$

$$
=1-\frac{1}{\sqrt{2}}+1
$$

$$
\begin{aligned}
& =2-\frac{1}{\sqrt{2}} \\
& =\frac{4-\sqrt{2}}{2} \text { units }^{2}
\end{aligned}
$$

ii) $A \div \frac{\pi}{3}\left(\frac{1}{2} \cos -\frac{\pi}{2}+4 \times \frac{1}{2} \cos \frac{0}{2}+\frac{1}{2} \cos \frac{\pi}{2}\right)\left(\begin{array}{c}\text { Sone failed to } \\ \text { use } 3 \pi \text { as the }\end{array}\right.$

$$
\begin{aligned}
& \doteqdot \frac{\pi}{3}(0+2+0) \\
& \doteqdot \frac{2 \pi}{3} \text { units }^{2}
\end{aligned}
$$

iii) $\frac{\frac{2 \pi}{3}-2}{2} \times 100=4.7 \%(12 \%)$

-eck mark awarded it above area wed.
use 3π as the width of the strip.

- Sore calculated
the inteyre:
\int for which 2 $\pi / 2$ eck nebs wis evaluated correctly.

Suggested Solutions, Marking Scheme and Markers' comments
Suggested solutions)
d) i) Sphere
ii) $y=\sqrt{r^{2}-x^{2}}$ is even/symnetrical. about y-axis \int_{0}^{r} produces hermits pher \int_{-r}^{r} produces a solace.
iii) $\pi \int_{-1}^{r}\left(r^{2}-x^{2}\right) d x$
$=\pi\left[r^{2} x-\frac{x^{3}}{3}\right]_{-r}^{r}$
$=\pi\left(r^{3}-\frac{r^{3}}{3}-\left(-r^{3}-\frac{-r^{3}}{3}\right)\right)$
$=\pi\left(\frac{2}{3} r^{3}--\frac{2}{3} r^{3}\right)$
$=\pi\left(\frac{4}{3} r^{3}\right)$
$=\frac{4}{3} \pi r^{3}$ as redid.

Needed to state the curve is even

The variable here is x not r.

$$
\text { i.e } \int r^{2} \neq \frac{r^{3}}{3}
$$

1

