HORNSBY GIRLS' HIGH SCHOOL

2009 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- **Reading Time 5 minutes**
- Working Time 3 hours
- Write using a black or blue pen
- Approved calculators may be used
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.
- Begin each question on a fresh sheet of paper.

Total marks (120)

- Attempt Questions 1 10
- All questions are of equal value

BLANK PAGE

Total Marks – 120

Attempt Questions 1-10 All Questions are of equal value

Answer each question in a SEPARATE writing booklet, writing your student number and question number on the cover of each booklet. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE writing booklet. Marks Evaluate $\frac{3.9 \times 15.6}{12.5 - 4.8^3}$ correct to 3 significant figures. 2 (a) Find the exact value of $\log_3 \sqrt{27}$ 2 (b) (c) Solve $5-(1+x) \ge 0$ 2 Find integers a and b such that $\frac{7}{5+3\sqrt{2}} = a+b\sqrt{2}$ 2 (d) 2 Solve the pair of simultaneous equations (e) 3x + y = 5x-2y=4(f) A sector of a circle with radius 9cm has an arc length of 6π cm. 2 Calculate the size of the angle subtended at the centre. Give your answer in radians.

Question 2 (12 marks) Use a SEPARATE writing booklet.

(a) Find: (i)
$$\int \frac{x+1}{x^2} dx$$
 2

(ii)
$$\int 10 \sec^2 2x \, dx$$
 2

(b) The graph of y = f(x) passes through the point (-1,4) and $f'(x) = 5 - 3x^2$. 2 Find f(x).

- (c) Find the gradient of the tangent to the curve $y = \sqrt{x+2}$ at the point where x = 7. 2
- (d) In the diagram, AC = 6cm, BC = 7cm and $\angle ACB = 30^{\circ}$.

Find the length of AB correct to the nearest centimetre.

2

2

(e)

In the diagram, BC = BD, ref lex $\angle ABC = 220^\circ$, $\angle BCD = 40^\circ$. Prove that $AB \parallel EC$.

Marks

(a) Find the derivative of the following functions, in simplest form:

The diagram shows the points A (-4, 0), C($3\frac{1}{3}$, -8) and D($9\frac{1}{3}$, 0).

Question 4 (12 marks) Use a SEPARATE writing booklet.

- (a) Find the values of k for which $x^2 + (k+6)x 2k = 0$ has real roots. 2
- (b) For the last phase of preparations before the Olympic Games, swimmers started a new training schedule.
 On the first day they had to complete 26 laps of the pool.
 Each succeeding day they increased their training by 6 laps, until their daily schedule reached 200 laps. They then continued swimming 200 laps daily for a total of 15 days to fully complete their training schedule.
 (Note: length of pool = 50m)

(ii) Find the total distance (in kilometres) completed by the swimmers. **3**

The diagram shows the parts of the graphs $y = x^2 + 1$ and $y = 9 - x^2$ in the positive quadrant.

(ii) Copy the diagram into your examination booklet and shade 1 the region represented by the inequalities: $r \ge 0$, $w \ge 0$, $w \le r^2 + 1$ and $w \le 0$, r^2	(i)	Show that the co-ordinates of the point P are $(2, 5)$.	1
	(ii)		1

(iii) Calculate the area of this shaded region.

Marks

(a) For the curve given by $y = x^3 + 3x^2 - 9x$ find:

(i)
$$\frac{dy}{dx}$$
 1

- (ii) the coordinates of the stationary points and determine their nature. 3 (iii) the point of inflexion. 1 (iv) the set of values of x for which the graph is concave downwards. 1 1
- (v) the maximum value of y for $-6 \le x \le 4$.

(b) Solve:
$$2\log_4 x + \log_4 \sqrt{x} = \log_4 32$$

(c)

For the graph above:

(i) Is the following statement correct for the function shown? Explain why or why not.

$$\int_{0.2}^{c} f(x)dx = \int_{0.2}^{b} f(x)dx + \int_{b}^{c} f(x)dx$$
1

(ii) Find the values of the pronumerals a, b and c.

2

Question 6 (12 marks) Use a SEPARATE writing booklet.		Marks	
(a)	Solve	$2\cos^2\theta - 3\cos\theta + 1 = 0$ for $0 \le \theta \le 2\pi$.	3
(b)	The amount of water in litres, remaining in a storm water tank, after <i>t</i> minutes, is given by $V = 10000e^{kt}$. After 60 minutes, 8000L remains in the tank.		
	(i)	Find the initial amount of water in the storm water tank.	1
	(ii)	Find the value of <i>k</i> .	2
	(iii)	How much water would remain after 120 minutes?	2
	(iv)	Will the tank ever be empty? Give reasons for your answer.	1

(c) The below diagram shows a field which is bounded by a river, a highway and two fences.

Use Simpson's rule with 5 function values to approximate the area of the field.

(i)	all three students favoured a uniform without a tie.		

- (ii) at least one student favoured a uniform without a tie.
- (b) The sum of the radii of two circles is constant. HINT: Let the radii of the circles be R, r whereby R + r = c, a constant.
 - (i) Show that the sum of the areas, S, is given by $S = \pi (2r^2 2cr + c^2)$. 2
 - (ii) Prove that the sum of the areas of the two circles is least when the circles have equal radii.
- (c) A mould for a vase is formed by rotating that part of the curve $y = \log_e x$ 3 between y = 0 and y = 2 about the y-axis.

Find the volume of the mould. Leave your answer in simplest exact form.

Ques	Question 8 (12 marks) Use a SEPARATE writing booklet.		
(a)	a) A parabola has focus (3, 2) and directrix $x = -1$.		
	(i) Sketch the parabola showing these features and its vertex and axis.	2	
	(ii) State the equation of the parabola.	1	
(b)	A particle P moves along the x-axis. The velocity v, in cm/s, is given by the equation $v = 1 - 2\sin t$, $t \ge 0$, where t is the time in seconds. Initially the particle is 2cm to the right of the origin.	2	
	(i) Find an expression for the position of the particle at time <i>t</i> .	2	
	(ii) When does the particle change direction in the first π seconds?	2	
	(iii) Determine the exact value of the distance travelled during the first $\frac{\pi}{2}$ seconds.	2	
	 (iv) Particle Q moves along the x-axis so that its position is given by the equation x = 6+t+2cost, t≥0. Describe the motion of Q relative to the particle P. 	1	
(c)	Below is the graph of $y = f(x)$ which has a horizontal point of inflection at A	2	

Copy this diagram onto your answer sheet and sketch the graph of its derivative on the same axes.

and a minimum turning point at *B*.

Marks

(a) If $f(x) = 3\sin \pi x$,

(i)	find the period and amplitude of the function.	2
(ii)	sketch the curve $y = f(x)$ for $0 \le x \le 4$.	1
(iii)	determine the number of solutions of the equation $3\sin \pi x = x$ in the interval $0 \le x \le 4$.	2

(b) In a small town, the number of residents who caught a disease *t* weeks after a virus was introduced can be represented by:

$$N(t) = 1000 \left(1 - \frac{1}{1 + t^2} \right)$$
, for $t \ge 0$.

(i)	How many residents are in the town?	1
(ii)	Calculate the number of residents who caught the disease after one week.	1
(iii)	After what length of time, to the nearest day, had 75% of the residents caught the disease?	2
(iv)	At what rate was the disease spreading three weeks after the disease was introduced?	3

2

2

- (a) Consider the geometric series $54-18a+6a^2-2a^3+\ldots$
 - (i) For what values of a does the series have a limiting sum? 2
 - (ii) The limiting sum of series is 81. Find the value of *a*.

(b)

In a modified sport of archery, the scoring system is as follows: the bull's eye (i.e. innermost circle with radius OA = 5 cm) is worth 10 points, next circle with radius OB = 10 cm is worth 5 points, the largest circle with radius OC = 15 cm is worth 1 point and outside the circles scores 0 points.

- (i) If a player takes one shot at the target board, what is the probability that he scores 10 points?
- (ii) If the same player has three shots at the target and hits it each time, what is the probability that he scores a total of 20 points?

(c)	Vero	onica opened a perfume factory on January 1, 2000.	
	Her	initial stock was 60 000 litres of "Essence" base material.	
	Duri	ng any month she used 1% of the stock existing at the beginning	
	of th	at month and to maintain a sufficient level of stock, she purchased an	
	addit	tional 100 litres "Essence" on the last day of each month.	
	(i)	Write down an expression for A_1 , the number of litres of	1
		"Essence" in stock after one month.	
	(ii)	Show that A_n , the number of litres of "Essence" in stock after n	
		months, is given by	
		$A_n = 50 \ 000 \times 0.99^n + 10 \ 000$	2

(iii) During which month and year will her stock first fall below 90% of her initial stock?

End of paper

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - a^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right), \quad x > a > 0$$

NOTE : $\ln x = \log_e x$, x > 0

•

WHESHUN b) 2 log x + log Jx = log 32 74=2 71 $a = x^3 + 3x^2 - 9x$ A=62-4ac For real noots A20 $\log_{4} \chi^{2} + \log_{4} \chi^{2} = \log_{4} 32$ P(2.5) = (k+6)2-4(-2K) (i) $\frac{dy}{dt} = 3y^2 + 6x - 9$ k2+ 20K+36 20 = k2+12K+36+8k (K+18)(K+2) 20 $\log_{4}(\chi^{2}\chi\chi^{2}) = \log_{4}32$ = k2+20+36 (ii) At stationary points dy =0 K4-18 OF K2-2 y=9-x2 3x2+6x-9=0 x^{5/2} = 32 (111) .. y=q-x2: x-intercept - let y=0 $3(x^2+2x-3)=0$ 9-12:0 $x^{=} (32)^{3}$ 26+32+38+44+....+200 3(x+3)(x-1)=0 In positive quad, x=3 x = -3 or +1in Arithmetic series a=26 ×= 4 $A = \int_{-\infty}^{2} (x^{2}+1) dx + \int_{-\infty}^{3} (q-x^{2}) dx$ when x=-3, y=(-3)³+3(-3)²-9(-3) d = Gc) (1) The statement is ... correct as Tn= 200 = 27 .(-3,27) the question is not an area $= \left[\frac{x^3}{3} + x\right]^2 + \left[q_x - \frac{x^3}{3}\right]_2^3$ a + (n-1)d = 200when x=+1, y=1+3-9 question so we do not need 26+6(1-1)=200 (1,-5). = -5 to add the absolute values $=\left[\left(\frac{8}{3}+2\right)-(0)\right]+\left[\left(27-9\right)-\left(18-\frac{8}{3}\right)\right]$ 26+61-6=200 Both left hand side and right f''(x) = 6x + 66n = 180hand side would be edding $= \left(4\frac{2}{3}\right) + \left(2\frac{2}{3}\right)$ f"(-3)=-18+6 <0 n=30 a negative value to a positive . Max turning pt at (-3,27) value to achieve the same They completed 200 laps on - 1 + uni+2 the 30th day f"(1) = 6+6 >0 answer : Min turning pt at (1,-5) Alternative Solution for (c) (i) (ii) Total, for first 30 days c)(1) Let area between curve and 1 axis (11) Rossible points of inflexion f"(x)=0 from x=0.2 to X=6 be zunits = = [2a+L] 6x+6 =0 let area between curve and y-axis $\chi = -1$ = 30 [26+200] from x=b to x=c be 'y' units f"(-2)=-12+6<0 conceve = 15 (226) danna $LHS = \int_{0.2}^{C} f(u) dx$ = 3390 f"(0) = 0+6>0 conceveup Total laps for next 15 days = -2+4 .: since concevity changes there = 4-2 = 15x200 is a point of inflexion = 3000 laps. $RHS = \int_{0.7}^{b} f(x) dx + \int_{c}^{b} f(x) dx$ at (-1, 11) Total distance = 6390 × 50m = -2+4 = 319 500m $y = (-1)^{3} + 3(-1)^{2} - 9(-1)$ = 319.5 km = -1+3+9 (ii) b=1 c) (1) P is the point of intersection (iv) concisue down $\Rightarrow f''(x) < 0$ a = Log_ 0.2 of y=x2+1 and y=q-x2 6246 <0 = log (15) , let $x^2 + 1 = 9 - x^2$ 26 - 1 2)(² = 8 = log 5-1 $\chi^2 = \mu$ (v) Endpoints: f (-6) = -54 $x = \pm 2$ = -1 But P is in the positive f(4) = 76gliadrant := x=2 Log c =1 Max t.p. (-3,27) when x=2, $y=(2)^{2}+1$ = 5 c=5' . Maximum velue = 76 : P is the point (2,5) C = 5

b)
$$W(t) = 1000 \left(1 - \frac{1}{1+t^2}\right), t \ge 0.$$

(1) As $t \ge 000 \left(1 - \frac{1}{1+t^2}\right), t \ge 0.$
(1) Martelly three were 1000
Trithelly three were 1000
Nesidents in the town.
(1) Whentell,
N(t) = 1000 $\left(1 - \frac{1}{1+t}\right)$
 $= 1000 \times \frac{1}{2}$
 $= 500$
After one weak, 500 residents caught
the discesse
1) 7590 of 1000 = 750
754 = 1004 $\left(1 - \frac{1}{1+t^2}\right)$
 $0.75 = 1 - \frac{1}{1+t^2}$
 $\frac{1}{1+t^2} = \frac{1}{4}$
 $1+t^2 = 4$
 $t^2 = 3$
 $t = \pm 13$
But $t \ge 0, \ t \equiv 13$
 $= 12 doys (to nearest day)$
U) Pate = dN
 dt
 $M = 1000 \left[(1+t^2)^{-1} \right]$
 $\frac{dN}{dt} = 1000 \left[(1+t^2)^{-2} \ge 1 \right]$
 $= 1000 \left[(1+t^2)^{-2} \ge 1 \right]$
 $= 1000 \left[\frac{2t}{(1+t^2)^2} \right]$
When $t^{=3}$ $\frac{dN}{dt} = 1000 \left[\frac{6}{(1+q)^2} \right]$
 $= 1000 \left[\frac{6}{(1+q)^2} \right]$
 $= 60$
Parte three weaks after disease
was introduced will be

60 people / week.

ūis

 $S = \frac{\alpha}{1-c}$

a) 54-18a+6a2-2a3+ Us Limiting sum exists of -1<r <1 $r = -\frac{18a}{54}$ = -<u>a</u> Let -1<- - <1 1> => -1 3 > a > -3 -3 <a < 3 Limiting sum exists if -3 ka <3 = $81 = \frac{54}{1+9}$ $81(1+\frac{9}{3})=54$ 81 + 27a = 54 272 = -27 a = -1 b) (i) $A_{\text{smallest}} = \pi(s)^2$ arde = 25TT cm2 $A_{\text{next}} = \pi(10)^2$ $c_{\text{next}} = 100\pi \text{ cm}^2$ $A_{largest} = TT(15)^2$ ciple = 225 TT 2m² $P(10 \text{ points}) = \frac{25TT}{225TT}$

(iiii) (1) Ainner circle = T(5)² = 25 TT cm² $A_{\text{first annulus}} = \pi(10)^2 - \pi(5)^2$ $= 75\pi \text{ cm}^2$ Asecond annulus = TT(15)2-TT(10)2 $= 115TT cm^2$ $P(10) = \frac{25T}{225T} = \frac{1}{9}$ $P(5) = \frac{75\pi}{225\pi} = \frac{1}{3}$ $P(1) = \frac{12511}{22511} = \frac{5}{9}$ P(Total of 20)= P(10,5,5) + P(5,10,5)+P(5,10) = (+x3×3)×3 <u>-</u> 27 c) (A A = 0.99×60000 + 100 (i) A3 = 0.44 [0.44× 60 000 + 100] + 100 = 0.99 × 60 000 + 0.99×100 + 100 A1=0-99 [A2] + 100 = 0.99 × 60 000 + 0.99 × 100 + 0.99 × 100 1100 = 0.993×60000+ 100[0:997+0.99+1] $\cdot \cdot A_{n} = 0.99^{n} \times 60000 + \left[1 + 0.99 + 0.99^{2} + \dots + 0.99$ $= A_{m} = 0.99 \times 60000 + 10 = \left[\frac{1(1 - 0.99)}{0.01}\right]$ -0-99 x60000 + 10000 [1-0.99] - 60000 (0.99) + 10000 - 10000 (099)" - 50 000 (0.99)" + 10 000

90% of initial stock = 0.9x 60 000 -54000 Let 50 000 (0.99) + 10 000 × 54000 50 \$\$\$\$ 0.99" < 44,5\$\$ 0.99 × 44 0.99" 20.88 log 0.99" × log 0.88 n > log 0.88 10-9 0.99 N>12-7193 month . . It will be in the 13th month (iz. January of 2001)