HORNSBY GIRLS HIGH SCHOOL

2011
 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

G eneral Instructions

- Reading Time 5 minutes
o Working Time-3 hours
- Write using a black or blue pen
o Approved calculators may be used
o A table of standard integrals is provided at the back of this paper.
o All necessary working should be shown for every question.
- Begin each question in a new booklet.

Total marks (120)

- Attempt Questions 1-10
- All questions are of equal value

BLANK PAGE

Attempt Questions 1-10

All Questions are of equal value
Begin each question in a NEW writing booklet, writing your student number and question number in the boxes indicated. Extra writing booklets are available.

Question 1 (12 marks) Use a SEPARATE booklet.
Marks
(a) Find $3^{3.5}$ correct to three significant figures.

2
(b) Factorise completely: $3 x^{2}-12 y^{2}$
(c) Simplify $\frac{3}{m+2}-\frac{1}{m}$.
(d) Calculate the length of side BC, giving your answer to one decimal place.

NOT TO SCALE
(e) Solve $|2 x-3|<11$ and graph the solution on a number line.
(f) Find the limiting sum of the geometric series $1+\frac{3}{4}+\frac{9}{16}+\frac{27}{64}+\ldots .$.

Question 2 (12 marks) Use a SEPARATE booklet.
(a) Differentiate (i) $x \sin \left(\frac{\pi}{4}-x\right)$
(ii) $\frac{2 x-3}{\tan x}$
(b) (i) Find $\int \frac{\sqrt{x}}{x^{5}} d x$
(ii) Evaluate $\int_{0}^{4} \frac{\mathrm{dx}}{3 \mathrm{x}+1}$
(c) Find the equation of the tangent to the curve $\mathrm{y}=\mathrm{e}^{\mathrm{x}^{3}}$ at the point whose x-coordinate is 2 .

Question 3 (12 marks) Use a SEPARATE booklet.
(a) The point $Q(-2,1)$ lies on the line k whose equation is $9 x-2 y+20=0$.

The point $R(4,-2)$ lies on the line I whose equation is $3 x+y-10=0$.
(i) Show that the lines k and I intersect at the point $\mathrm{P}(0,10)$.
(ii) Show that the equation of the line m which joins Q and R is

$$
x+2 y=0
$$

(iii) Find, as a surd, the perpendicular distance from P to m . 2
(iv) Hence, or otherwise, find the exact value of the area of the triangle bounded by the three lines k, I and m.
(b) The first three terms of an arithmetic series are 50, 43 and 36 .
(i) W rite down the $n^{\text {th }}$ term of the series.
(ii) If the last term of the series is -13 , how many terms are there in the series? 2
(iii) Find the sum of the series.
(a) In the figure $A B C D, A B=3 \sqrt{3}, B C=3, C D=4, \angle A B C=90^{\circ}$ and $\angle A C D=60^{\circ}$. A ll length measurements are in metres.

NOT TO SCALE

Find (i) the length of $A C$.
(ii) the exact length of $A D$.
(iii) the exact area of the figure $A B C D$.
(b) Prove that $(\cot \theta+\operatorname{cosec} \theta)^{2}=\frac{1+\cos \theta}{1-\cos \theta}$.
(c) The curve $y=\sec 2 x$, for $0 \leq x \leq \frac{\pi}{6}$, is rotated about the x axis.

Find the volume of the solid of revolution generated.
(d) Find the area of the minor segment shaded, given $\angle \mathrm{QOP}=0.6$ radians and the radius of the circle, centre 0 , is 4 metres.

Question 5 (12 marks) Use a SEPARATE booklet.
(a) Let $\log _{a} 2=x$ and $\log _{a} 3=y$. Find an expression for $\log _{a} 12$, in terms of x and y.
(b) A function $f(x)$ is given by $f(x)=\left\{\begin{array}{l}x+6, \text { for } x \leq 3 \\ x^{2}-9, \text { for } x>3\end{array}\right.$

Find $f(3)-f(5)$.
(c) Solve the equation $3^{2 x}+2\left(3^{x}\right)-15=0$.
(d) Consider the function $f(x)=1-3 x+x^{3}$, for the domain $-2 \leq x \leq 3$.
(i) There are two turning points for $y=f(x)$. Find their co-ordinates 3 and determine their nature.
(ii) Draw a sketch of the curve $y=f(x)$ for the domain $-2 \leq x \leq 3$, clearly 3 showing the turning points, y-intercept and the endpoints.

Question 6 (12 marks) Use a SEPARATE booklet.
(a) In the diagram below (not drawn to scale), $B D$ bisects $\angle A B C$,
$D C$ is perpendicular to $B C, \angle B A C=40^{\circ}, \angle A C B=60^{\circ}$ and $\angle B D C=x^{\circ}$.
Copy the diagram into your writing booklet.
Find the value of x , giving reasons for each step in your cal culation.

(b) The mass, M in grams, of a radioactive substance may be expressed as $M=120 e^{-0.04 t}$ where t is the time in years
(i) What was the initial mass of the radi oactive substance?

1
(ii) Find the mass of the substance after 10 years.
(iii) Find the instantaneous rate of change of the mass after 10 years.
(iv) A fter how many years will the mass of the substance be 15 grams?
(c) Let $f(x)=x^{3}-6 x^{2}+k x+4$, where k is a constant.

Find the values of k for which $f(x)$ is an increasing function.

Question 7 (12 marks) Use a SEPARATE booklet.
(a) Let α and β be the roots of $2 \mathrm{x}^{2}-9 \mathrm{x}+2=0$.
(i) Find $\alpha \beta$. 1
(ii) Hence find $\beta+\frac{1}{\beta}$

1
(b) Two functions are defined as $f(x)=\sin 2 x$ and $g(x)=\sin x$. It is known that $\sin 2 \mathrm{x}=2 \sin \mathrm{x} \cos \mathrm{x}$ for all values of x . (Do not show this)
(i) The equation $f(x)=g(x)$ has solutions $\mathrm{X}=0$ and $\mathrm{X}=\pi$. Find the third solution in the domain $0 \leq x \leq \pi$.
(ii) Sketch $y=f(x)$ and $y=g(x)$ on the same set of axes in the domain $0 \leq x \leq \pi$, showing the intercepts of both curves.
(iii) Find the area enclosed between $y=f(x)$ and $y=g(x)$ between $\mathrm{x}=0$ and $\mathrm{X}=\pi$.
(c) Find the equation of the locus of a point $P(x, y)$ that moves so that its distance 3 from the point $(-2,4)$ is equal to its distance from the line $y=6$.

Question 8 (12 marks) Use a SEPARATE booklet.
(a) At time t seconds, the position $x \mathrm{~cm}$ of a particle moving in the straight line X 'OX is given by $x=a t^{2}+b t c m$, where a and b are constants. The particle initially passes through the origin, 0 , with velocity $16 \mathrm{~cm} / \mathrm{s}$ in the positive direction and, after 8 seconds, the particle is again at 0 .
(i) Find the velocity of the particle at any time, in terms of a and b.
(ii) Find the values of the constants a and b.
(iii) When AND where is the particle at rest?
(iv) With reference to acceleration and displacement, describe the motion of the particle.
(b) Elise invests $\$ 50000$ in an account which earns 8\% interest, compounded annually. She intends to withdraw $\$ \mathrm{M}$ at the end of each year, immediately after the interest has been paid. She wishes to be able to do this for exactly 20 years, so that the account will then be empty.
(i) W rite an expression for the amount of money she has in the account immediately after she has made her first withdrawal?
(ii) Show that the amount of money in the account, immediately after her $20^{\text {th }}$ withdrawal is:

$$
\$ 50000 \times 1.08^{20}-\$ M\left(1+1.08+1.08^{2}+\ldots .+1.08^{19}\right)
$$

(iii) Calculate the value of M which leaves her account empty after the $20^{\text {th }}$ withdrawal.

Question 9 (12 marks) Use a SEPARATE booklet.
(a) If $y=e^{2 x}$, show that $\frac{d^{2} y}{d x^{2}}=2 y+\frac{d y}{d x}$.

2
(b) The volume of a crop to be harvested, changes at the rate of $\frac{\mathrm{dV}}{\mathrm{dt}}$ cubic metres per week, where $\frac{d V}{d t}=\frac{1400}{(7 t+1)^{2}}$, and t is the time in weeks since the harvest was started.
(i) Find the volume of the crop as a function of t .
(ii) Initially, the volume of the crop to be harvested was calculated to be 1600 cubic metres. Find the volume after one week.
(iii) A t what exact time is the volume changing at half the initial rate?
(c) (i) Show that $\frac{d}{d x}(x \ln x-x)=\ln x$.
(ii) Hence, or otherwise, find $\int \ln x^{2} d x$.

1
(iii) The graph shows the curve $y=\ln x^{2},(x>0)$ which meets the line $x=5$ at Q . Using your answers from (i) and (ii), or otherwise, find the area of the shaded region.

Question $\mathbf{1 0}$ (12 marks) Use a SEPARATE booklet.
(a) Use Simpson's rule with 3 function values to find an approximate value of

2

$$
\int_{3.7}^{4.3} \frac{1}{1+\sqrt{x}} d x .
$$

Give your answer correct to two decimal places.
(b) $O B C$ is a sector of a circle with centre $O . O B$ and $O C$ are radii of length r metres, of the circle. The arc $B C$ of the circle subtends an angle θ radians at 0 .
The perimeter of the sector is 12 metres.

(i) Show that the area, A , of the sector OBC is given by

$$
\mathrm{A}=\frac{72 \theta}{(\theta+2)^{2}} .
$$

(ii) Hence, or otherwise, find the maximum area of the sector.
(c) A poster is being designed to have an area of $324 \mathrm{~cm}^{2}$. The poster is to be framed in a rectangular frame. The frame is made of timber which has a width of 3 cm at the bottom and on each side and a width of 5 cm along the top.
(i) If the rectangular frame has an outer width of xcm and an outer length of y cm , show that the area, $\mathrm{Acm}{ }^{2}$, of the poster and frame is given by $\quad A=x\left[8+\frac{324}{x-6}\right]$
(ii) Find the values of x and y such that the outer perimeter of the frame is as short as possible.

End of paper

HGHS α Unit 1 KHAR- 2011
Q

$$
\begin{aligned}
3^{3.5} & =46,7653 \ldots \\
& =46.8(3 . \mathrm{sig}, \mathrm{fig} .)
\end{aligned}
$$

b)

$$
\begin{aligned}
& 3 x^{2}-12 y^{2} \\
= & 3\left(x^{2}-4 y^{2}\right) \\
= & 3(x+2 y)(x-2 y)
\end{aligned}
$$

$$
\text { c) } \begin{aligned}
& \frac{3}{m+2}-\frac{1}{m} \\
= & \frac{3 m-(m+2)}{m(m+2)} \\
= & \frac{3 m-m-2}{m(m+2)} \\
= & \frac{2 m-2}{m(m+2)} \\
= & \frac{2(m-1)}{m(m+2}
\end{aligned}
$$

d)

$$
\begin{aligned}
\angle A & =180^{\circ}-110^{\circ}-30^{\circ} \\
& =40^{\circ} \\
\frac{B C}{\sin 40^{\circ}} & =\frac{2}{\sin 30^{\circ}} \\
B C & =\frac{2 \sin 40^{\circ}}{\sin 30^{\circ}} \\
& =2.57 \ldots \\
& =2.6(1 \text { d.p })
\end{aligned}
$$

e) $|2 x-3|<11$

$$
\begin{aligned}
& -11<2 x-3<11 \\
& -8<2 x<14 \\
& -4<x<7
\end{aligned}
$$

Q2 a) (i)

$$
\begin{aligned}
\frac{d}{d x} x \sin \left(\frac{\pi}{4}-x\right) & =-x \cos \left(\frac{\pi}{4}-x\right)+\sin \left(\frac{\pi}{4}-x\right) \\
& =\sin \left(\frac{\pi}{4}-x\right)-x \cos \left(\frac{\pi}{4}-x\right)
\end{aligned}
$$

(ii) $\frac{(\tan x) 2-(2 x-3) \sec ^{2} x}{\tan ^{2} x}=\frac{2 \tan x-(2 x-3) \delta}{\tan ^{2} x}$
b) (i)
f)

$$
\begin{aligned}
S_{\infty} & =\frac{a}{1-r} \quad, a=1 r=\frac{3}{4} \\
& =\frac{1}{1-\frac{3}{4}} \\
& =\frac{1}{1 / 4} \quad \\
& =4
\end{aligned}
$$

(ii) $\left.\frac{1}{3} \ln (3 x+1)\right]_{0}^{4}=\frac{1}{3} \ln (13)-\ln 1$

$$
\begin{aligned}
\int x^{\frac{1}{2}-5} \cdot d x & =\int x^{-\frac{9}{2}} d x \\
& =\frac{-2 x^{-\frac{2}{2}}}{7}+c \\
& =-\frac{2}{7} \frac{1}{x^{3} \sqrt{x}}+c \text { ex } \frac{-2 \sqrt{x}}{7 x^{4}}+c
\end{aligned}
$$

$$
\frac{1}{3} \ln 3
$$

c) $\frac{d y}{d x}=3 x^{2} e^{x^{3}}$ when $\begin{aligned} x & =2 \\ d y=3 \times 4 e^{2} & =e^{8}\end{aligned}$

$$
\begin{aligned}
\frac{d y}{d y} & =3 \times 4 e^{8} \\
& =12 e^{8}
\end{aligned}
$$

Esis \& tangent given by
a) i) $9 x-2 y+20=0-(1)$
(2) $x \Rightarrow 6 x+2 y-20=0$-(3)
(1) + (3) $\Rightarrow 15 x=0$

$$
x=0
$$

subst $x=0$ into (1)

$$
\begin{aligned}
-2 y+20 & =0 \\
2 y & =20 \\
y & =10
\end{aligned}
$$

b) ${ }_{i} T_{n}=a^{+}(n-1) d$.
$=30 \%(n-1) \times-7$
$=50-7 m+7$
$=57-7 n$.
$\therefore P(0,10)$
ii) $\frac{y-1}{x+2}=\frac{-2-1}{4+2}$
$\frac{y-1}{x+2}=\frac{-1}{2}$
$2 y-2=-x-2$
$x+2 y=0$
(ii) $d=\frac{\left(a x_{1}+b y_{1}+c \mid\right.}{\sqrt{a^{2}+b^{2}}}$
$=\frac{|1 \times 0+2 \times 10+0|}{\sqrt{1+2^{2}}}$
$=\frac{20}{\sqrt{5}}$
$=4 \sqrt{5}$
(v) $Q R=\sqrt{(-2-4)^{2}+(1+2)^{2}}$
$=\sqrt{36+9}$
$=\sqrt{45}$
$=3 \sqrt{5}$
v) $A=\frac{3 \sqrt{5} \times 4 \sqrt{5}}{2}=30$.

Q4) a) (i) $A C^{2}=(\sqrt[3]{ })^{2}+3^{2}$ (Pythagoras theorem) \quad c) $V=\pi \int_{0}^{\frac{\pi}{6}} \sec ^{2} 2 x d x$
$=\pi\left[\frac{1}{2} \tan 2 x\right]_{0}^{\frac{\pi}{6}}$
$=\frac{\pi}{2}\left(\tan \frac{\pi}{3}-\tan 0\right)$
$=\frac{\pi}{2}(\sqrt{3}-0)$
$=\frac{\pi \sqrt{3}}{2} \quad$ unnto 3
(iii) Area of figure $=\frac{1}{2} \times 3 \times 3 \sqrt{3}+\frac{1}{2} \times 6 \times 4 \sin ^{2} 60$

$$
\begin{aligned}
& =\frac{9 \sqrt{3}}{2}+\frac{12 \sqrt{3}}{2} \\
& =\frac{21 \sqrt{3}}{2}
\end{aligned}
$$

d) $A=\frac{1}{2} r^{2} \theta^{c}-\frac{1}{\frac{1}{2}} r^{2} \sin ^{2} \theta^{c}$
$=\frac{12}{2} \times 18^{2} \times 0.6^{-}-\frac{1}{2} \times 4^{2} \times \sin 0.6$
b) $L H S=\cot ^{2} \theta+2 \cot \theta \operatorname{cosec} \theta+\operatorname{cosec}^{2} \theta$

$$
=\frac{\cos ^{2} \theta}{\sin ^{2} \theta}+\frac{2 \cos \theta}{\sin \theta} \times \frac{1}{\sin \theta}+\frac{1}{\sin ^{2} \theta}
$$

Question 5

$$
\text { a) } \begin{aligned}
\log _{a} 12 & =\log _{a}\left(3 \times 2^{2}\right) \\
& =\log _{a} 3+\log _{a} 2^{2} \\
& =\log _{a} 3+2 \log _{a} 2 \\
& =y+2 x \\
& =2 x+y
\end{aligned}
$$

b) $f(3)-f(5)=(3+6)-\left(5^{2}-9\right)$

$$
=9-16
$$

$$
=-7
$$

c) $3^{2 x}+2\left(3^{x}\right)-15=0$ $\left(3^{x}\right)^{2}+2\left(3^{x}\right)-15=0$
Let $y=3^{x}$
$\therefore \begin{aligned} y^{2}+2 y-15 & =0 \\ (y+5)(y-3) & =0\end{aligned}$

$$
y=3 \text { or }-5
$$

is $3^{x}=3$ or -5

$$
\text { So } \begin{aligned}
3^{x}=3 & \text { or } \quad 3^{x}=-5 \\
x=1 & \text { no solution }
\end{aligned}
$$

d) $) ~ f(x)=1-3 x+x^{3}$

$$
f^{\prime}(x)=-3+3 x^{2}
$$

$$
0=-3+3 x^{2}
$$

$$
3 x^{2}=3 \quad f^{\prime \prime}(x)=6 x
$$

$$
x^{2}=1
$$

$$
x= \pm 1
$$

when $x=1, y=1-3+1 \begin{array}{rlrl} & f^{\prime \prime}(1) & =6 \\ & =-1 & & >0\end{array}$
\therefore Min turning pt at $(1,-1)$
When $x=-1, \begin{aligned} y & =1+3-1 \quad f^{\prime \prime}(-1) \\ & =3 \\ & =0\end{aligned}$ \therefore Maxturning pit at $(-1,3)$
ii) When $\begin{aligned} x=-2, f(-2) & =1-3(-2)+(-2)^{3} \\ & =-1\end{aligned}$

When $x=3, f(3)=1-3(3)+3^{3}$
y-interceptis1. $=19$

Question 6

a) $\angle A B C+40+60=180$ (\angle sum, $\triangle A B C$)
$\angle A B C=80$
$\angle D B C=40$ ($D S$ bisects $\angle A B C$)
$x+90+40=180(\angle \sin \Delta 80 x)$

$$
x=50
$$

6) i) 120
ii.) $M=120 e^{-0.044 \times 10}$

$$
\begin{aligned}
& =120 \mathrm{e}^{-0.4} \\
& =80.438 \\
& =80 \mathrm{~g} .
\end{aligned}
$$

iii) $\frac{d M}{d t}=120 \times-0.04 e^{-0.04 t}$

$$
=-4.8 e^{-0.04 t}
$$

When $t=10$

$$
\begin{aligned}
\frac{d H}{d t} & =-4.8 e^{-0.4} & \text { OR } & 3 x^{2}-12 x+k>0 \\
& =-3.2175 & & 3 x^{2}-12 x>-k \\
& =-3.2 \mathrm{~g} / \text { year } . & & k>12 x-3 x^{2} \\
& & & k>3 x(4-x)
\end{aligned}
$$

ir) $15=120 e^{-0.04 t}$

$$
\begin{aligned}
e^{-0.04 t} & =\frac{15}{120} \\
-0.04 t & =\ln (0.125) \\
t & =\frac{\ln (0.125)}{-0.04 t}
\end{aligned}
$$

$=51.98$
$=52$ years.
c) $f^{\prime}(x)=3 x^{2}-12 x+k \geqslant 0$.

$A<0$
$b^{2}-4 a c \leqslant 0$
$144-i 2 k<0$
$12 k>144$ $k>12$.

when $x=2$
$k>6 \times 2$
$k>12$

Question γ.
a) 1)

$$
\begin{aligned}
& =\left(\frac{1}{2}-\frac{1}{2} \times \frac{-1}{2}\right)-\left(-\frac{1}{2}+1\right) \\
& =\frac{1}{2}+\frac{1}{4}-\frac{1}{2}
\end{aligned}
$$

$$
=\frac{1}{4} \text { units }^{2}
$$

$$
\begin{aligned}
& A_{x}=\int_{\pi / 3}^{\pi}(\sin x-\sin 2 x) d x \\
& =\left[-\cos x+\frac{1}{2} \cos 2 x\right]_{\pi / 3}^{\pi} \\
& =\left[-\cos \pi+\frac{1}{2} \cos 2 \pi\right)-\left(-\cos \frac{\pi}{3}+\frac{1}{2} \cos \frac{2 \pi}{3}\right)
\end{aligned}
$$

$$
=\left(1+\frac{1}{2}\right)-\left(-\frac{1}{2}-\frac{1}{4}\right) \quad a=-2
$$

$$
=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4} \quad \therefore a=-2 \text { and } b=16 \text {. }
$$

$$
=\frac{9}{4}
$$

$$
\begin{aligned}
\therefore A & =\frac{10}{4} \text { unto }^{2} \\
& =\frac{5}{2} \text { una }^{2}
\end{aligned}
$$

$$
\begin{aligned}
& (c): P=(x, y)-A=(-2,4) \quad M=(x, 6) \\
& P A=P M \\
& P A^{2}=P m^{2} \\
& (x+2)^{2}+(y-4)^{2}=(y-6)^{2} \\
& x^{2}+4 x+4+y^{2}-8 y+16=y^{2}-12 y+36 \\
& x^{2}+4 x+20=4^{2}+y^{2}-12 y+84+36
\end{aligned}
$$

\therefore particle is 32 cm from the organ when it is at rest.
iv)

$$
\begin{aligned}
a & =2 a \\
& =-4 .
\end{aligned}
$$

Acceleration in alwäps negative Particle moves through the origin and away from it for 4 seconds fill it is 32 cm away. It then turns. round and heads back to the origin. will meet the origin in 8 seconds + will iantnue on.
b) i)

$$
\begin{aligned}
A_{1} & =\$ 50000(1+0.08)^{1}-\$ \mathrm{~m} \\
& =\$ 50000(1.08)-\$ \mathrm{~m}
\end{aligned}
$$

ii) After 2 years,

$$
\begin{aligned}
& A_{2}= A_{1}(1.08)-m \\
&=(50000(1.08)-m) \times 1.08-m \\
&= 50000(1.08)^{2}-1.08 m-m \\
&==50000(1.08)^{2}-m(1.08+1) \\
& \text { After } 3 \text { years } \\
& A_{3}= A_{2}(1.08)-m \\
&=\left(50000(1.08)^{2}-1.08 m-m\right) \times \\
& 1.08-m \\
&= 50000(1.08)^{3}-1.08^{2} m-1.08 m- \\
&= 50000(1.08)^{3}-m\left(1.08^{2}+1.08+1\right)
\end{aligned}
$$

After 20 gears

$$
\begin{aligned}
A_{20}= & A_{19}(1.08)-m \\
= & 50000(1.08)^{20}-m\left(1.08^{19}+1.08^{18}+\cdots\right. \\
& \cdots+1.08^{2}+1.08 t \\
= & 50000(1.08)^{20}-m\left(1+1.08+\cdots+1.08^{19},\right.
\end{aligned}
$$

111) For $\left(1+1.08+\cdots+1.08^{19}\right), a=1, r=1.08$ $n=20$.

$$
S_{20}=\frac{1\left(1.08^{20}-1\right)}{0.08}
$$

Account is empty when $A=0$
So $0=50000(1.08)^{20}-M\left(\frac{1.08^{20}-1}{0.08}\right.$,

$$
\begin{aligned}
m\left(\frac{1.08^{20}-1}{0.08}\right) & =50000(1.08)^{20} \\
m & =\frac{50000(1.08)^{20}}{\frac{1.08^{20}-1}{0.08}} \\
& =\$ 5092.61
\end{aligned}
$$

Particle is slowing down till it turns, then it speeds op towards sta or gin.

$$
\begin{aligned}
& \text { Q9.) } \begin{aligned}
y & =e^{2 x} \\
\frac{d y}{d x} & =2 e^{2 x}
\end{aligned} \\
& \frac{d^{2} y}{d x^{2}}=4 \cdot e^{2 x} \\
& \text { RHS }=2 y+\frac{d y}{d x} \\
& =2\left(e^{2 x}\right)+2 e^{2 x} \\
& =4 e^{2 x} \\
& =\frac{d^{2} y}{d x^{2}} \\
& =\text { LHS } \\
& \text { b) } \frac{d V}{d t}=\frac{1400}{(7 t+1)^{2}} \\
& \text { is } V=\int 1400(7 t+1)^{-2} d t \\
& =1400 \frac{(7 t+1)^{-1}}{-1 \times 7}+c \\
& =\frac{-200}{7 t+1}+c \\
& \left.\begin{array}{l}
t=0 \\
v=1600
\end{array}\right\} \\
& 1600=\frac{-200}{1}+c \\
& c=1800 \\
& V=1800-\frac{200}{7 t+1} \\
& t=1 \quad V=1800-\frac{200}{8} \\
& =1775 \\
& t=0, \frac{d N}{d t}=1400 \\
& \frac{1}{2} \text { (inithalt vate) }=700 \\
& 700=\frac{1400}{(7 t+1)^{2}} \\
& \left.\frac{1}{2}=\frac{1}{(7 t+1}\right)^{2} \\
& \begin{aligned}
(7 t+1)^{2} & =2 \\
7 t+1 & =\sqrt{2}
\end{aligned} \\
& t \equiv \frac{-1 \pm \sqrt{2}}{7} \\
& \text { c) } \frac{10}{d x}(x \ln x-x)=x \times \frac{1}{x}+(\ln x) \times 1-1 \\
& =1+\ln x-1 \\
& =-\ln x \\
& \text { (ii) } \int \ln x^{2} d x=2 \int \ln x \cdot d x \\
& =2(x \ln x-x)+C \\
& \text { (iii) } Q \text { is }(5, \ln 25), x \text { inter cept of } y=\ln x^{2} \\
& \begin{array}{r}
2 \ln x=0 \text { or } \therefore x^{2}=1 \\
\therefore x=
\end{array} \\
& A=5 \ln 25-\int_{0}^{5} \ln x^{2} d x \\
& =5 \ln 25-2[3 \ln x-x]_{1}^{5} \\
& =5 \ln 25-2[5 \ln 5-5-(0-1)] \\
& =5 \ln 5^{2}-10 \ln 5+10-2 \\
& =8 \text { unito }^{2} \\
& \text { Question } 10 \\
& \text { a) } \int_{3.7}^{4^{-3}} \frac{1}{1+\sqrt{x}} d x=\frac{4.3-3.7}{6}[0.342 * 4 \times 0.333+0.335] \\
& =0.20 \\
& \text { b) } \text { i) } A=\frac{1}{2} r^{2} \theta \text {.—— } \\
& P=x \theta+2 r=12 \\
& 12=r(\theta+2) \\
& r=\frac{12}{\sigma+2} \text {-(2) } \\
& \therefore A=\frac{\theta}{2} \times \frac{12^{2}}{(\theta+2)^{2}} \\
& =\frac{144 \theta}{2(\theta+2)^{2}} \\
& =\frac{72 \theta}{(\theta+2)^{2}} \\
& \text { ii) } \frac{d A}{d \theta}=\frac{(\theta+2)^{2} \cdot 72-144 \theta(\theta+2)}{(\theta+2)^{4}} \\
& =\frac{72(\theta+2)[\theta+2-2 \theta]}{(\theta+2)^{4}} \\
& =\frac{72[2-\theta]}{(\theta+2)^{3}} \\
& \text { Max Arsa ishen } \frac{d A}{d^{\prime} t}=0 \\
& \text { i.e. } 2-\theta=0 \\
& \theta=2 \text {. } \\
& \therefore \text { Maxe Area }=\frac{72 \times 2}{(2+2)^{2}} \\
& =9 \text {. }
\end{aligned}
$$

But $t>0, \therefore t=\frac{\sqrt{2}^{7}-1}{7}$
c)

i) $(x-6)(y-8)=324$.

$$
\begin{aligned}
y-8 & =\frac{324}{x-6} \\
y & =\frac{324}{x-6}+8
\end{aligned}
$$

$$
\begin{aligned}
A & =x 4 \\
& =x\left(8+\frac{324}{x-6}\right)
\end{aligned}
$$

ii) $P=2 x+2 y$.
$=2 x+2\left(\frac{324}{x-6}+8\right)$
$=2 x+628(x-6)^{-1}+16$.
$\frac{d P}{d x}=2-628(x-6)^{-2}$
$=2-\frac{628}{(x-6)^{2}}$
min when $\frac{d P}{d x}=0$.
i.e. $\quad 628=2(x-6)^{2}$.
$324=(x-6)^{2}$
$x-6= \pm 18$
$x=-12,24$.
$\therefore x=24$
$y=\frac{324}{24+6}+5$
$=26$.

