Hunters Hill High School Mathematics

Trial Examination, 2018

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using only black pen
- Board-approved calculators may be used
- A reference sheet is provided
- The marks for each question are shown on the paper
- Show all necessary working in questions 11-16

Total Marks: 100

Section I 10 marks

- Attempt Questions 1-10
- Allow about 20 minutes for this section

Section II 90 marks

Pages 6-12

Pages 3-5

- Attempt Questions 11-16
- Allow about 2 hours and 40 minutes for this section

Section I 10 marks Attempt Questions 1–10 Allow about 20 minutes for this section

Use the multiple-choice answer sheet for Questions 1–10.

- **1.** What is the value of $\frac{\pi^3}{6}$, correct to 3 significant figures?
 - **(A)** 5.168
 - **(B)** 5.167
 - **(C)** 5.16
 - **(D)** 5.17
- **2.** Which line is perpendicular to the line 3x + 4y + 7 = 0?
 - (A) 3x 4y + 7 = 0
 - **(B)** 8x 6y 7 = 0
 - (C) 4x + 3y 7 = 0
 - **(D)** 4x 7y + 7 = 0
- William has five pairs of socks, all of different designs.If he selects two socks at random, what is the probability that they form a matching pair?
 - (A) $\frac{1}{2}$ (B) $\frac{1}{9}$ (C) $\frac{5}{9}$ (D) $\frac{1}{10}$
- **4.** The domain of the function $f(x) = \sqrt{x^2 1}$ is ?
 - (A) $x \ge 1, x \le -1$
 - $(B) \quad -1 \le x \le 1$
 - (C) $x \ge 1$
 - **(D)** $x \le -1$

- 6. The function f(x) is given by $f(x) = x^3 27x$. The coordinates of the minimum stationary points are ?
 - **(A)** (3, −54)
 - **(B)** (-3, 54)
 - **(C)** (−3, −54)
 - **(D)** (3, 54)
- 7. What is the solution to $3^x = 2$?

(A)
$$x = \frac{\log_e 2}{3}$$

(B)
$$x = \frac{3}{\log_e 2}$$

(C)
$$x = \frac{\log_e 2}{\log_e 3}$$

(D)
$$x = \log_e \left(\frac{2}{3}\right)$$

8. A point P(x, y) moves such that it is 4 units from the point (-1,2). The equation of the locus of P(x, y) is ?

- (A) $(x+1)^2 + (y-2)^2 = 4$
- **(B)** $(x+1)^2 + (y-2)^2 = 16$
- (C) $(x-1)^2 + (y+2)^2 = 16$
- **(D)** $(x-1)^2 + (y+2)^2 = 4$
- **9.** For an arithmetic sequence, the sum to *n* terms is given as $S_n = 3n 2n^2$. The 10*th* term is ?
 - **(A)** -30
 - **(B)** −25
 - **(C)** −40
 - **(D)** −35
- **10.** A population of sea monkeys is observed to fluctuate according to the equation $\frac{dP}{dt} = 40 \sin(0.1t)$, where *P* is the sea monkey population and *t* is the time in days. During which day does the population first start to decrease?
 - (A) Day 15
 - **(B)** Day 16
 - (C) Day 31
 - **(D)** Day 32

End of Section I

Section II 90 marks Attempt Questions 11–16 Allow about 2 hours and 40 minutes for this section Begin each question on a NEW SHEET of paper.

In questions 11 – 16 your responses should include relevant mathematical reasoning and/or calculations.

Question 11 – Use a NEW SHEET of paper. a. Rationalise the denominator $\frac{1-\sqrt{3}}{5-\sqrt{3}}$	(15 marks) 2
b. Factorise $2x^2 - 17x + 30$	2
c. Differentiate $y = 4x^3 - \sqrt{x}$	2
d. Find $\int \left(x^3 - \frac{2}{x}\right) dx$	2
e. Find $\int_0^{\pi} \sin 2t dt$	2
f. Solve $ 2x + 1 > 6$	3
g. Find the value of θ , correct to the nearest degrees.	2

End of Question 11

Question 12 – Use a NEW SHEET of paper.

- **a.** Find the equation of the tangent to the curve $y = x^2 + 4x 7$ at the point (1, -2). **2**
- **b.** What is the exact volume of the solid of revolution formed by rotating the curve $y = \sec x$ about the *x*-axis, for $0 \le x \le \frac{\pi}{3}$?

c. (i) Evaluate
$$\int_0^1 \sin \pi x \, dx$$
, leaving your answer in exact form. **2**

(ii) Copy and complete, using exact values, the table below for the function $y = \sin \pi x$.

x	0	0.25	0.5	0.75	1
у					

Using Simpson's Rule with five function values, give an estimate for the area under the curve in part (i).

(iii) Using part (i) and (ii) give an estimate for π correct to two decimal places.

Question 12 continues on next page

3

2

2

(15 marks)

- **d.** A standard pack of 52 cards consists of four suits (Diamonds, Hearts, Clubs and Spades) with 13 cards in each suit.
 - (i) One card is drawn from the pack and kept on the table. A second card is drawn and placed beside it on the table.
 What is the probability that the second card is from a different suit to the first? 2
 - (ii) The two cards are replaced and the pack is shuffled. Four cards are chosen from the pack and placed side by side on the table without replacement.What is the probability that these four cards are all from different suits?

End of Question 12

Question 13 – Use a NEW SHEET of paper.

a. Evaluate
$$\lim_{x \to -4} \frac{x^2 + 4x}{x + 4}$$

b. Given the function, $f(x) = x^4 - 2x^3$

(i)	Find the coordinates of the points where the curve crosses the axes.	2
(ii)	Find the coordinates of the stationary points and determine their nature.	2
(iii)	Find the coordinates of the points of inflexion.	2
(iv)	Sketch the graph of $y = f(x)$, clearly indicating the intercepts, stationary	2
	points and points of inflexion.	

c. Points A(-3, 1) and B(1, 3) are on a number plane.

(i)	Find the gradient of line OA.	1
(ii)	Show that OA is perpendicular to OB.	1
(iii)	OACB is a quadrilateral in which BC is parallel to OA. Show that the equation of BC is $x + 3y - 10 = 0$.	2
(iv)	The point C lies on the line $x = -2$.	

(IV) Ρ What are the coordinates of point C?

End of Question 13

(15 marks)

(i)

(ii)

Question 14 – Use a NEW SHEET of paper.

- **a.** Sketch the curve $y = 2 \sin 2\left(x + \frac{\pi}{2}\right)$ in the domain $-\pi \le x \le \pi$. 3
- **b.** The velocity of a particle is given by $\frac{dx}{dt} = \frac{t}{t^2 + 1}$ m/s.

If the particle is initially at the origin, find the displacement after 4 seconds. Give your answer correct to 3 significant figures.

c. (i) Differentiate
$$y = \sqrt{4 - x^2}$$
 with respect to *x*.

(ii) Hence, or otherwise, find
$$\int \frac{3x}{\sqrt{4-x^2}} dx$$
.

d. The diagram below shows the ΔPQR .

Find the length of *SQ*.

ST is parallel to QR.PT = 6, TR = 4 and PQ = 12.

Prove that $\triangle PST$ is similar to $\triangle PQR$.

- 10 -

3

2

3

2

(15 marks)

(ii)

Question 15 – Use a NEW SHEET of paper.

- **a.** Solve for *x* the equation $4^x 10 \times 2^x + 16 = 0$.
- **b.** The roots of the quadratic equation $(m + 2)x^2 + (m 2)x 2 = 0$ are equal in magnitude but are opposite in sign.
 - 2 (i) Find the value of *m*.
 - Find the value of the roots. (ii)
- **c.** Find all values of θ in the domain $0 \le \theta \le 360^\circ$ for which $\sec \theta 2\cos \theta = 0$.
- d. Jill wishes to have \$900000 in her fund when she retires in 10 years time. At present she has \$400000 in her fund. For the next 10 years she decides to put \$M into her fund at the beginning of each month. The contributions attract an interest rate of 6% per annum, compounding monthly.

At the end of *n* months after starting the contributions, the amount in the fund is A_n .

Show that $A_2 = 400000 \times (1.005)^2 + (1.005 + 1.005^2)M$.

- Show that $A_1 = 400000 \times 1.005 + 1.005M$. (i) 1
- Find the value of *M* so that Jill will have \$900000 in the fund after 10 years. (iii) 3

End of Question 15

2

2

3

Question 16 – Use a NEW SHEET of paper.

- **a.** The number of bacteria *N* in a colony, where *t* is in minutes, is given by $N = 1000e^{0.005t}$. Find:
 - (i) The number of bacteria when t = 20.
 - (ii) The rate at which the colony is increasing when t = 20.
- **b.** The material for the square base of a rectangular box with an open top costs 27 cents per square cm and for the other faces costs 13.5 cents per square centimetre.

- (i)Show that the total cost of materials, *C*, for the box can be written as
 $C = 27x^2 + 54xh.$ 1(ii)If the cost of making each box is \$65.61, find an expression for *h* in

 terms of *x*.1(iii)Show that the formula for the volume of the box can be expressed as
 $V = \frac{1}{2}(243x x^3).$ 2(iv)Find the maximum volume of a box that can be produced for \$65.61.3
- **c.** The displacement *x* cm of a particle from the origin after *t* seconds is given by $x = 2t \ln t$.
 - (i) Determine the position and acceleration of the particle when it comes to rest. **3**
 - (ii) What is the limiting velocity and limiting acceleration that the particle approaches as *t* increases.

End of paper

(15 marks)

1

2

$$\begin{array}{c} \rho q g e 2 \\ 3^{x} = 2 \\ Log_{3} 2 = x \\ x = \frac{Log_{e} 2}{Log_{e} 3} \\ qg \\ (x - (-1))^{2} + (y - 2)^{2} = 4^{2} \\ (x + 1)^{2} + (y - 2)^{2} = 16 \\ \end{array}$$

$$\begin{array}{c} Qg \\ S_{n} = 3n - 2n^{2} \\ L = 10 \\ T_{n} = S_{n} - S_{n-1} \\ = (3xi0 - 2xi0^{2}) - (3x 9 - 2x9^{2}) \\ = -35 \\ \end{array}$$

$$\begin{array}{c} Qio \\ dp \\ dp \\ = 0 \\ dk \\ 40Sin(0, 1+) = 0 \\ Sin(0, 1+) = 0 \\ Sin(0, 1+) = 0 \\ 0.1t = \pi \\ t = 31.415 \\ days \\ \vdots \\ Day \\ 3.2 \\ \end{array}$$

$$\begin{array}{c} \rho age 3\\ \varphi(1) & \varphi(1-\sqrt{3}) = \frac{1-\sqrt{3}}{5-\sqrt{3}} \times \frac{5+\sqrt{3}}{5+\sqrt{3}} \int_{0}^{1} 1 \text{ mark} \\ & = \frac{5+\sqrt{3}-\sqrt{3}}{5^{2}-(\sqrt{3})^{2}} \int_{0}^{1} 1 \text{ mark} \\ & = \frac{5+\sqrt{3}-\sqrt{3}}{5^{2}-(\sqrt{3})^{2}} \int_{0}^{1} 1 \text{ mark} \\ & = \frac{2-4\sqrt{3}}{22} = \frac{1-2\sqrt{3}}{11} \text{ mark} \\ & \varphi(1) = 2\chi^{2} - 17\chi + 30 \\ & = (2\chi - 5\chi \chi - 6) \\ & \varphi(2\chi - 6\chi - 6) \\ & \varphi(2\chi - 6) \\ & \varphi(2\chi - 6) \\ & \varphi$$

.

$$page 4$$

$$q1 \quad f. \quad 12x+11>6$$

$$2x+1>6 \quad or \quad -(2x+1)>6$$

$$2x>5 \quad 2x+1<-6$$

$$x>5 \quad 2x<-7 \quad x<-31$$

$$x>2\frac{1}{2} \quad x<-\frac{7}{2} \quad x<-\frac{31}{2}$$

$$x<-\frac{31}{2} \quad or \quad x>2\frac{1}{2}$$

$$x<-\frac{31}{2} \quad x<-\frac{31}{2}$$

$$y<-\frac{31}{2} \quad$$

QI

Q12
Q12
Q)
$$y = x^{2} + 4x - 7$$

 $y^{3} = 2x + 4$
 $y = 2x + 4x - 7$
 $y = 2x$

$$V_{AAS} = \begin{array}{c} page 6 \\ page 6 \\ iii) \\ Simp Son's rule; \\ use the reference sheet \\ \int_{a}^{b} facous x = \frac{b-a}{6} \left[f(as) + 4f(\frac{a+b}{2}) + f(b) \right] \\ apply the rule twile \\ a=0 \quad b=a5 \quad \frac{a+b}{2} = a25 \\ f(a) = 0 \quad f(a25) = \frac{1}{12} \quad f(a5) = 1 \\ \int_{a}^{a5} \sin xx \propto \frac{a5-o}{6} \left[0 + 4x + 1 \right] \\ antis^{2} \\ iula \\ S_{p} \sin xx \propto \frac{a5-o}{6} \left[0 + 4x + 1 \right] \\ \frac{1}{12} \left[\frac{d}{12} + 1 \right] \quad antis^{2} \\ \frac{a}{5} = \frac{1}{12} \left[\frac{d}{12} + 1 \right] \quad antis^{2} \\ \frac{a}{5} = \frac{1}{12} \left[\frac{d}{12} + 1 \right] \quad f(b) = 0 \\ \int_{a5}^{1} \sin xx \propto \frac{a-1-o5}{6} \left[1 + 4x + 1 \right] \\ \int_{a5}^{0} \sin xx \propto \frac{1-o5}{6} \left[1 + 4x + 1 \right] \\ \frac{1}{12} \left[1 + \frac{4}{5} \right] \\ \approx 2638 \quad units^{2} \\ OR \quad = \frac{1}{12} \left[\frac{4}{12} + 1 \right] + \frac{1}{12} \left[1 + \frac{4}{5} \right] \\ \approx 2638 \quad units^{2} \\ OR \quad = \frac{1}{42} \frac{1}{12} + \frac{1}{12} + \frac{1}{12} \\ \frac{1}{12} \frac{1}{12} \\ \frac{1}{6} \\ \frac{1}{12} \\ \frac{1}$$

$$Page 7$$

$$R12 \quad (A) \quad (i) \quad P(2 \text{ cords of }) = 1 \times \frac{39}{51} \quad (mark)$$

$$= \frac{13}{17} \quad (mark)$$

$$(ii) \quad P(4 \text{ different suite}) = 1 \times \frac{39}{50} \times \frac{26}{49} \times \frac{13}{49} \quad (mark)$$

$$= \frac{2197}{20825} \quad (mark)$$

RB
$$iii)$$
 at the point of inflection
 $f^{U}(x) = 12x (x-1)$
 $previously, we already found (0,0)$
is a point of inflection. I mark
 $x-1 = 0$
 $x = 1$ $f(1) = 14 - 2x| = -1$
 $test \frac{x(1-0.5)}{p^{U}(x)} = 0 + 1$ mark
since there is a change of concard,
 $(1, -1)$ is also a point of inflection
 $iv)$
 y
 $f(x) = x^4 - 2x^3$
 $(1, -1)$ $(\frac{3}{2}, \frac{-27}{16})$
 u

$$\begin{array}{c} page 10\\ Q13 \quad C \quad i) \quad m \quad of \quad OA = \underbrace{4s-41}_{X_{k}-X_{1}} \quad O(0,0)\\ \xrightarrow{X_{k}-X_{1}} \quad A(13,0)\\ = \underbrace{1-0}_{-3-0}\\ = \underbrace{-1}_{3} \quad 1 \quad mark \end{array}$$

$$\begin{array}{c} ii) \quad m \quad of \quad OB = \underbrace{3-0}_{1-0} = 3\\ m_{oA} \times m_{oB} = \underbrace{-1}_{1-X} \times 3 = -1 \quad 1 \quad mark \end{aligned}$$

$$\begin{array}{c} since \quad the product of their gradients io\\ -1, \quad there fore \quad OA is perpendicular to OB. \end{aligned}$$

$$\begin{array}{c} iii) \quad A \quad bega = \underbrace{-1}_{X} \times 3 = -1 \quad 1 \quad mark \end{aligned}$$

$$\begin{array}{c} since \quad the product of their gradients is \\ -1, \quad there fore \quad OA is perpendicular to OB. \end{aligned}$$

$$\begin{array}{c} iii) \quad A \quad bega = \underbrace{-1}_{X} \times 3 = -1 \quad 1 \quad mark \end{aligned}$$

$$\begin{array}{c} since \quad B \quad gradients is \\ -1, \quad there fore \quad OA is perpendicular to OB. \end{aligned}$$

$$\begin{array}{c} iii) \quad A \quad bega = \underbrace{-1}_{X} \times 3 = -1 \quad 1 \quad mark \\ gradient \quad y - y_{B} = m_{OC}(x - x_{B}) \\ y - 3 = -\frac{1}_{X} (x - 1) \\ y - 3 = -\frac{1}_{X} (x - 1) \\ y - 3 = -\frac{1}_{X} (x - 1) \\ y - 3 = -\frac{1}_{X} (x - 1) \\ y - 3 = -\frac{1}_{X} \times \frac{1}_{Y} \\ y - 3 = -\frac{1}_{X} (x - 1) \\ y - 3 = -\frac{1}_{X} ($$

•

$$B(14) = \frac{page 11}{2}$$

$$B(14) = \frac{1}{2} = \frac{$$

$$PQGE 12$$

$$R14$$
() i) $y = \sqrt{4-x^2}$

$$I = (4-x^2)^{\frac{1}{2}}$$
(i) $y = \sqrt{4-x^2}$
(i) $y' = \frac{1}{2}(-2x)(4-x^2)^{-\frac{1}{2}}$
(i) $y' = \frac{-x}{\sqrt{4-x^2}}$
(ii) $\int \frac{3x}{\sqrt{4-x^2}} dx = \frac{-3}{\sqrt{4-x^2}} \int \frac{-x}{\sqrt{4-x^2}} dx$
(iii) $\int \frac{3x}{\sqrt{4-x^2}} dx = \frac{-3}{\sqrt{4-x^2}} dx$
(iii) $\int \frac{3x}{\sqrt{4-x^2}} dx = \frac{-3}{\sqrt{4-x^2}} dx$
(iii) $\int \frac{3x}{\sqrt{4-x^2}} dx = \frac{-3}{\sqrt{4-x^2}} dx$
(iv) $\int \frac{3x}{\sqrt{4-x^2}} dx$
(iv) $\int \frac{3x}$

$$\begin{array}{c} \rho age 13 \\ \rho age 13 \\ \rho age 14 \\ \rho ag$$

$$\begin{array}{l} \rho \alpha ge \ 15 \\ \rho \alpha ge \ 15 \\ \rho \alpha f = 1000 e^{\alpha \rho \sigma s t} \\ \alpha f = 20 \\ N = 1000 e^{\alpha \rho \sigma s t} \\ N = 1105.17 \\ N = 1105.2 \\ 1 mark \\ = 5e^{\alpha \rho \sigma s t} \\ \alpha f = 2000 \\ \alpha f =$$

'n

•