

Hunters Hill High School Year 12 Mathematics Advanced

 Trial Examination, 2020| General | - Reading time -10 minutes |
| :--- | :--- |
| Instructions | - Working time -3 hours |
| | - Write using black pen |
| | - Calculators approved by NESA may be used |
| | - A reference sheet is provided at the back of this paper |
| | - For questions in Section II, show relevant mathematical |
| | reasoning and / or calculations |

Section I

10 marks

Attempt Questions 1-10
Allow about $\mathbf{1 5}$ minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 If $f(x)=5 x^{3}+3$, what is the value of $f^{\prime}(-1)$?
A. -2
B. 18
C. 15
D. -12

2 The graph shows a scatter plot for a set of data.

Which of the following values is the most appropriate Pearson's correlation coefficient of this set of data?
A. -1
B. 0.35
C. -0.35
D. -0.63

3 What is the amplitude, period and phase of $f(x)=-2 \cos (5 x-\pi)$?
A. Amplitude is -2 , period is $\frac{2 \pi}{5}$, and phase shift is $\frac{\pi}{5}$ to the left
B. Amplitude is 2, period is 5 , and phase shift is π to the left
C. Amplitude is 2 , period is $\frac{2 \pi}{5}$, and phase shift is $\frac{\pi}{5}$ to the right
D. Amplitude is 2 , period is 5 , and phase shift is $\frac{\pi}{5}$ to the right

4 A and B are events from a sample space such that $P(A)=p$, where $p>0$, $P(B \mid A)=m$ and $P\left(B \mid A^{\prime}\right)=n$. A and B are independent events when
A. $m=n$
B. $m=1-p$
C. $m+n=1$
D. $m=p$

5 Given $f(x)=\ln (2 x-1)$ and $g(x)=x+2$, the domain of $f(g(x))$ is
A. $x \in\left[-\frac{3}{2}, \infty\right)$
B. $x \in\left[\frac{1}{2}, \infty\right)$
C. $x \in\left(-\frac{3}{2}, \infty\right)$
D. $x \in(-2,0)$

6 Which of the following graphs could NOT represent a probability density function (x) ?
A.

B.

C.

D.

7 The length of a type of ant is approximately normally distributed with a mean of 5.1 mm and a standard deviation of 1.2 mm . A standardised ant length of $z=-0.5$ corresponds to an actual ant length of
A. 13 mm
B. 1 mm
C. 4.5 mm
D. 2.55 mm

8 A particle is moving along the x-axis. The displacement of the particle at time t seconds is x metres. At a certain time $\frac{d^{2} x}{d t^{2}}=-2 \mathrm{~ms}^{-2}$ and $\frac{d x}{d t}=1 \mathrm{~ms}^{-1}$.

Which statement describes the motion of the particle at that time?
A. The particle is moving to the right with increasing speed.
B. The particle is moving to the left with increasing speed.
C. The particle is moving to the right with decreasing speed.
D. The particle is moving to the left with decreasing speed.
$9 \quad \begin{aligned} & \text { A trigonometric function } f(x) \text { satisfies the condition } \int_{0}^{\frac{\pi}{2}} f(x) d x \neq \int_{\frac{\pi}{2}}^{\pi} f(x) d x \\ & \text { Which function could be } f(x) \text { ? }\end{aligned}$
A. $f(x)=\sin x$
B. $f(x)=\cos (2 x)$
C. $f(x)=\sin (2 x)$
D. $f(x)=\cos (4 x)$

10 Which of the following would give the correct value for the area of the triangle?

A. $\frac{1}{2} \times 1.6 \times 2.4 \times \sin 50^{\circ}$
B. $\frac{1}{2} \times 2.4 \times 2.5 \times \sin 50^{\circ}$
C. $\frac{1}{2} \times 1.6 \times 2.4 \times 50^{\circ}$
D. $\frac{1}{2} \times 2.4 \times 2.5 \times 50^{\circ}$

Question 11 (2 marks)

Evaluate $\sum_{n=1}^{\infty} 2\left(\frac{1}{5}\right)^{n}$
\qquad
\qquad
\qquad
\qquad
\qquad

Question 12 (3 marks)

Find the equation of the normal to the curve $f(x)=\ln (x-1)+2$ at the point $(2,0)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 13 (2 marks)

Describe the transformations applied to $y=x^{2}$ in order to give the transformed function of $y=(4 x+2)^{2}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 14 (3 marks)

A sample of 14 people were asked to indicate the time (in hours) they had spent watching television on the previous night. The results are displayed in the dot plot below:

Find the mean and sample standard deviation of these times. Give your answers correct to one decimal place.
\qquad

Question 15 (2 marks)
Differentiate $e^{x^{2} \cos x}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 16 (2 marks)

The diagram shows the graph of $f(x)$.

Sketch $f^{\prime}(x)$ below, showing all critical features.
\square

Question 17 (2 marks)

If $\cos \alpha=-\frac{4}{5}$ and $\sin \alpha<0$, find the exact value of $\tan \alpha$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 18 (5 marks)

The velocity of a particle moving along the x-axis at v metres per second at t seconds, is shown in the graph below:

Initially, the displacement x is equal to 13 metres.
(a) Write an equation that describes the displacement, x, at time t seconds.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Draw a graph that shows the displacement of the particle, x metres from the origin, at a time t seconds between $t=0$ and $t=6$. Label the coordinates of the endpoints of your graph.

Question 19 (3 marks)

A bag contains 9 blue lollies and 7 green lollies.
Georgia takes out a lolly from the bag without looking and eats it. She then takes out another lolly without looking and eats it.
(a) What is the probability of Georgia choosing a blue lolly in her first selection?
\qquad
\qquad
(b) By drawing a tree diagram, or otherwise, find the probability that Georgia eats two lollies of different colours.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 20 (2 marks)

If $y=x e^{2 x}$, prove that $\frac{d y}{d x}-2 y=e^{2 x}$
\qquad
\qquad
\qquad
\qquad
\qquad

Question 21 (5 marks)

A continuous random variable X has a function f given by

$$
f(x)= \begin{cases}2 x^{3}-x+a, & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the value of a which makes $f(x)$ a valid probability density function
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Find the expected value and variance of X.
\qquad

Question 22 (4 marks)

In an arithmetic sequence, the fifth term is 25 and the eighteenth term 181. What is the smallest value of n such that the sum of the first n term in the sequence is at least 27365?
\qquad

Question 23 (3 marks)
Let $f(x)=\sqrt{x+1}$ for $x \geq 0$
(a) State the domain of $f(x)$
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Let $g(x)=x^{2}+4 x+3$, where $\boldsymbol{x} \leq \boldsymbol{c}$ and $\boldsymbol{c} \leq \mathbf{0}$. Find the largest possible value of c such that the range of $g(x)$ is a subset of the domain of $f(x)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 24 (10 marks)

Consider the curve $y=\sin x+\cos x$ in the domain $-\pi \leq x \leq \pi$.
(a) Find x-intercepts, express your answer in terms of π.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Find any stationary points, and determine their nature.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Question 24 continues on page 15
(c) Find any points of inflection.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Explain why the points found in (c) are not points of horizontal inflection.
\qquad
\qquad
\qquad
(e) Hence, sketch the graph of $y=\sin x+\cos x$, for $-\pi \leq x \leq \pi$, showing all critical features of the graph.
\qquad

Question 25 (2 marks)

Prove that $\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}=2 \sec ^{2} \theta$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Question 26 (3 marks)
A field (shaded) is bordered on one side by a 120 metre of road and on the other side by a river. Measurements are taken from the road to the river, as shown.

(a) Find the value of x.
\qquad
\qquad
(b) Use the trapezoidal rule to find an approximation to the area of the field.

Correct your answer to the nearest square metre.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 27 (3 marks)

The table below shos Bob's scores in PDHPE and Biology examinations, as well as the mean and the standard deviation for each subject.

	PDHPE	Biology
μ	65	80
σ	4	3
Score	74	84

Explain which is his strongest subject, show mathematical working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 28 (5 marks)

A class is on a hike as part of their sports course. They are given the following directions from starting point A : They are to walk on a bearing of 062° for 14 kilometres to point B. Then, they continue on a bearing of 136° for 8.5 kilometres to point C, before returning to starting point A.

(a) Show that $\angle A B C=106^{\circ}$.
\qquad
\qquad
\qquad
(b) Calculate $A C$, the distance that the class needs to travel on the final leg of their hike. Give your answer correct to the nearest kilometre.
\qquad
\qquad
\qquad
\qquad
(c) Find the bearing that the class needs to take from point C to return to starting point A, correct to the nearest degree.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 29 (3 marks)
By drawing graphs on the number plane, show how many solution exist for the equation $\cos x=\left|\frac{x-\pi}{4}\right|$ in the domain $(-\infty, \infty)$.

\qquad
\qquad
\qquad
\qquad
\qquad

Question 30 (6 marks)

The scatterplot shows the relationship between expenditure per primary school student, as a percentage of a country's Gross Domestic Product (GDP), and the life expectancy in years for 15 countries.

(a) For the data representing expenditure per primary school student, the lower quartile, Q_{L} is 8.4 and upper quartile, Q_{U} is 22.5 . What is the interquartile range?
\qquad
\qquad
(b) Another country has an expenditure per primary school student of 47.6% of its GDP. Would this country be an outlier for this set of data? Justify your answer with calculations.
\qquad
\qquad
\qquad
\qquad
(c) On the scatterplot, draw the least-squares line of best fit, $y=1.29 x+49.9$
\qquad
\qquad
Question 30 continues on page 20
(d) Using this line, or otherwise, estimate the life expectancy in a country which has an expenditure per primary school student of 18% of its GDP.
\qquad
\qquad
\qquad
(e) Why is this line NOT useful for predicting life expectancy in a country which has expenditure per primary school student of 60% of its GDP?
\qquad
\qquad
\qquad
\qquad
\qquad

Question 31 (8 marks)
Let $f(x)=2 e^{-\frac{x}{5}}$ for $x \geq 0$. A right-angled triangle $O Q P$ has vertex O at the origin, vertex Q on the x-axis and vertex P on the graph of $f(x)$, as shown. The coordinates of P are $(x, f(x))$.

(a) Find the area, A, of the triangle $O P Q$ in terms of x.
\qquad
\qquad
\qquad
(b) Find the maximum area of triangle $O Q P$ and the value of x for which the maximum occurs.
\qquad
(c) Let S be the point on the graph of $f(x)$ on the y-axis and let T be the point on the graph of $f(x)$ with the y-coordinate $\frac{1}{2}$. Find the area of the region bounded by the graph of $f(x)$ and the line segment $S T$.

\qquad

Question 32 (5 marks)

The population of a white-ant colony can be modelled using the equation $P=A e^{k t}$, where A and k are positive constants and t is time in weeks. Initially, the population is 1000 . Two weeks later, the population has increased to become 1500.
(a) Find the value of A and k. Express your answer in exact form.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Find the population after four week, correct to the nearest possible number of white-ants.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Question 32 continues on page 23
(c) White-ants can cause significant structural timber damages. Assume this particular ant colony was found near a timbre structured home, using the model above to explain why the situation is getting worse. Show all mathematical calculations.
\qquad

Question 33 (6 marks)
The weight, in grams, of beans in a tin is normally distributed with mean μ and standard deviation 7.8. It is known that 10.03% of tins contain less than 200 g .

Table 1: Probability table for calculating the standard normal distribution. The values represent the area to the left of (or less than) the z -score.

\boldsymbol{z}	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 6}$	$\mathbf{0 . 0 7}$	$\mathbf{0 . 0 8}$	$\mathbf{0 . 0 9}$
$\mathbf{- 1 . 4}$	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
$\mathbf{- 1 . 3}$	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
$\mathbf{- 1 . 2}$	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
$\mathbf{- 1 . 1}$	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
$\mathbf{- 1 . 0}$	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
$\mathbf{- 0 . 9}$	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
$\mathbf{1 . 7}$	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
$\mathbf{1 . 8}$	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
$\mathbf{1 . 9}$	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
$\mathbf{2 . 0}$	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
$\mathbf{2 . 1}$	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
$\mathbf{2 . 2}$	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
$\mathbf{2 . 3}$	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
$\mathbf{2 . 4}$	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
$\mathbf{2 . 5}$	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952

Question 33 continues on page 23
(a) Use the Probability Table above to find the value of mean value, μ. Correct your answer to 2 decimal places.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The machine settings are adjusted so that the weight, in grams, of beans in a tin is normally distributed with mean 205 and standard deviation σ.
(i) Given that 98% of tins contain between 200 g and 210 g , draw a normal distribution graph to illustrate this information.
\square
(ii) Use the Probability Table above to find the value of the standard deviation, σ that can be achieved with the new setting. Correct your answer to 2 decimal places.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

End of paper

Section 1
Q1.

$$
\begin{align*}
f^{\prime}(-1) & =15 x^{2} \\
& =15(-1)^{2} \\
& =15 \tag{C}
\end{align*}
$$

Q2. (D) -0.63
Q3.

$$
\begin{aligned}
& A=2 \quad f(x)=-2 \cos 5\left(x-\frac{\pi}{5}\right) \\
& P=\frac{2 \pi}{5}
\end{aligned}
$$

$$
\begin{equation*}
\text { shift }=\frac{5}{5} \text { to the rght } \tag{c}
\end{equation*}
$$

Q4.

$$
\begin{align*}
& P(B / A)=P(B)=P\left(B / A^{\prime}\right) \\
& \therefore m=n \quad(A) \tag{A}
\end{align*}
$$

Q5. fix: $\ln (2 x-1) \quad f(x)=x+2$

$$
\begin{aligned}
f(g(x)) & =\ln (2(x+2))-1) \\
& =\ln 2 x+3)
\end{aligned}
$$

$$
\begin{equation*}
2 x+3>0 \tag{A}
\end{equation*}
$$

$$
\begin{aligned}
2 x & >-3 \\
x & >=-3
\end{aligned}
$$

$x>\frac{-3}{2}$

Q6. (1) no tre polf.

Q7.

$$
\begin{align*}
Z & =\frac{x-\bar{x}}{\sigma} \\
-0.5 & =\frac{x-5.1}{1.2} \tag{c}\\
x & =4.5
\end{align*}
$$

Q8 $\frac{d^{2} x}{d t^{2}}=-2, \frac{d x}{d t}=1$

Q9

(C)

Q10.

$$
\begin{align*}
A & =\frac{1}{2} a b \sin \theta \tag{B}\\
& =\frac{1}{2} \times 2.4 \times 2.5 \times \sin 50^{\circ}
\end{align*}
$$

Section I
GI.

$$
\begin{align*}
& \sum_{n=1}^{\infty}\left(2\left(\frac{1}{5}\right)^{n}\right. \\
= & 2 \times\left(\frac{1}{5}+\frac{1^{2}}{5}+\frac{1}{5}+\cdots\right) \\
= & 2 \times S_{\infty} \quad \text { Where } \quad r=\frac{1}{5} \\
= & 2 \times \frac{a}{1-r} \quad a=\frac{5}{5} \\
= & 2 \times \frac{\frac{1}{5}}{1-\frac{1}{5}} \quad \frac{1}{5} \times \frac{35}{4} \\
= & \frac{1}{2} \quad \text { (1) } \tag{2}
\end{align*}
$$

QL

$$
\begin{aligned}
& f(x)=\log _{3}(x-1)+2 \text { at }(2,0) \\
& f^{\prime}(x)=\frac{1}{x-1}
\end{aligned}
$$

at $x=2$

$$
\begin{gather*}
f(2)=\frac{1}{2-1}=1=m \\
m_{2}=\frac{-1}{1}=-1 \\
y-0=-1(x-2) \tag{3}\\
y=-x+2
\end{gather*}
$$

Q, 3

$$
\begin{array}{ccl}
y=x^{2} & \text { OR } y=(2(2 x+1))^{2} \\
y=(4 x+2)^{2} & y=4(2 x+1)^{2} \\
y=\left(\frac{x+\frac{1}{2}}{\frac{1}{4}}\right)^{2} & \frac{y}{4}=\left(\frac{x+\frac{1}{2}}{\frac{1}{2}}\right)^{2}
\end{array}
$$

dilate horizontally by a faction of $\frac{1}{4}$, translate to the left by $\frac{1}{2}$, (1) OR $y=\left(\frac{x}{4}+2\right)^{2}$ translate to left by Q14. total point 14 . 2 , then dilate by $\frac{1}{4}$.

x	0	1	2	3	4	5
f	3	2	4	2	2	1
p	$\frac{3}{14}$	$\frac{2}{14}$	$\frac{4}{14}$	$\frac{2}{14}$	$\frac{2}{14}$	$\frac{1}{14}$

$$
\begin{align*}
& \bar{x}=E(X)= \sum \zeta x \tag{1}\\
&= 0 \times \frac{3}{14}+1 \times \frac{2}{14}+2 \times \frac{4}{14}+3 \times \frac{2}{14} \\
&+4 \times \frac{2}{14}+5 \times \frac{1}{14} \tag{1}\\
&= 2 \frac{3}{14} \simeq 2.1 \\
& \sigma=\sqrt{\operatorname{var}(x)}=\sqrt{E\left(x^{2}\right)-\mu^{2}}=\sqrt{\left(0+\frac{2}{14}+4 \times \frac{4}{14}+4 \times \frac{2}{14}\right.} \\
&\left.+16 \times \frac{2}{14}+25 \times \frac{1}{14}\right)-2.1^{2} \\
&= 1.5
\end{align*}
$$

Q15
let $y=e^{f(x)}$ and $f(x)=x^{2} \cos x$

$$
\begin{align*}
f^{\prime}(x) & =2 x \cos x-x^{2} \sin x \tag{1}\\
\therefore \frac{d y}{d x} & =f^{\prime}(x) e^{f(x)} \\
& =\left(2 x \cos x-x^{2} \sin x\right) e^{x^{2} \cos x}
\end{align*}
$$

Q16.

Q17

$$
\cos \alpha=\frac{-4}{5} \quad \sin \alpha<0
$$

s	A
$\sqrt{\pi}$	C

the aggle α is the 3nd quadrant.
(1) -4

$$
\begin{aligned}
\tan \alpha & =\frac{-3}{-4} \\
\tan \alpha & =\frac{3}{4} \text { (1) }
\end{aligned}
$$

Q18. at $t=0, v=3, x=13$

$$
t=5, \quad v=0
$$

a)

$$
\begin{gather*}
v-0=-\frac{3}{5}(t-5) \\
v=-\frac{3}{5} t+3 \tag{1}\\
x=\int\left(\frac{-3}{5} t+3\right) d t=-\frac{3}{10} t^{2}+3 t+c
\end{gather*}
$$

at $t=0, x=13$

$$
\begin{align*}
& \therefore x=13=0+0+c \Rightarrow C=13 \tag{1}\\
& \therefore x=\frac{-3}{10} t^{2}+3 t+13 \text { (1) } \tag{1}
\end{align*}
$$

b)

at $t=6, x=20.2$,
need to chech for reak, if not shown I mark
Q/9.
a) $B: 9 \quad G: 7$
total $=16$

$$
\begin{equation*}
P(B)=\frac{9}{16} \tag{1}
\end{equation*}
$$

b)

$$
\begin{align*}
P(B G \text { or } G B) & =\frac{9}{16} \times \frac{7}{15}+\frac{7}{16} \times \frac{9}{15} \\
& =\frac{21}{40} \tag{3}
\end{align*}
$$

Q20

$$
\text { 20. } \begin{align*}
y & =x e^{2 x} \frac{d y}{d x}-2 y=e^{2 x} \\
\frac{d y}{a x} & =e^{2 x}+2 x e^{2 x} \tag{2}\\
\text { LHS: } & e^{2 x}+2 x e^{2 x} \tag{12}\\
& =e^{2 x}=\text { RHS }
\end{align*}
$$

Q21
a) $F(x)=\int_{0}^{1} 2 x^{3}-x+a=1$ if $p d f$.

Since $F(x)=0$ for all other x salues

$$
\begin{gathered}
{\left[\frac{x^{4}}{2}-\frac{1}{2} x^{2}+a x\right]_{0}^{0}=1} \\
\frac{1}{2}-\frac{1}{2}+a=1 \\
a=1
\end{gathered}
$$

b)

$$
\begin{align*}
E(X)=\mu & =\int_{0}^{1} x f(x) d x \\
& =\int_{0}^{1} x\left(2 x^{3}-x+1\right) d x \\
& =\int_{0}^{1} 2 x^{4}-x^{2}+x d x \tag{1}\\
& =\left[\frac{2}{5} x^{5}-\frac{1}{3} x^{3}+\frac{1}{2} x^{2}\right]_{0}^{1} \\
& =\frac{17}{30} \tag{3}
\end{align*}
$$

$$
\begin{aligned}
\operatorname{Var}(X)=\sigma^{2} & =\int_{0}^{1} x^{2} f(x) d x-\mu^{2} \\
& =\int_{0}^{1}\left(2 x^{5}-x^{3}+x^{2}\right) d x-\left(\frac{11}{30}\right)^{2} \\
& =\left[\frac{1}{3} x^{6}-\frac{1}{4} x^{4}+\frac{1}{3} x^{3}\right]_{0}^{1}-\left(\frac{17}{30}\right)^{2} \\
& =\frac{43}{400}
\end{aligned}
$$

Q22 $\quad T_{5}=25, \quad T_{18}=181$

$$
\begin{align*}
& S_{\infty}>27365 \\
& 7_{n}=a+(n-1) d \\
& 25=a+(5-1) d \\
& 25=a+4 d-1
\end{align*}
$$

some logic

$$
181=a+(18-1) d
$$

$$
\begin{equation*}
181=a+17 d \tag{2}
\end{equation*}
$$

en (2) - (1)

$$
\begin{aligned}
156 & =13 d \\
d & =12
\end{aligned}
$$

sub d into (1)

$$
\begin{aligned}
& 25=a+4 \times 12 \\
& a=-23 \\
& S_{n}=\frac{n(2 a+(n-1) d)}{2} \\
& S_{n}=\frac{n}{2}(12 n-58) \\
&=6 n^{2}-2 n>27365 \\
& 6 n^{2}-2 n-27365>0 \\
& n=29 \pm \sqrt{29^{2}-4 \times 6 \times(-27365)} \\
& n>69-99 \therefore \quad \therefore=70 .(1)
\end{aligned}
$$

Q23
a) $f(x)=\sqrt{x+1}$ for $x \geq 0$

$$
\begin{align*}
& x+1 \geq 0 \\
& x \geq-1 \text { but } \\
& x \text { is also } \geq 0 \tag{1}\\
\therefore & x \geq 0, x \in(0, \infty)
\end{align*}
$$

b) $g(x)=x^{2}+4 x+3 \quad x \leq c \& c \leq 0$
$g(x) \in$ domain of $f(x)$
$g(x)=(x+3)(x+1)$ from (a)

$f(x)$ has a donas of $x \in[0, \infty)$ if $x \in[-1, \infty)$ used, need to show
this also means $0 \leq g(x)<\infty \quad \begin{gathered}x \in(-\infty, \infty) \\ \text { for part } 2 \text {. }\end{gathered}$
$\therefore x \geq-1$ or $x \leq-3$ (1) to get a
but also $x \leqslant 0$ mark.
$\therefore x \leqslant c$ and $c=-3$ (1)

Q24. $y=\sin x+\cos x \quad-\pi \leq x \leq \pi$
a) x-intercepts:

$$
\begin{gathered}
y=0=\sin x+\cos x \\
-\sin x=\cos x \\
-\tan x=1 \\
\tan x=-1
\end{gathered}
$$

$$
x=-\frac{\pi}{4} \text { and } x=\frac{3 \pi}{4}
$$

b) stationary points

$$
\begin{align*}
& y^{\prime}=0=\cos x-\sin x \\
& \tan x=1 \\
& x=\frac{\pi}{4} \text { or } \frac{-3 \pi}{4} \\
& y^{\prime \prime}=-\sin x-\cos x
\end{align*}
$$

when $x=\frac{\pi}{4}, y^{\prime \prime}=-\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}<0 \quad \max$

$$
x=\frac{-3}{4}, y^{\prime \prime}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}>0 \text { min. }
$$

at $x=\frac{\pi}{4}, y=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\sqrt{2}$

$$
\begin{equation*}
x=\frac{-3 \pi}{4}, y=-\sqrt{2} \tag{3}
\end{equation*}
$$

$\therefore\left(\frac{\pi}{4}, \sqrt{2}\right)$ is a local maximum turnizpt $\left(\frac{-3 \sqrt{3}}{4},-\sqrt{2}\right)$ is a local mininuen twig pt.
C) point of inflection

$$
\begin{align*}
y^{\prime \prime}=0 & =-\sin x-\cos x \\
\sin x & =-\cos x \\
\tan x & =-1 \tag{1}\\
x & =-\frac{\pi}{4} \text { or } \frac{3 \pi}{4}
\end{align*}
$$

$$
\begin{array}{ll}
\sin x=-\cos x & \sqrt{2} x \\
\tan x & =-1
\end{array}
$$

Test concavity

x	$-\frac{2 \pi}{4}$	$-\frac{\pi}{4}$	$\frac{\pi}{4}$	$\frac{3 \pi}{4}$	π
$y^{\prime \prime}$	1	0	$-\sqrt{2}$	0	1

ag concavity changes, the points $\left(-\frac{\pi}{4}, 0\right)$ and $\left(\frac{3 \pi}{4}, 0\right)$ are points of infection
d)

Q25
$\angle H S=\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}$

$$
\begin{align*}
& =\frac{(1-\sin \theta)+(1+\sin \theta)}{1-\sin ^{2} \theta} \tag{0}\\
& =\frac{2}{\cos ^{2} \theta} \\
& =2 \sec ^{2} \theta
\end{align*}
$$

Q26.
a) $x=120 \div 3=40 \mathrm{~m}$
b)

$$
\begin{gather*}
\int_{a}^{b} f(x) d x=\frac{b-a}{2 n}\{f(a)+f(b)+ \tag{0}\\
\frac{8 x}{2} \\
2\left[f(x)+\ldots f_{1}\right. \\
a=0, b=120, f(0)=50.6, \\
f(120)=32.5 \\
f\left(x_{1}\right)=f(40)=45.8 \\
f\left(x_{2}\right)=f(80)=300
\end{gather*}
$$

$\simeq \frac{40}{2}[50.6+32.5+2(45.8+30)]$
$\simeq 4694 \mathrm{~m}^{2}$

Q27
need to Standandise resulter for comparison
PDITPE: $\quad Z_{P}=\frac{74-65}{4}=2.25(1)$
Biology: $Z_{B}=\frac{84-80}{3}=1.33$
greater the z scrore, the betten his math in. Therefore, he sarred more strogly in PDHPE.

Q 28

a) $\angle A B D=62^{\circ}$ calternate angles on parallel liness

$$
\begin{align*}
\angle C D B & =180-136^{\circ} \\
& =44^{\circ} \tag{1}\\
\therefore \angle A B C & =62+44=106^{\circ} \tag{1}
\end{align*}
$$

b) use cosine rule

$$
\begin{align*}
& A C^{2}=14^{2}+8.5^{2}-2 \times 14 \times 8.5 \text { cosid } \\
& A C=18.27 \tag{1}\\
& A C \simeq 18 \mathrm{~km} .
\end{align*}
$$

c)

$$
\begin{align*}
& \frac{\sin \angle B C A}{14}=\frac{\sin 106}{18} \\
& \angle B C A=47.437^{\circ} \\
& 136-90=46^{\circ} \tag{1}
\end{align*}
$$

$$
\begin{aligned}
\text { bearing } & =270-\left(47.437-46^{\circ}\right) \\
& =268^{\circ} 33^{\prime} \\
& \simeq 269^{\circ} \mathrm{T} .
\end{aligned}
$$

Q29

$$
\begin{align*}
\cos x & =A=1, \quad P=2 \pi, \quad c=0 \\
\left|\frac{x-\pi}{4}\right| & =\left|\frac{x}{4}-\frac{\pi}{4}\right| \tag{3}\\
m & =\frac{1}{4}, \quad y \text {-intercept } y=\frac{\pi}{4} \tag{3}
\end{align*}
$$

4 solution.
(1)

Q30
a)

$$
\begin{align*}
I Q R & =Q_{\mathbb{B}}-Q_{L} \\
& =225-8.4 \\
& =14.1 \tag{1}
\end{align*}
$$

b)

$$
\begin{align*}
& Q_{u}+1.5 \times I Q R \\
= & 22.5+1.5 \times 14.1 \tag{1}\\
= & 43.65 \%
\end{align*}
$$

since $47.6 \%>43.63 \%$
\therefore it is an outiver
L)
school student, as a percentage of a country's Gross Domestic rroauct (GD) and the life expectancy in years for 15 countries.

need to show algebra
d) from the diagram diagram no get a mane $y=74$ an $x=18 \%$ $y=24$ (answ $72-74$ all acceptable) \therefore the life expectary is 74 .
e) At 60% GDP, the lone predicts a life expectancy over 100 which exceeds the expected life span for most human. So this ware of best fut is only predictive in a cower range of GDP expenditure.

QB
a)

$$
\begin{align*}
& A=\frac{1}{2} \times b \times h \\
& b=x, h=f(x)=2 e^{\frac{-x}{5}} \tag{1}\\
& A=\frac{1}{2} \times x \times 2 e^{\frac{-x}{5}}=x e^{\frac{-x}{5}}
\end{align*}
$$

b) max area.

$$
\begin{aligned}
& \frac{d A}{d x}=0 \quad \& \frac{d^{2} A}{d x^{2}}<0 \\
& x\left(-\frac{1}{5} e^{-\frac{x}{5}}\right)+e^{\frac{-x}{5}}=0 \\
& e^{\frac{-x}{5}}\left(1-\frac{x}{5}\right)=0 \\
& \therefore x=5\left(e^{-\frac{x}{2}}>0\right. \text {, for } \\
& \therefore x \text { all } x)
\end{aligned}
$$

at $x=5, A=x e^{-\frac{x}{5}}=5 e^{-1}$ (1)

$$
\frac{d^{2} A}{d x^{2}}=-\frac{1}{5} e^{\frac{-x}{5}}-\frac{1}{5} e^{\frac{-x}{5}}-\frac{x}{25} e^{\frac{-x}{5}}
$$

at $x=5$

$$
\begin{equation*}
\frac{d^{5} 2 A}{d x^{2}}<0 \tag{1}
\end{equation*}
$$

$\therefore A_{\text {max }}=\frac{5}{e}$ writs 2 at $x=5$
C) Find $S=F(0)=2$

$$
\begin{equation*}
S(0,2) \tag{1}
\end{equation*}
$$

Find 7 : $2 e^{-\frac{x}{5}}=\frac{1}{2}$

$$
e^{-\frac{x}{5}}=\frac{2}{4}
$$

$$
\begin{aligned}
& -\frac{-2}{5}=\frac{1}{4} \ln \frac{1}{4}=5 \ln 4 \\
& x=-5 \ln
\end{aligned}
$$

$$
\begin{align*}
& T\left(5 \ln 4, \frac{1}{2}\right) \\
& \begin{aligned}
A & =\text { Area } \triangle-\int_{0}^{\sin 4}\left(2 e^{-\frac{x}{5}}\right) d x \\
& =\frac{1}{2} h(a+b)+10\left[e^{-\frac{x}{5}}\right]_{0}^{\operatorname{sln} 4}(1) \\
& =\frac{1}{2} \times \operatorname{sln} 4\left(2+\frac{1}{2}\right)+10\left[e^{-\ln 4}-1\right] \\
& =\frac{25}{4} \ln 4+10\left(\frac{1}{4}-1\right) \\
& =\frac{25}{4} \ln 4-\frac{15}{2} \text { unis }^{2}
\end{aligned}
\end{align*}
$$

Q 32

$$
P=A e^{k t}
$$

a) at

$$
\begin{aligned}
& t=0, \quad P=1000, \\
& t=2, \quad P=1500
\end{aligned}
$$

$$
1000=A e^{\circ}
$$

$$
\begin{equation*}
A<1000 \text { (1) } \tag{2}
\end{equation*}
$$

$$
1500=1000 e^{2}
$$

$$
k=\frac{\ln 1.5}{2}
$$

b)

$$
\begin{aligned}
& P=A e^{4 k} \quad t=4 \\
& P=1000 e^{4 \frac{\ln 1.5}{2}} \\
& P=1000\left(e^{2 \ln 1.5)}\right. \\
& P=2449.49 \\
& P=2450
\end{aligned}
$$

(2)

$$
\begin{aligned}
P & =A e^{k t} \\
\frac{d P}{d t} & =k A e^{k t} \\
& =\frac{\ln 1.5}{2} \times 1000 \times e^{\frac{n^{1.5}}{2} t}
\end{aligned}
$$

Since $\frac{d p}{d t}>0$ for $t>0$,
\therefore the rate of charge of white -ants population is monotonic increase as time increases, therefore the population is increasing rapidly and the Riluation is getting worse.

Q,33
a) From the table.

$$
\begin{aligned}
& P(x \leq 200) \simeq 0.1003 \Rightarrow z=-1.28 \\
& z=\frac{x-\mu}{\sigma} \\
& -1.28=\frac{200-\mu}{7.8} \\
& \mu=209.984 \simeq 210
\end{aligned}
$$

b)

$$
\mu=205, \sigma
$$

i)

ie)

$$
\begin{aligned}
& z_{u}=\frac{210-205}{\sigma} \\
& z_{c}=\frac{200-2055}{\sigma}
\end{aligned}
$$

$$
\begin{aligned}
P\left(X \leq Z_{u}\right) & =99 \% \Rightarrow z_{u}=2.33 \\
\frac{210-205}{\sigma} & =2.33 \\
\sigma & =\frac{5}{2.33} \\
\sigma & =2.145 \\
\sigma & =2.15(\mathrm{~g})
\end{aligned}
$$

