

Student Name: \qquad

Teacher:

2012
TRIAL HSC
EXAMINATION

Mathematics

Examiners

Mrs P. Biczo, Mr S. Faulds, Ms S. Cupac, Mr S. Gee and Mr J. Dillon

General Instructions

- Reading time - 5 minutes.
- Working time - 3 hours.
- Write using black or blue pen. Diagrams may be drawn in pencil.
- Board-approved calculators and mathematical templates may be used.
- A table of standard integrals is provided at the back of this paper.
- Show all necessary working in Questions 11-16.
- Start each question in a separate answer booklet.
- Put your student number on each booklet.

Total marks - 100

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

90 marks

- Attempt Questions 11-16. Each of these six questions are worth 15 marks
- Allow about 2 hour 45 minutes for this section

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1 - 10

1 Which of the following correctly shows the numeral 0.000015 in scientific notation:
A 15×10^{-5}
B 15×10^{6}
C 1.5×10^{-6}
D 1.5×10^{-5}

2 When the denominator is rationalised, $\frac{1}{\sqrt{5}-\sqrt{3}}=$
A $\frac{\sqrt{5}-\sqrt{3}}{2}$
B $\frac{\sqrt{5}-\sqrt{3}}{16}$
C $\frac{\sqrt{5}+\sqrt{3}}{2}$
D $\sqrt{5}+\sqrt{3}$
$3 x^{\frac{1}{2}}=$
A $\frac{1}{x^{2}}$
B $\frac{x}{2}$
C $\frac{1}{\sqrt{x}}$
D \sqrt{x}

4 The solution to $|x+1| \leq 3$ is:
A $-4 \leq x \leq 2$
B $-2 \leq x \leq 2$
C $-2 \leq x \leq 4$
D $x \leq-4$ and $x \geq 2$

5 The solutions of $x^{2}+7 x-3=0$ are
A $x=\frac{-7 \pm \sqrt{37}}{2}$
B $x=\frac{7 \pm \sqrt{37}}{2}$
C $x=\frac{-7 \pm \sqrt{61}}{2}$
D $x=\frac{7 \pm \sqrt{61}}{2}$

6 The solution of $2-x<5$ is
A $x<-3$
B $x>-3$
C $x<3$
D $x>3$

7 The number 0.07086 rounded to 3 significant figures is:
A 0.070
B 0.071
C 0.0708
D 0.0709

8 Which of the following parabolas could have the equation $y=(x-5)(x-1)$?
A

C

D

9

The angle of inclination of the line l with the x axis, to the nearest degree, is
A 34°
B 56°
C 124°
D 146°

10 The solution for x which satisfies the pair of simultaneous equations: $\left\{\begin{array}{l}x+2 y=3 \\ x-y=6\end{array}\right.$ is:
A $x=-3$
B $x=-1$
C $x=5$
D $x=9$

Section II

90 marks

Attempt Questions 11 - 16
Allow about 2 hours and 45 minutes for this section
Answer each question in a new answer booklet.
All necessary working should be shown in every question.

Question 11 (15 marks) Start a new answer booklet
(a) Solve $2 x^{2}+x-6 \geq 0$.
(b) In the diagram A, B and C are the points $(-1,-3),(13,7) \operatorname{and}(7,9)$ respectively. The points $P(3,3)$ and $Q(6,2)$ are the midpoints of $A C$ and $A B$ respectively.

(i) Find the gradient of $P Q$. 1
(ii) Prove that $\triangle A B C$ is similar to $\triangle A Q P$.
(iii) Show that the equation of the line $P Q$ is $x+3 y-12=0$.
(iv) Find the exact length of $P Q$.
(v) Find the perpendicular distance of the point A to the line $P Q$.
(vi) Hence, find the area of $\triangle A P Q$.
(c) On a number plane, shade the region for which the following inequalities hold simultaneously, clearly marking any points of intersection.

$$
\begin{gathered}
x^{2}+y^{2} \leq 4 \\
x+y \leq 2
\end{gathered}
$$

(d) Give the best name for the quadrilateral shown. Justify your answer, by commenting on the significance of the information given.

Question 12 (15 marks) Start a new answer booklet
(a) (i) Copy and complete the table of values shown below in your answer booklet for the function $y=x \sin x$. The values in the table should be given in exact form.

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π
y	0	$\frac{\pi \sqrt{2}}{8}$			0

(ii) Using Simpson's Rule with 5 function values find an approximation to the integral:

$$
\int_{0}^{\pi} x \sin x d x
$$

(b) The area enclosed by the curve $y=\sqrt{r^{2}-x^{2}}$ is rotated about the x-axis.
(i) What is the name given to the solid that is generated?
(ii) Explain why the volume of the solid of revolution between $x=-r$ and $x=r$ is twice the integral

$$
\int_{0}^{r} \pi\left(r^{2}-x^{2}\right) d x
$$

(iii) Show that the volume of the solid formed is $\frac{4 \pi r^{3}}{3}$.
(c) Find the function $y=f(x)$ if $f^{\prime \prime}(x)=6 x, f^{\prime}(0)=-2$ and $f(1)=0$.
(d) Given that $\int f^{\prime}(x) e^{f(x)} d x=e^{f(x)}+c$, find $\int 4 x e^{x^{2}} d x$

Question 12 continued

(e) The graph below shows the functions $y=4-x^{2}$ and $y=4-2 x$. The area enclosed by these functions has been shaded.

The shaded area is revolved around the y-axis. Calculate the volume of the solid generated, leaving your answer in exact form.
(f) The shaded region is bounded by the line $x=0, x=4$, the curve $y=-x^{2}$, the line $y=4 x-12$ and the x axis, as in the diagram. A has co-ordinates $(2,-4)$.

What is the area of the shaded region?

Question 13 (15 marks) Start a new answer booklet
(a) Let $\log _{a} 2=x$ and $\log _{a} 3=y$.

Find an expression for $\log _{a} 12$ in terms of x and y.
(b) Find the equation of the tangent to the curve $y=3 \ln x+2$ at the point where $x=1$.
(c) Show that $\frac{d}{d x}\left(\frac{e^{2 x}}{2 x+1}\right)=\frac{4 x e^{2 x}}{(2 x+1)^{2}}$.
(d) Solve the following equation for x : $2 e^{3 x}-e^{2 x}=0$.
(e) (i) Show that $\frac{d}{d x}\left((x-1) \log _{e} 2 x\right)=\frac{x-1}{x}+\log _{e} 2 x$.
(ii) Hence, or otherwise, show that $\int_{\frac{1}{2}}^{1} \log _{e} 2 x d x=\log _{e} 2-\frac{1}{2}$.
(f) A horizontal line is drawn to cut the graphs $y=e^{x}$ and $y=\frac{1}{2} e^{x}$ at the points C and D.
(i) Draw a graph to show this information.
(ii) Show that the distance $C D$ is constant (that is, it does not depend on the position where the horizontal line is drawn).

Question 14 (15 marks) Start a new answer booklet
(a) Shown below is a graph of the derivative function $y=g^{\prime}(x)$.

(i) If the function $y=g(x)$ were to be drawn using information from the graph above, what feature would exist on the graph at $x=2$? Justify your answer using your knowledge of differential calculus.
(ii) In your answer booklet, draw a neat sketch of a possible function for $y=g(x)$, given that $g(0)=0$.
(iii) Explain why it is necessary to give a point on $y=g(x)$ (ie. $g(0)=0)$ in part (ii) in order for the graph to be drawn.

Question 14 continued

(b)

In the diagram above, $\triangle A B C$ is right-angled at $B . D E B F$ is a rectangle inscribed in $\triangle A B C$.
(i) Briefly explain why $\frac{D F}{C B}=\frac{A F}{A B}$. (Note: It is not necessary to complete a geometric proof to answer this question.)
(ii)

The above diagram shows a right circular cone with perpendicular height, 45 cm and radius, 18 cm . Inscribed within the cone is a cylinder of height, $h \mathrm{~cm}$ and radius, $r \mathrm{~cm}$.

Explain how the diagram and relationship given in part (i) can be related to the cone and cylinder above, and hence show that:

$$
h=\frac{5(18-r)}{2}
$$

(iii) Find the value of r that will make the volume of the cylinder inscribed in the given cone a maximum.
(c) (i) Show that the function $f(x)=3 x^{2}-6 x+7$ is positive for all real values of x.
(ii) Hence, or otherwise, show that the function $g(x)=x^{3}-3 x^{2}+7 x-10$ is increasing for all values of x. Justify your answer.

Question 15 (15 marks) Start a new answer booklet
(a) The first three terms of an arithmetic sequence are 7, 11 and 15 .
(i) Is 111 a term in this sequence? Justify your answer, by performing appropriate calculations.
(ii) Find the sum of the first twenty-six terms.
(b) After starting work, James decides to invest $\$ 2400$ in a superannuation fund at the beginning of each year, commencing on 1 January 2012. The superannuation fund pays an interest rate of 7.25% per annum which compounds annually.
(i) What will be the value of James' superannuation at the end of three years?
(ii) James visited a financial advisor who told him he needs $\$ 500000$ in order to retire comfortably after 40 years service. Will James be able to retire comfortably at his current contribution rate? Justify your answer, by performing appropriate calculations.
(c) Consider the geometric series

$$
1+(\sqrt{11}-3)+(\sqrt{11}-3)^{2}+\ldots
$$

(i) Explain why the geometric series has a limiting sum.
(ii) Find the exact value of the limiting sum. Write your answer with a rational denominator.
(d) Lisa and Monika play a tennis match against each other. The first player to win 2 sets wins the match. The probability that Monika wins any set is 60%.
(i) What is the probability that the game will last two sets only?
(ii) What is the probability that Lisa wins the match?

Question 16 (15 marks) Start a new answer booklet
(a) Solve for θ in the given domain:

$$
2 \sin \theta-\sqrt{3}=0 \quad \text { for } 0^{\circ} \leq \theta \leq 360^{\circ}
$$

(b) Find the size of the smallest angle in the triangle below to the nearest minute.

(c) A 15 cm arc on the circumference of a circle subtends an angle of $\frac{\pi}{5}$ at the centre of the circle. Find
(i) the radius of the circle, as an exact answer.
(ii) the area of the major sector formed to one decimal place.
(d) Show that the exact value of $\cos \left(\frac{\pi}{4}\right)+\sin \left(\frac{2 \pi}{3}\right)$ is $\frac{\sqrt{2}+\sqrt{3}}{2}$
(e) Show that $\frac{\left(1+\tan ^{2} \theta\right) \cot \theta}{\operatorname{cosec}^{2} \theta} \equiv \tan \theta$
(f) For the parabola $y=\frac{x^{2}}{8}-1$ explain why:
(i) the vertex is $(0,-1)$
and
(ii) the focal length is 2 units
(g) Find the value(s) of m for which the equation

$$
4 x^{2}-m x+9=0
$$

has exactly one real root.

End of examination

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x \quad=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

NOTE: $\ln x=\log _{e} x, x>0$

Year 12 Mathematics

Section I - Answer Sheet

Student Number \qquad

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample: $2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
A \bigcirc
B

C \bigcirc
D \bigcirc

- If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
B

$\mathrm{C} \bigcirc$
D \bigcirc
- If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.

1. $\mathrm{A} \bigcirc$

B \bigcirc
$\mathrm{C} \bigcirc$
D
2.

$B \bigcirc$
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$
3.

$\mathrm{B} \bigcirc$
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$
4.

$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$
5.

A
$B \bigcirc$
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$
6.
A \bigcirc
B \bigcirc
$\mathrm{C} \bigcirc$
D
7.

A \bigcirc
B \bigcirc
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$
8.
A
B
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$
9.
A
B

C
$\mathrm{D} \bigcirc$
10.
A
$\mathrm{B} \bigcirc$
$\mathrm{C} \bigcirc$
$\mathrm{D} \bigcirc$

P4	10) Subtracting $x+2 y=3$ $x-y=6$ $\begin{aligned} & 3 y=-3 \\ & \therefore y=-1 . \end{aligned}$ Substituting in $x+2 y=3$, $x-2=3$ $\therefore x=5$

Year 12 Trial	Mathematics	Examination 2012
Question No.11	Solutions and Marking Guidelines	

Outcomes Addressed in this Question

H5 applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems
P4 Chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques

(iii) PQ has $m=\frac{-1}{3}$ and passes through $(3,3)$

Using $y-3=\frac{-1}{3}(x-3)$, line is

$$
3 y-9=-x+3
$$

$\therefore P Q$ is the line $x+3 y-12=0$.
(iv) $d P Q=\sqrt{3^{2}+1^{2}}$

$$
=\sqrt{10}
$$

(v) Using $d=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}$ with $x+3 y-12=0$ and

$$
A(-1,-3),
$$

$$
d=\frac{|-1+3(-3)-12|}{\sqrt{1^{2}+3^{2}}}=\frac{|-22|}{\sqrt{10}}=\frac{22}{\sqrt{10}} \text { units }
$$

(v) Area $\triangle A P Q=\frac{1}{2} \times P Q \times d$

$$
=\frac{1}{2} \times \sqrt{10} \times \frac{22}{\sqrt{10}}=11 \text { units }^{2}
$$

H5	(c) $x^{2}+y^{2}=4$ is a circle of radius 2 , centre $(0,0)$. $x+y=2$ is the line through $(2,0)$ and $(0,2)$. $(0,0)$ satisfies both $x^{2}+y^{2} \leq 4$ and $x+y \leq 2$	2 marks : correct solution 1 mark: significant progress towards correct solution
H5	(d) As the diagonals bisect, it is a parallelogram. A parallelogram with a right angle is a rectangle. \therefore it is a rectangle	2 marks : correct solution 1 mark: significant progress towards correct solution or correct answer without correct justification
	Comments: - AAA or SAS are not to be used as tests for similar triangles. The correct tests are "Equiangular" and "Two pairs of sides in the same ratio and included angles equal". - In part (d) when asked to comment on the significance of the information marked in the quadrilateral, many students only listed what was marked. You needed to comment on the significance of the diagonals bisecting (which was that this made it a parallelogram), and of one angle being a right angle. Very few students appeared to know the definition of a rectangle (a parallelogram containing a right angle).	

H5 applies appropriate techniques from the study of calculus, to solve problems
H8 uses techniques of integration to calculate areas and volumes

Outcome	Solutions					
H8	(a) (i) $y=x \sin x$					
	x 0 $\frac{\pi}{4}$ $\frac{\pi}{2}$ $\frac{3 \pi}{4}$ y 0 $\frac{\pi \sqrt{2}}{8}$ $\frac{\pi}{\mathbf{2}}$ $\frac{\mathbf{3 \pi} \sqrt{\mathbf{2}}}{\mathbf{8}}$					

H8
(ii)

$$
\begin{aligned}
\int_{0}^{\pi} x \sin x d x & \approx \frac{\pi / 2}{6}\left(0+4 \times \frac{\pi \sqrt{2}}{8}+\frac{\pi}{2}\right)+\frac{\pi / 2}{6}\left(\frac{\pi}{2}+4 \times \frac{3 \pi \sqrt{2}}{8}+0\right) \\
& =\frac{\pi}{12}\left(\frac{\pi \sqrt{2}}{2}+\frac{\pi}{2}\right)+\frac{\pi}{12}\left(\frac{\pi}{2}+\frac{3 \pi \sqrt{2}}{2}\right) \\
& =\frac{\pi}{12}\left(\frac{4 \pi \sqrt{2}}{2}+\frac{2 \pi}{2}\right) \\
& =\frac{\pi}{12}(2 \pi \sqrt{2}+\pi) \\
& =\frac{2 \pi^{2} \sqrt{2}}{12}+\frac{\pi^{2}}{12} \\
& =\frac{\pi^{2}(2 \sqrt{2}+1)}{12}
\end{aligned}
$$

(b) (i) Sphere
(ii) Since the curve being rotated about the x-axis has line symmetry about the y axis, we can simply calculate the volume created by rotating half the curve about the x -axis and then double this answer to give the total volume created.
(iii)

$$
\begin{aligned}
& V=2 \pi \int_{0}^{r}\left(r^{2}-x^{2}\right) d x \\
& =2 \pi\left[r^{2} x-\frac{x^{3}}{3}\right]_{0}^{r} \\
& =2 \pi\left[r^{3}-\frac{r^{3}}{3}\right] \\
& =2 \pi \times \frac{2 r^{3}}{3} \\
& =\frac{4 \pi r^{3}}{3} \text { units }^{3} \text { as required }
\end{aligned}
$$

Marking Guidelines

1 mark
Both correct values in exact form.

2 marks

Correct solution.

1 mark

Substantial progress towards correct solution.

1 mark

Correct answer

1 mark

Correct answer, noting the symmetry of the curve being rotated.

2 marks

Correct solution.
1 mark
Substantial progress towards a correct solution
(c)

$$
\begin{aligned}
f^{\prime \prime}(x) & =6 x \\
f^{\prime}(x) & =3 x^{2}+c_{1} \\
\text { but } f^{\prime}(0) & =-2 \\
\therefore-2 & =0+c_{1} \\
c_{1} & =-2 \\
\therefore f^{\prime}(x) & =3 x^{2}-2 \\
f(x) & =x^{3}-2 x+c_{2} \\
\text { but } f(1) & =0 \\
\therefore 0 & =1-2+c_{2} \\
c_{2} & =1 \\
\therefore f(x) & =x^{3}-2 x+1
\end{aligned}
$$

(f) The area can be calculated as the area under the section of the parabola plus the area of two triangles. AC cuts the x-axis at 3 and C has co-ordinates (4, 4).

$$
\begin{aligned}
A & =\left|\int_{0}^{2}-x^{2} d x\right|+\frac{1}{2} \times 1 \times 4+\frac{1}{2} \times 1 \times 4 \\
& =\left|\left[\frac{-x^{3}}{3}\right]_{0}^{2}\right|+4 \\
& =\frac{8}{3}+4 \\
& =\frac{20}{3} \text { units }^{2}
\end{aligned}
$$

2 marks

Substantially correct solution clearly showing the evaluation of the two constants.

1 mark

Substantial progress towards a correct solution.

1 mark

Correct answer.

3 marks

Correct solution

2 marks

Substantial progress towards correct solution, showing correct process including finding primitive functions.

1 mark

Some progress towards a correct solution showing the correct functions to be integrated

2 marks

Correct solution

1 mark
Substantial progress towards correct solution

Question No. $14 \quad$ Solutions and Marking Guidelines
Outcomes Addressed in this Question
H2 constructs arguments to prove and justify results
H5 applies appropriate techniques from the study of calculus and geometry to solve problems
H6 uses the derivative to determine the features of the graph of a function

Outcome	Solutions			
H2, H5	(a) (i) When $x=2, \mathrm{~g}^{\prime}(x)=0$ ie. a stationary point exists at $x=2$ To classify the stationary point, consider the following value have been taken from the graph:			
	x 1.5 2 3 $\mathrm{~g}^{\prime}(\mathrm{x})$ -ve 0 -ve			

Slopes of gradients:

\therefore There is a horizontal point of inflexion at $x=2$.
(ii) A possible graph for $y=g(x)$

H2 (iii) Being given the point $g(0)=0$ provides a value for the constant when the primitive of the function $y=g^{\prime}(x)$ is graphed. The graph then has a defined point of reference on the y-axis.
(b) (i) Δ 's ABC and AFD are similar.

As ratios of corresponding sides in similar triangles are equal:

$$
\frac{D F}{C B}=\frac{A F}{A B}
$$

(ii) Taking a cross section of the cone through the vertex

2 marks

Graph drawn through given point, showing three main features in their correct place. 1 mark
Graph drawn is substantially correct.

1 mark

Given answer demonstrates a valid understanding.

2 marks

Correct justification noting both that triangles are similar and the relevant property.
1 mark
Identifies similar triangles but not relevant property.

2 marks

Correct solution.
1 mark
Substantial progress towards a correct solution

Using similar triangles as in part (i)

$$
\begin{aligned}
\frac{D F}{C B} & =\frac{A F}{A B} \\
\frac{h}{45} & =\frac{18-r}{18} \\
h & =\frac{45(18-r)}{18} \\
& =\frac{5(18-r)}{2}
\end{aligned}
$$

as required.

$$
f(x)=3 x^{2}-6 x+7
$$

Positive definite if $a>0$ and $\Delta<0$

$$
\begin{array}{rlrl}
a & =3 & \therefore a>0 \\
\Delta & =b^{2}-4 a c & & \\
& =36-4 \times 3 \times 7 & & \therefore \Delta<0
\end{array}
$$

\therefore Function is positive definite for all real values of x.
(ii)

$$
\begin{aligned}
& g(x)=x^{3}-3 x^{2}+7 x-10 \\
& g^{\prime}(x)=3 x^{2}-6 x+7
\end{aligned}
$$

Now, $g^{\prime}(x)>0$ for all real values of x
ie. gradient of $g(x)>0$ for all real values of x
$\therefore g(x)$ is increasing for all real values of x

3 marks

Correct solution giving correct answer and justification of answer as a maximum.

2 marks

Substantially correct solution and justification.

1 mark

Makes some valid progress towards a correct solution.

1 mark

Correctly shows function is positive definite.

2 marks

Correct solution using calculus to justify that function is increasing, making link back to part (i) OR other correct and justifiable means.

1 mark

Substantial progress towards the required result.

