HURLSTONE AGRICULTURAL HIGH SCHOOL

MATHEMATICS

2013

YEAR 12

TRIAL EXAMINATION (TASK 4)

EXAMINERS ~ G RAWSON, P BICZO, J DILLON, S FAULDS, S GUTESA, B MORRISON,

GENERAL INSTRUCTIONS

- Reading Time 5 minutes.
- Working Time 3 hours.
- Attempt **all** questions.
- This paper contains ten (10) multiple choice questions in Section I and six (6) free response questions in Section II.
- Each question in Section II is worth 15 marks.
- All necessary working should be shown in every question in Section II.
- Board approved calculators and Math aids may be used.

- Multiple Choice questions to be answered on Multiple Choice answer sheet which may be removed from the back of this question booklet.
- Each free response question is to be started in a new answer booklet. Write the question number and your name and/or student number at the top of each answer booklet.
- You **must** hand in the multiple choice answer sheet as well as an answer booklet for **each question** even if a question has not been attempted.
- This examination must **NOT** be removed from the examination room.

STUDENT NAME: _____

TEACHER: _____

Section I

10 marks Attempt Questions 1 - 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet provided on the back of this booklet for Questions 1-10

- 1. Given that *ABCD* is a parallelogram, consider the following statements:
 - I: If diagonals AC and BD are perpendicular, then ABCD is a rhombus.
 - II: If diagonals AC and BD are equal, then ABCD is a square.

Which of the statements I and II are correct?

- (A) I only (B) II only
- (C) Both I and II

(D) I and II are both incorrect

2. The graph of the function $y = \ln(x + 1)$ is shown in which of the graphs below:

~ 2 ~

- 3. The centre of a circle has co-ordinates (-3, 4). If the circle passes through the point (1, 2), then the **diameter** has length
 - (A) $2\sqrt{2}$ units (B) $4\sqrt{2}$ units (C) $2\sqrt{5}$ units (D) $4\sqrt{5}$ units
- 4. The solution to the inequality $6 x x^2 \le 0$ is
 - (A) $x \le -3 \text{ or } x \ge 2$ (B) $-3 \le x \le 2$
 - (C) $x \le -2 \text{ or } x \ge 3$ (D) $-2 \le x \le 3$
- 5. What are the coordinates of the focus of the parabola $x^2 = 2(y-1)$?

- 6. Which of the following conditions for $\frac{dP}{dt}$ and $\frac{d^2P}{dt^2}$ describe the slowing growth of a variable *P*?
 - (A) $\frac{dP}{dt} > 0$ and $\frac{d^2P}{dt^2} > 0$ (B) $\frac{dP}{dt} < 0$ and $\frac{d^2P}{dt^2} < 0$ (C) $\frac{dP}{dt} > 0$ and $\frac{d^2P}{dt^2} < 0$ (D) $\frac{dP}{dt} < 0$ and $\frac{d^2P}{dt^2} > 0$
- 7. The chance of a fisherman catching a legal length fish is 4 in 5. If three fish are caught at random, what is the probability that exactly one is of legal length?

(A)
$$\frac{4}{125}$$
 (B) $\frac{12}{125}$

(C)
$$\frac{16}{125}$$
 (D) $\frac{48}{125}$

~ 3 ~

8. The fourth term of an arithmetic series is 27 and the seventh term is 12. What is the common difference?

9. Solve for $0^{\circ} \le x \le 360^{\circ}$, $\sin x = \frac{\sqrt{3}}{2}$,

(A) 60° or 240° (B) 30° or 150°

(C)
$$30^{\circ}$$
 or 210° (D) 60° or 120°

10. The curve $y = \sin x$ is rotated about the x-axis between x = 0 and $x = \frac{\pi}{4}$. The volume swept out by this rotation is:

(A)
$$\pi \int_{0}^{\frac{\pi}{4}} \sin x.dx$$
 (B) $\pi \int_{0}^{\frac{\pi}{4}} (\sin x)^{2}.dx$
(C) $\pi \int_{0}^{\frac{\pi}{4}} \sin x.dy$ (D) $\pi \int_{\frac{\pi}{4}}^{0} (1-\sin x)^{2}.dx$

Section II

90 marks Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section

Answer each question in a separate writing booklet.

All necessary working should be shown in every question.

Question 11 (15 marks) *Commence a new answer booklet*

(a) Simplify $\frac{5}{x-1} - \frac{3}{x+1}$ 2

(b) Solve
$$|2x-5| > 3$$
 and graph the solution on a number line 3

(c) Determine the value of a and b if
$$\frac{5}{2+\sqrt{3}} = a + b\sqrt{3}$$
 2

(d) Factorise completely:
$$3x^2 - 12y^2$$
 2

(e) Solve simultaneously:
$$y = x^2$$

 $y = 2-x$ 3

(f) Simplify $\log_5 125$ 1

(g) Find the primitive function of
$$4x^3 - 7x + 5$$
 2

Marks

Marks

(a)	Find th	the equation of the line perpendicular to the line $y = -2x+3$ and passing the point $(3, -4)$. Give your answer in general form.	2
(b)	(i)	Find the perpendicular distance of the line <i>l</i> with equation $3x+4y+10=0$, to the origin (0, 0).	1
	(ii)	Explain why the line <i>l</i> is a tangent to the circle $x^2 + y^2 = 4$.	1
	(iii)	Find the gradient of the line <i>l</i> .	1
	(iv)	Calculate to the nearest degree, the angle the line l makes with the positive direction of the x axis.	1
	(v)	Sketch the line <i>l</i> , and the circle $x^2 + y^2 = 4$. On your diagram, show the <i>y</i> intercept of the line <i>l</i> , and call this point <i>P</i> .	1
	(vi)	Given that the line <i>l</i> touches the circle at $Q\left(-\frac{6}{5}, -\frac{8}{5}\right)$, calculate the area of triangle <i>POQ</i> .	1
(c)	If the c opposi	quadratic equation $3x^2 - (k+1)x + 5 = 0$ has roots equal in magnitude but te in sign, find the value of k.	1
(d)	Prove You m	that $3x^2 - x + 7$ is positive, for all values of x. Just justify your answer with working.	2
(e)	Find v	alues for <i>a</i> , <i>b</i> and <i>c</i> if $x^2 - x \equiv a(x+3)^2 + bx + c$.	2
(f)	By red	ucing the following equation to a quadratic, solve for x:	

$$x^4 - x^2 = 2$$
 2

~ 6 ~

(a) Below is the graph of the function y = f(x). In your answer booklet copy, or trace the diagram. On your diagram, draw a possible sketch of y = f'(x).

(b) A function
$$f(x)$$
 is defined by $f(x) = x^3 - 3x^2$.

(i)	Find all values of x that satisfy $f(x) = 0$.	1
(ii)	Find the coordinates of the stationary points and determine their nature.	3
(iii)	Find the coordinates of any points of inflexion, justifying your answer.	2
(iv)	Sketch the curve $y = f(x)$ showing all important features.	2
(v)	For what values of x is the graph of $y = f(x)$ concave down?	1

(c) For the parabola
$$y = 2x^2 - 8x$$
.

(i)	Find the coordinates of the vertex.	2
(ii)	Find the coordinates of the focus.	1
(iii)	Sketch the curve clearly labeling the vertex and focus.	1

2

Marks

(a)	Jane' educa will J	s mother puts \$300 into an account at the beginning of each year to pay for Jane's ation in 12 years' time. If 6% p.a. interest is paid quarterly, how much money ane's mother have at the end of the 12 years?	3
(b)	In a c If the pollu	ertain city, the probability that the pollution level will be high is 0.3 . pollution is monitored for 3 successive days, find the probability that the tion levels will be:	
	(i)	High on each of the 3 days	1
	(ii)	High on exactly 2 days	1
(c)	Each The p The p What wins	week Lucinda and Terry take part in a raffle at their respective workplaces. probability that Lucinda wins a prize in her raffle is $\frac{1}{9}$. probability that Terry wins a prize in his raffle is $\frac{1}{16}$. is the probability that, during the next three weeks, at least one of them a prize?	2
(d)	The z In an once, After	from function in a software package multiplies the dimensions of an image by 1.2 . image, the height of the building is 50 mm. After the zoom function is applied the height of the building in the image is 60 mm. a second application, its height is 72 mm.	
	(i) (ii)	Calculate the height of the building in the image after the zoom function has been applied eight times. Give your answer to the nearest mm. The height of the building in the image is required to be more than 400 mm. Starting from the original image, what is the least number of times the zoom function must be applied?	2
(e)	Cons	ider the geometric series $5+10x+20x^2+40x^3+$	
	(i)	For what values of <i>x</i> does this series have a limiting sum?	2
	(ii)	The limiting sum of the series is 100. Find the value of x .	2

~ 8 ~

(b) The second derivative of a function is given by $f''(x) = -\frac{3}{x^2}$. If, $f'\left(\frac{1}{2}\right) = 6$ and $f\left(\frac{1}{2}\right) = 1$, find f(x) in simplest form.

(c) Find the gradient of the curve $y = xe^x$ at the point where $x = \ln 2$. 2 (Leave your answer in exact form)

(d) (i) Solve the equation
$$e^{x-1} - 2 = 0$$
, giving your answer correct to 2 decimal places. 1

(ii) Evaluate the definite integral
$$\int_{1}^{2} (e^{x-1}-2) dx$$
. (Answer in exact form) 2

(iii) Explain why your answer in (ii) does not give the area under the curve $y = e^{x-1} - 2$ between the lines x = 1 and x = 2. (Note: it is not necessary to calculate the area).

(e)

- (i) In the above diagram, AB || CD and BD bisects AC. Prove that $\triangle ABE \equiv \triangle CED$. 2
- (ii) Hence, or otherwise, prove that AD || BC.

2

2

3

1

(a) Express 200° in radians, to 3 decimal places.

(b) Solve
$$\tan \theta = \frac{1}{\sqrt{2}}$$
, for $-\pi \le \theta \le \pi$, 2

Two ships leave the Port of Newcastle at 6 am on the 30th of June.
 The first ship travels on a bearing of 060° from the port at a speed of 10 km/hr.
 The second ship travels on a bearing of 120° from the port at 15 km/hr

(i)	Draw a neat diagram to clearly show this information.	1
(ii)	Determine the distance between the ships after 1 hour of sailing.	2

(d) In the diagram below, $\angle B = 90^\circ$, $\angle A = 60^\circ$ and AB = AD = 10m. BD is an arc of the circle with centre A.

Calculate the shaded area in exact form.

(e) Differentiate $x^2 \tan^2(x^2)$ with respect to x.

(f) (i) Differentiate
$$\ln(\sin x)$$
 with respect to x

(ii) Hence, find the exact value of
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{2}{3} \cot x \, dx$$
 2

~ 10 ~

Marks

1

3

1

3

STANDARD INTEGRALS

$\int x^n dx$	$=\frac{1}{n+1}x^{n+1},$	$n \neq -1;$	$x \neq 0$, if $n < 0$
$\int \frac{1}{x} dx$	$=\ln x$,	<i>x</i> > 0	
$\int e^{ax} dx$	$=\frac{1}{a}e^{ax},$	$a \neq 0$	
$\int \cos ax dx$	$=\frac{1}{a}\sin ax$,	$a \neq 0$	
$\int \sin ax dx$	$=-\frac{1}{a}\cos ax$,	$a \neq 0$	
$\int \sec^2 ax dx$	$=\frac{1}{a}\tan ax$,	$a \neq 0$	
$\int \sec ax \tan ax dx$	$=\frac{1}{a}\sec ax$,	$a \neq 0$	
$\int \frac{1}{a^2 + x^2} dx$	$=\frac{1}{a}\tan^{-1}\frac{x}{a},$	$a \neq 0$	
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$=\sin^{-1}\frac{x}{a},$	a > 0, -a < x	x < a
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	$=\ln\left(x+\sqrt{x^2}\right)$	$\overline{-a^2}$), $x > a > a$	>0
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	$=\ln\left(x+\sqrt{x^2}+\right)$	$\overline{-a^2}$	

NOTE: $\ln x = \log_e x, \quad x > 0$

This is a blank page

MATHEMATICS 2013 TRIAL EXAMINATION (TASK 4)

PART A ANSWER SHEET

NAME (or number) :_____

Teacher:

- Use this page to mark the answers to the questions in Part A.
- Mark the answer by shading in the circle that matches with the correct answer.
- If you make a mistake, draw a cross through the incorrect answer.

YEAR 12

MATHEMATICS

Year 12 Tr	ial Mathematics	Examination 2013			
Question No.11 Solutions and Marking Guidelines					
	Outcomes Addressed in this Question	1			
P3 - performs	routine arithmetic and algebraic manipulation involving surds, simple rationa	al expressions and trigonometric identities			
P4 - chooses an	Solutions	Marking Cuidelines			
Guicome	.50/01/01/5	Mai King Guiueimes			
Р3	(a) $\frac{5}{x-1} - \frac{3}{x+1} = \frac{5(x+1) - 3(x-1)}{(x-1)(x+1)}$	2 marks : correct solution			
	5x+5-3x+1				
	$=\frac{-\frac{1}{x^2-1}}{=\frac{2x+8}{2}=\frac{2(x+4)}{(x+1)^2}}$	<u>1 mark</u> : substantial progress towards correct solution			
PA	$\begin{array}{c c} x^2 - 1 & (x - 1)(x + 1) \\ (b) & 2x - 5 > 3 \end{array}$				
14	2x-5 < -3 or $2x-5 > 3$	<u>3 marks</u> : correct solution			
	$\begin{array}{ccc} 2x < 2 & 2x > 8 \\ x < 1 & x > 4 \end{array}$	<u>2 marks</u> : substantially correct solution			
	$\begin{array}{c c} \bullet & \bullet \\ 1 & 4 \end{array} \rightarrow \\ \end{array}$	<u>1 mark</u> : partially correct solution (eg, finding one side of the inequality)			
P3, P4	(c) $\frac{5}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} = \frac{10-5\sqrt{3}}{4-3}$	<u>2 marks</u> : correct solution			
	$= 10 - 5\sqrt{3}$ $\therefore a = 10, b = -5$	<u>1 mark</u> : substantial progress towards correct solution			
	(d) $3x^2 - 12y^2 = 3(x^2 - 4y^2)$ = $3(x - 2y)(x + 2y)$	2 marks : correct solution 1 mark : substantial progress towards correct solution			
	(e) $y = r^2$ (1)				
P4					
	$y = 2 - x \dots (2)$ $x^{2} = 2 - x \langle \text{sub} (1) \rightarrow (2) \rangle$	<u>3 marks</u> : correct solution			
	$x^2 + x - 2 = 0$	2 marks : substantially correct solution			
	(x+2)(x-1) = 0				
	x = -1, 2	<u>1 mark</u> : partially progress towards correct solution			
	subbing into (1)	NR: it is important that you			
	when $x = 1$, $y = 1$	explicitly state which x value			
	when $x = -2$, $y = 4$	corresponds to which y			
	\therefore solutions are (1,1) & (-2,4)	value. It is these <u>pairs</u> which are the solutions			

L

	Question 11 continued	
P4	(f) $\log_5 125 = \log_5 5^3$ = $3 \log_5 5$ = 3	<u>1 mark</u> : correct answer
	(g) $\int (4x^3 - 7x + 5) dx = x^4 - \frac{7x^2}{2} + 5x + C$	2 marks : correct solution 1 mark : substantial progress towards correct solution (leaving out the C)

Year 12 Tri	al Mathematics	Examination 2013			
Question No.12 Solutions and Marking Guidelines					
US annita-	Outcomes Addressed in this Question	nrobability trigonometry			
and ser	tes to solve problems	, probability, ingonometry			
P4 Choose	is and applies appropriate arithmetic, algebraic, graphical, tr	igonometric and geometric			
technie	ques				
Outcome	Solutions	Marking Guidelines			
P4	a) $y = -2x + 3$ has gradient -2 , \therefore line perpendicular has	2 marks : correct solution			
	$m = \frac{1}{2}.$ Equation is $y + 4 = \frac{1}{2}(x-3)$	1 mark : substantial progress towards correct solution			
	2y+8=x-3 $\therefore x-2y-11=0$				
H5	b) (i) $d = \frac{ 0+0+10 }{\sqrt{3^2+4^2}} = \frac{ 10 }{5} = 2$ units	1 mark: correct answer			
Н5	(ii) Since the perpendicular distance from the centre of the circle $x^2 + y^2 = 4$ to the line is equal to the radius of the circle, the line is a tangent to the circle.	1 mark: correct explanation			
P4	(iii) Rearranging $3x + 4y + 10 = 0$, -3x - 10	1 mark: correct answer			
	$y = \frac{-3x^{-10}}{4}$ $\therefore m = \frac{-3}{4}$				
P4	(iv) Using $m = \tan \theta$,	1 mark: correct answer			
Н5	$\tan \theta = \frac{-3}{4}$ Angle of inclination is 143° (v) <i>l</i> cuts y axis when $x = 0$. 4y + 10 = 0				
	$y = \frac{-5}{2}$	1 mark: correct graph, showing y intercept			
	$\frac{1}{2}$				

÷.

	(vi)	
H5	h 2.5	1 mark : correct answer
Н5	$h^{2} = 2.5^{2} - 2^{2}$ $h = 1.5$ Area of $\Delta = \frac{1}{2} \times 1.5 \times 2 = 1.5 u^{2}$ (c) Let the roots of $3x^{2} - (k+1)x + 5 = 0$ be α and $-\alpha$. Then the sum of the roots = 0. Using sum of roots $= \frac{-b}{a}$, $\frac{k+1}{3} = 0$ $\therefore k = -1$	1 mark : correct answer
	 (d) Using ∆ = b² - 4ac, discriminant of 3x² - x + 7 is (-1)² - 4×3×7 = -83 ∴ since the discriminant is negative and the coefficient of x² is positive (as = 3), 3x² - x + 7 is positive for all values of x. 	2 marks : correct solution 1 mark: significant progress towards correct solution
Р4	(e) $x^2 - x \equiv a(x+3)^2 + bx + c$ $x^2 - x \equiv ax^2 + 6ax + 9a + bx + c$ $x^2 - x \equiv ax^2 + (6a+b)x + (9a+c)$ Equating like co-efficients a = 1 $6a+b=-1$ $\therefore 6+b=-1$ $\therefore 6+b=-1$ $9a+c=0$ $\therefore 9+c=0$ $\therefore a=1, b=-7, c=-9$	2 marks : correct solution 1 mark : substantial progress towards correct solution
Р4	(f) $x^4 - x^2 = 2$ $(x^2)^2 - x^2 - 2 = 0$ Let $y = x^2$, $y^2 - y - 2 = 0$ $\therefore (y - 2)(y + 1) = 0$ $\therefore y = -1, 2$ $\therefore x^2 = -1, x^2 = 2$ No solution for $x^2 = -1$ $\therefore x = \pm \sqrt{2}$	2 marks : correct solution 1 mark : substantial progress towards correct solution

Year 12	Mathematics	Task 4 (Trial HSC) 2013			
Question No. 13 Solutions and Marking Guidelines					
Outcomes Addressed in this Question					
H6 uses	s the derivative to determine the features of the graph of a fu	inction			
H7 uses	s the features of a graph to deduce information about the der	rivative			
P5 und Bort	erstands the concept of a function and the relationship betw	Marking Cuidalines			
rait	Solutions	Warking Guiuennes			
(a) H7		Award 2 for correct graph			
		Award 1 for graph indicating correct location of stationary point (or similar)			
(b) (i) P5	f(x) = 0	Award 1 for correct solution			
	$r^{3} - 3r^{2} = 0$	Award 1 for concet solution			
	$x^{2} = 5x^{2} = 0$				
	$x^{-}(x-3) = 0$				
	$\therefore x = 0 \text{ or } 3.$				
(ii) H6	$f'(x) = 3x^2 - 6x$	Award 3 for correct solution			
	f''(x) = 6x - 6	Award 2 for substantial			
		progress towards solution			
	Possible stationary points occur @ $f'(x) = 0$	Award 1 for limited progress			
	$3r^2 - 6r = 0$	towards solution			
	3r(r-2) = 0				
	Sx(x-2)=0				
	$\therefore x = 0 \text{ or } 2$				
	Test $x = 0, f''(0) = -6 < 0$				
	\therefore Relative maximum @ $(0,0)$				
	Test $x = 2$, $f''(2) = 6 > 0$				
	· Relative minimum $\mathscr{Q}(2-4)$				
(iii) H6	$\int f''(x) = 0$				
	6x-6=0	Award 2 for correct solution			
	$\therefore x=1$	Award 1 for substantial			
		progress towards solution			
	Test $x = 0, f''(0) = -6$				
	Test $x = 2$, $f''(2) = 12$				
	$\therefore Change in conceptity either side of x = 1$				
	\therefore Change in concavity child side of $x = 1$				
	\therefore Point of inflexion (a) $(1, -2)$				

Year 12 Trial Mathematics		Examination 2013		
Question No. 14 Solutions and Marking Guidelines		· · · · · · · · · · · · · · · · · · ·		
Outcomes Addressed in this Question				
H5 - applie	es appropriate techniques from the study of calculus, geomet	ry, <i>probability</i> , trigonometry and		
Outcome	Solutions	Marking Guidelines		
	a)			
H5	r = 0.015			
	$A_1 = 300(1.015)^4$	(3 marks)		
	$A_2 = (A_1 + 300)(1.015)^4$	(2 marks)		
	$= 300(1.015)^8 + 300(1.015)^4$	substantial progress towards correct solution		
	$A_3 = (A_2 + 300)(1.015)^4$	(1 mark)		
	$= 300(1.015)^{12} + 300(1.015)^8 + 300(1.015)^4$	some progress towards correct solution		
	$A_{-} = 300(1\ 015)^{48} + 300(1\ 015)^{44} + 300(1\ 015)^{40} + + 300$	1 015)4		
	$= 300(1.015)^{4}(1+1.015^{4}+1.015^{8}++1.015^{44})$			
	G.P. with $a=1, r=1.015^4, n=12$ $S_n = \frac{a(r^n - 1)}{r-1}$			
	$= 300(1.015)^{4} \left(\frac{1(1.015^{48} - 1)}{1.015^{4} - 1} \right)$			
	= \$5414.50			
	(b) $P(high) = 0.3$			
	(i)			
	$P(H,H,H) = 0.3^3$	(1 mark)		
	= 0.027 (ii)	concer solution		
	P(H,H,) + P(H,,H) + P(,H,H)			
	$= 3 \times (0.3^2 \times 0.7)$	(1 mark)		
	= 0.189	correct solution		
	(\mathbf{c}) P(relevant one) = 1 $P(rope win)$			
	$\frac{1}{(alleast Olle) = 1 - I'(holle will)}$	(2 marks)		
	$=1-\left(\frac{8}{9}\right)\times\left(\frac{15}{16}\right)$	correct solution		
		(1 mark)		
	$=\frac{51}{216}$	correct solution		
	(d) (i) 60, 72, 86.4, 103.68,			
	$T_n = ar^{n-1}$	(2 montro)		
	$T_8 = 60(1.2)^7$	correct solution		
	= 214.99	(1 mark)		
	= 215 mm (nearest mm)	some progress towards correct solution		

H5	(ii) $T_n = ar^{n-1}$ $T_n > 400$ $ar^{n-1} > 400$ $60(1.2)^{n-1} > 400$ $(1.2)^{n-1} > \frac{20}{3}$ $\log(1.2)^{n-1} > \log\left(\frac{20}{3}\right)$ $n-1 > \frac{\log\left(\frac{20}{3}\right)}{\log(1.2)}$ n > 11.405 $\therefore n = 12$	(2 marks) correct solution (1 mark) some progress towards correct solution
	(e) (i) limiting sum if $ r < 1$ $r = \frac{10x}{5} = \frac{20x^2}{10x}$ r = 2x 2x < 1 2x < 1 or $-2x < 1x < \frac{1}{2} or x > \frac{-1}{2}-1$ 1	(2 marks) correct solution (1 mark) some progress towards correct solution
	$\therefore \frac{-1}{2} < x < \frac{1}{2}$ (ii) Limiting sum: $S_{\infty} = \frac{a}{1-r}$ $100 = \frac{5}{1-2x}$ $100 - 200x = 5$ $200x = 95$ $x = \frac{19}{40} \text{ or } 0.475$	(2 marks) correct solution (1 mark) some progress towards correct solution

Year 12 Mathematics Trial (Task 4) Examination 2013					
Question N	o. 15 Solutions and Marking Guidelines				
Outcomes Addressed in this Question					
H2 cons	structs arguments to prove and justify results	exponential functions			
H5 ann	lies appropriate techniques from the study of calculus to so	blve problems			
H8 uses	techniques of integration to calculate areas and volumes				
Outcome	Solutions	Marking Guidelines			
H3, H5	(a)	2 marks			
	$y = 7^{x}$ $x = \log_{7} y \qquad \text{(written in equivalent logarithmic form)}$ Changing the base to 'e' $x = \frac{\ln y}{\ln 7}$ $\frac{dx}{dy} = \frac{1}{\ln 7} \cdot \frac{1}{y}$ $\frac{dy}{dy} = \frac{1}{\ln 7} = \frac{1}{2}$	Correct solution showing each step 1 mark Demonstrates ability to express exponential equation in logarithmic form.			
	$\frac{1}{dx} = \frac{1}{\ln 7} \frac{1}{y}$ $= \ln 7.y$ $= \ln 7.7^{x} \text{(as required)}$				
H3, H5	(b) $f''(x) = -\frac{3}{x^2}$ $f'(x) = \frac{3}{x} + c$ But $f'\left(\frac{1}{2}\right) = 6$ Substituting gives $6 = \frac{3}{\frac{1}{2}} + c$ c = 0 $\therefore f'(x) = \frac{3}{x}$ $f(x) = 3\ln x + c$ But $f\left(\frac{1}{2}\right) = 1$ Substituting gives $1 = 3\ln 2^{-1} + c$ $c = 1 + 3\ln 2$ $\therefore f(x) = 3\ln x + 3\ln 2 + 1$ $= 3\ln 2x + 1$	3 marks Correct solution showing each step 2 mark Substantial progress towards correct solution demonstrating the abilty to find a primitive function and evaluate the constant as required. 1 mark Some progress towards correct solution.			
H3, H5	(c) $y = xe^{x}$ $y' = xe^{x} + e^{x}$ $= e^{x}(x+1)$ Gradient of curve when $x = \ln 2$ $m = e^{\ln 2}(\ln 2 + 1)$ $= 2 \ln 2 + 2$ $= 2(\ln 2 + 1)$	2 marks Correct solution showing each step 1 mark Differentiates the function correctly.			
	(4) (i)				
H3	$e^{x-1} - 2 = 0$ $e^{x-1} = 2$ $x - 1 = \ln 2$ $x = \ln 2 + 1$ $= 1.69 (2 \text{ dec. pl.})$	1 mark Correct solution			

Н3, Н5	(ii) $\int_{1}^{2} e^{x-1} - 2 dx = \left[e^{x-1} - 2x \right]_{1}^{2}$ $= (e-4) - (1-2)$ $= e-4+1$ $= e-3$	2 marks Correct solution showing each step 1 mark Correctly finds the integral but does not proceed to correct solution.
H8	(iii) The curve $y = e^{x-1} - 2$ cuts the x-axis at 1.69. Hence, some of the curve will be above the x-axis, a "positive" area, and some below the x-axis, a "negative" area. Area under the curve should be the magnitude of these areas summed. The integral is the sum of the "signed" area.	1 mark Statement demonstrates a clear understanding of the relationship between an integral and an area.
H2	(e) (i) In Δ 's <i>ABE</i> and <i>CED</i> $\angle ABE = \angle CDE$ (alternate angles equal, <i>AB</i> <i>CD</i>) $\angle AEB = \angle CED$ (vertically opposite angles equal) AE = CE (given) $\therefore \triangle ABE \equiv \triangle CED$ (AAS Test)	2 marks Correct solution showing all reasoning. 1 mark Substantial progress towards correct solution or correct solution with deficient reasoning.
H2	(ii) Now, $BE = DE$ (matching sides in congruent triangles) Since $AE = CE$ (given) And $BE = DE$ (proven) Diagonals of quadrilateral <i>ABCD</i> bisect each other, $\therefore ABCD$ is a parallelogram (diagonal properties of a parallelogram.)	2 marks Correct solution showing all reasoning. 1 mark Substantial progress towards correct solution or correct solution with deficient reasoning.
	∴AD BC (opposite sides of a parallelogram)	

Year 12 Trial Higher School CertificateExtension 1Mathematics2013Question No. 16Solutions and Marking Guidelines

Outcomes Addressed in this Question

H3 - manipulates algebraic expressions involving logarithmic and exponential functions

P3 - performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities

H5 - applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems

H9 - communicates using mathematical language, notation, diagrams and graphs

Question 16:

H3 - manipulates algebraic expressions involving logarithmic and exponential functions

P3 - performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities

H5 - applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems

H9 - communicates using mathematical language, notation, diagrams and graphs

	 (a) 200/360 × 2π = 3 ⋅ 491 (b) Quadrants 1 & 3. Related angle ≈ 0 ⋅ 6155 (retain full value in memory) θ = 0 ⋅ 6155 or -2 ⋅ 5261 	Correct answer only 1 mark Both answers 2 marks
H5	(c) (i) By the cosine rule $AB^2 = 10^2 + 15^2 - 2 \times 10 \times 15 \times \cos(60^2)$ (<i>ii</i>) Distance = $5\sqrt{7}$ km ≈ 13.23 km	1 mark for a neat, labelled diagram 2 marks for complete solution
Н5	(d) In right triangle ABC BC= $10\sqrt{3}$ m Area of ABC= $\frac{1}{2} \times 10 \times 10\sqrt{3}$ \therefore $50\sqrt{3}$ m ² Area of sector ABD= $\frac{\pi \times 10^2}{6}$ \therefore $\frac{50\pi}{3}$ m ² Exact area = $(50\sqrt{3} - \frac{50\pi}{3})$ m ²	1 mark each for the area of the triangle and the sector. 3 marks for the complete solution.

H5	(e) $\frac{d(x^{2} \tan^{2}(x^{2}))}{dx} = 2x \times \tan^{2}(x^{2}) + x^{2} \times \frac{d(\tan^{2}(x^{2}))}{dx}$ Using the chain rule and letting $u = \tan(v)$ where $v = x^{2}$ $\frac{d(\tan^{2}(x^{2}))}{dx} = \frac{du^{2}}{du} \times \frac{du}{dv} \times \frac{dv}{dx} = 2u \times \sec^{2} v \times 2x$ $= 2\tan(x^{2}) \times \sec^{2}(x^{2}) \times 2x$ $= 4x \tan(x^{2}) \sec^{2}(x^{2})$ Hence: $\frac{d(x^{2} \tan^{2}(x^{2}))}{dx} = 2x \tan^{2}(x^{2}) + 4x^{3} \tan(x^{2}) \sec^{2}(x^{2})$ $= 2x \tan(x^{2}) \{\tan(x^{2}) + 2x^{2} \sec^{2}(x^{2})\}$	 mark for the product rule or correct use. mark for substantial progress. marks for the complete solution.
	(f) (i) $\frac{d\ln(\sin x)}{dx} = \cot x$	1 mark
Н3	$(ii) \int_{-\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{2}{3} \cot x dx = \frac{2}{3} \left\{ \ln(\sin x) \right\}_{-\frac{\pi}{4}}^{\frac{\pi}{3}}$	
	$= \frac{2}{3} \{ \ln \frac{\sqrt{3}}{2} - \ln \frac{1}{\sqrt{2}} \}$ $= \frac{2}{3} \{ \ln \frac{\sqrt{3}}{2} + \ln \sqrt{2} \}$ $= \frac{2}{3} \ln \frac{\sqrt{6}}{2} \leftarrow \text{ acceptable progress for full marks}$	1 mark for correct integration and 1 mark for substantial
	3 2 = $\frac{2}{3} \{ \ln 6^{\frac{1}{2}} - \ln 2 \}$ = $\frac{2}{3} \times \frac{1}{2} \ln 6 - \frac{2}{3} \ln 2$	work towards the complete solution
:	$= \frac{\ln 6 - 2 \ln 2}{3} \qquad (2 \ln 2 = \ln 4)$ $= \frac{1}{3} \ln(\frac{3}{2})$	2 marks for the complete solution.

<u>Note:</u> Part (e) was, in some cases, expressed as $2x(2x^2+1)\tan^2(x^2) + 4x^3\tan(x^2)$, after having replaced $\sec^2(x^2)$ by $1 + \tan^2(x^2)$ and collecting the $\tan^2(x^2)$