

2015 HSC ASSESSMENT TASK 4

## **Trial HSC Examination**

# **Mathematics**

Examiners ~ Mrs P. Biczo, Mr J. Dillon, Mr S. Faulds, Mrs D. Crancher, Mrs T. Tarannum

## **General Instructions**

- $\circ$  Reading Time 5 minutes
- $\circ$  Working Time 3 hours
- Write using a blue or black pen.
- Board approved calculators and mathematical templates and instruments may be used.
- Show all necessary working in Questions 11 16.
- This examination booklet consists of 15 pages including a standard integral page and multiple choice answer sheet.

## Total marks (100)

## Section I

Total marks (10)

- o Attempt Questions 1 10
- Answer on the Multiple Choice answer sheet provided.
- Allow 15 minutes for this section.

## Section II

Total marks (90)

- $\circ$  Attempt questions 11 16
- Answer each question in the Writing Booklets provided.
- Start a new booklet for each question with your name and question number at the top of the page.
- All necessary working should be shown for every question.
- Allow 2 hours 45 minutes for this section.

Name: \_\_\_\_\_

Teacher:

## Section I

## 10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1 - 10.

1. The solution to  $3x^2 - 7x = 1$  is

(A) 
$$\frac{-7 \pm \sqrt{37}}{6}$$
 (B)  $\frac{7 \pm \sqrt{61}}{6}$  (C)  $\frac{-7 \pm \sqrt{61}}{6}$  (D)  $\frac{7 \pm \sqrt{37}}{6}$ 

2. The maximum value of the expression 
$$-2x^2 - 4x + 7$$
 is

- (A) -1 (B) 1 (C) 7 (D) 9
- 3. A primitive function for  $12x^2 4$  could be
  - (A) 24x (B)  $4x^3 + 1$  (C) 24x + 10 (D)  $4x^3 4x + 1$

## **4.** A function is defined by the following rule:

$$f(x) = \begin{cases} 0 & \text{if } x \le -2 \\ -1 & \text{if } -2 < x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

What is the value of  $f(a^2)$ ?

(A)  $a^2$  (B) x (C) -1 (D) 0

- 5. The domain of the curve  $y = \log_e (x+1)$  is
  - (A) x < 1 (B) x > -1 (C)  $x \ge -1$  (D) x > 1

6. The derivative of  $y = \log_4 x$  is

(A) 
$$\frac{1}{x}$$
 (B)  $\frac{1}{x \ln 4}$  (C)  $\frac{4}{x}$  (D)  $\frac{\ln 4}{x}$ 

7. In a large business the employees are 55% male and 45% female. Two employees are selected at random. What is the probability that both are male?

(A) 0.2025 (B) 0.2475 (C) 0.3025 (D) 0.5555

8. What is solution to the equation 
$$\frac{\cos\theta}{\sqrt{3}} = -\frac{1}{2}$$
 for  $0^\circ \le \theta \le 360^\circ$ ?

(A) 
$$\theta = 30^{\circ} \text{ or } 330^{\circ}$$
 (B)  $\theta = 60^{\circ} \text{ or } 300^{\circ}$ 

(C) 
$$\theta = 120^{\circ} \text{ or } 240^{\circ}$$
 (D)  $\theta = 150^{\circ} \text{ or } 210^{\circ}$ 

9.



The graph of the line y = 3x - 6 is shown above. The line y = 3x - 6 is moved horizontally 1 unit to the right. The resulting line will have an equation:

(A) y = 3x + 9 (B) y = 3x - 7

(C) y = 3x - 9 (D) y = 3x - 8

- **10.** The second term of an arithmetic series is 37 and the sixth term is 17. What is the sum of the first ten terms?
  - (A) 54 (B) 195 (C) 280 (D) 390

## Section II

90 marks

## Attempt Questions 11 – 16

#### Allow about 2 hours 45 minutes for this section

Answer each question in the appropriate writing booklet.

All necessary working should be shown in every question.

| Quest | ion 11                | (15 marks) Start a new booklet                                                                                                                     | Marks  |
|-------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| (a)   | Factor                | tise $x^2 - 4y^2 - x + 2y$ .                                                                                                                       | 2      |
| (b)   | Graph                 | on a number line, the solution to $ x+2  < 3$ .                                                                                                    | 2      |
| (c)   | Simpli                | ify $\frac{1}{3\sqrt{2}-1} + \frac{2}{3\sqrt{2}+1}$ .                                                                                              | 2      |
| (d)   | For wl                | hat values of <i>m</i> will $2x^2 + mx + 4 = 0$ have real and distinct roots?                                                                      | 2      |
| (e)   | Consid<br>(i)<br>(ii) | der the parabola with focus $(1, -2)$ and directrix $y = 4$ .<br>Find the co-ordinates of the vertex.<br>Hence, find the equation of the parabola. | 1<br>1 |
|       |                       |                                                                                                                                                    |        |

(f) A and B are the points (0,1) and (0,7) respectively. The point P(x, y) moves so that the distance PA is equal to twice the distance PB. Show that the equation of the locus of P is given by  $x^2 + y^2 - 18y + 65 = 0$ . 2

Question 11 continues on the next page .....

#### Marks

Question 11 continued .....

(g) The diagram below shows the graph of the hyperbola  $y = \frac{-3}{x+1}$ .



(ii) Copy the diagram on to your answer booklet. 
$$-3$$

Using the diagram, state for what values of x, 
$$\frac{-3}{x+1} > 2$$
. 2

#### Marks

(a) Determine if the function  $f(x) = x^4 - 16$  is an even function, an odd function or neither. Justify your answer. 2

(b) Differentiate 
$$y = (x^4 - 1)^9$$
 and hence find  $\int x^3 (x^4 - 1)^8 dx$ . 2

(c) (i) The graph below shows the area under the curve  $y = \tan x$  (where x is measured in radians) between x = 0 and x = 1, and above the x axis.



Write three inequalities to describe the region inside the triangle.

3

3

2

- (ii) Use Simpson's rule, with three function values, to calculate the volume of the solid generated when the region in part (i) is rotated about the *x*-axis. Give your answer to one decimal place.
- (d) The function f(x) is defined by the rule  $f(x) = x^3 3x^2$  in the domain  $0 \le x \le 4$ .
  - i) It is given, that y = f(x) has a maximum turning point at (0,0) and a minimum turning point at (2,-4). Draw a neat sketch of the graph y = f(x), showing clearly the turning points, the intercepts with the *x*-axis and the *y*-axis and the values at the extremities of the domain.
  - ii) Indicate on your sketch the region bounded entirely by the parts of the graph of y = f(x) and the *x*-axis. Find the area of this region.

Solve for *x*, giving answer to 2 significant figures : (a)

$$3e^{10x} - 5 = 0$$
 3

Show that the derivative of  $2xe^{-x^2} + 1$  is given by  $2e^{-x^2}(1-2x^2)$ . (b) (i) 2

Find the equation of the normal to the curve  $y = 2xe^{-x^2} + 1$ , at the point where (ii) 2 it crosses the y axis.

Find the volume of the solid formed by rotating the area bounded by  $y = \log_e x$ , the x (c) and y axis and the line  $y = \log_e 3$  about the y axis.

(d) Differentiate 
$$\log_e\left(\frac{\sqrt{x}}{2x+1}\right)$$
 by using the log laws. 3

(e) Find 
$$\int_{1}^{3} \frac{2x}{x^2 + 3} dx$$
 2

Marks

(b)

(a) Differentiate: 
$$\frac{4x^5-2}{1-x}$$



The diagram above shows the graph of the function y = f(x) over the domain  $a \le x \le c$ .

(i) Name the feature at 
$$x = b$$
. 1

(ii) Discuss the behavior of y = f'(x) and y = f''(x) over the given domain. 3

(c) For the function  $f(x) = x^4 - 8x^3 + 24x^2 - 32x + 19$ :

(i) show that 
$$f'(2) = f''(2) = 0.$$
 2

(ii) find the co-ordinates of the stationary point on y = f(x) and determine its nature. 2

Question 14 continues on the next page .....

(d)



A cylindrical plastic water tank of radius r metres, height h metres and capacity 4 000 litres can be manufactured for  $25/m^2$  for the top and bottom and  $15/m^2$  for the tank wall. These costs include both materials and the manufacturing process.

(i) Show the cost, \$C, of making this tank is given by the formula:  $C = \$ \left( 50\pi r^2 + \frac{120}{r} \right)$ (ii) Find the dimensions of the tank for cost to be a minimum and hence, find this

cost to the nearest dollar.





In the diagram *P* is the point (-2,1) and *Q* is the point (3,11). Both points *P* and *S* lie on the line y = 1. Point *S* has coordinates (a,1). *K* is a point in the fourth quadrant. Line *PQ* makes an angle of  $\beta$  with the line y = 1.

| (i)   | Find the gradient of PQ.                                                                                                        | 1 |
|-------|---------------------------------------------------------------------------------------------------------------------------------|---|
| (ii)  | Find the equation of the line PQ.                                                                                               | 1 |
| (iii) | Briefly explain why $\beta = 63^{\circ}$ correct to the nearest degree.                                                         | 1 |
| (iv)  | <i>PQSK</i> is a rhombus. Find the <b>exact</b> lengths of <i>PQ</i> and <i>PK</i> . Give a geometrical reason for your answer. | 2 |
| (v)   | Calculate the size of $\angle PQS$ . Give a reason for your answer.                                                             | 2 |
| (vi)  | By using the properties of a rhombus, or otherwise, show that the value of $a$ , the $x$ -coordinate of point $S$ , is 8.       | 2 |

Question 15 continues on the next page .....

## Question 15 continued .....

- (b) A person invests \$600 at the beginning of each year in a superannuation fund.
   Compound interest is paid at 8% per annum on the investment. The first \$600 is to be invested at the beginning of 2008 and the last is to be invested at the beginning of 2037. Calculate to the nearest dollar:
  - (i) The amount to which the 2008 investment will have grown by the beginning of 2038.
  - (ii) The amount to which the total investment will have grown by the beginning of 2038.
- (c) In the diagram below, *ABCD* is a parallelogram with *CD* produced to *E*. *BE* meets *AD* at *F*. Prove that  $\triangle ABF \parallel \mid \triangle DEF$ .

2

1



#### Marks

(a)



A circle has centre O and radius of 12 cm. The length of arc AB is  $8\pi$  cm.

| (i)  | What is the size of $\angle AOB$ ? Answer in radians.                                                      | 1 |
|------|------------------------------------------------------------------------------------------------------------|---|
| (ii) | Find the area of the minor segment cut off by the chord <i>AB</i> . Give your answer to one decimal place. | 2 |

(b) Alex and Bella leave from point *O* at the same time.
Alex travels at 20 km/h along a straight road in the direction 085° T.
Bella travels at 25 km/h along another straight road in the direction 340° T.

Draw a diagram to represent this information.

- (i) Show that  $\angle AOB$  is 105° where  $\angle AOB$  is the angle between the directions taken by Alex and Bella.
- (ii) Find the distance Alex and Bella are apart, to the nearest kilometre, after two hours.

(c) Prove  $(\sec\theta - \cos\theta)^2 = \tan^2\theta - \sin^2\theta$ 

1

2

#### Question 16 continued .....

(d) Four cards, numbered 3, 4, 5 and 6 are used in a game.



The four cards are placed face down and each player pays \$1 to take a turn to draw two cards, one at a time without replacement.

The two cards make a two digit number, with the first card drawn being the first digit of their number.

If the cards form a number over 60, the player receives \$3 back (i.e. they win \$2),

otherwise, they receive nothing back.

The four cards are then shuffled and replaced for the next turn.

- (i) Use a diagram to show all of the possible 2-digit numbers that could be drawn. 1
- (ii) What is the probability that a player will win on their first turn? 2
- (iii) Calculate the probability that a player who brings \$5 to play will have \$3 left after 5 turns?
- (e) A triangle *ABC* is right-angled at *C*. *D* is the point on *AB* such that *CD* is perpendicular to *AB*. Let  $\angle BAC = \theta$ .



Given that 8AD + 2BC = 7AB.

Show that  $8\cos\theta + 2\tan\theta = 7\sec\theta$ 

### **End of Examination**





| Year 12 20 | 15 Mathematics                                                                                                                            | Task 4 Yearly                                                                                                    |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Question N | lo. 12 Solutions and Marking Guidelines                                                                                                   |                                                                                                                  |
| 7.5        | Outcomes Addressed in this Question                                                                                                       |                                                                                                                  |
| P5 und     | ierstands the concept of a function and the relationship between a fur                                                                    | iction and its graph                                                                                             |
| H8 use     | s techniques of integration to calculate areas and volumes                                                                                |                                                                                                                  |
| Outcome    | Solutions                                                                                                                                 | Marking Guidelines                                                                                               |
| Р5         | Question 12<br>a)<br>$f(x) = x^4 - 16$<br>$f(-x) = (-x)^4 - 16$<br>$= x^4 - 16$                                                           | 2 Marks for complete<br>correct solution with<br>complete correct reasoning<br>and using correct<br>terminology. |
|            | Since $f(x) = f(-x) = x^4 - 16$ , then the function $f(x) = x^4 - 16$ is an even function.                                                | solution                                                                                                         |
| H8         | b)<br>$\frac{dv}{dx} = 9(4x^{3})(x^{4}-1)^{3}$ $= 36x^{3}(x^{4}-1)^{8}$                                                                   | 2 Marks for complete<br>correct solution                                                                         |
|            | $\therefore \int x^{3} (x^{4} - 1)^{8} dx$<br>= $\frac{1}{36} \int 36x^{3} (x^{4} - 1)^{8} dx$                                            | 1 Mark for partial correct solution                                                                              |
|            | $=\frac{1}{36}(x^4-1)^9+C$ c)                                                                                                             | I mark for $y \ge \tan x$ or<br>$y > \tan x$                                                                     |
| H8         | (i)<br>$y \leq \tan x,  x \leq 1,  y \geq 0$                                                                                              | 1 mark for $x \le 1$ or $x < 1$                                                                                  |
| H8         | (ii)                                                                                                                                      | 1 mark for $y \le 0$ or $y < 0$                                                                                  |
|            | $V \approx \pi \int_{0}^{1} \tan^{2} x  dx$                                                                                               | 3 Marks for complete<br>correct solution                                                                         |
|            | $\approx \pi \left  \frac{\left( \frac{2}{3} \right)}{3} \right  \left( \tan^2(0) + 4 \tan^2\left(\frac{1}{2}\right) + \tan^2(1) \right)$ | 2 Marks for correct solution but forgetting $\pi$                                                                |
|            | $\approx 1.895$<br>≈ 1.9 (to one decimal place)                                                                                           | l mark for any correct<br>working that could lead to a<br>solution.                                              |
|            |                                                                                                                                           |                                                                                                                  |
|            |                                                                                                                                           |                                                                                                                  |
|            |                                                                                                                                           |                                                                                                                  |



**Multiple Choice Answers:** 

I. B 2. D 3. D 4. A 5. B 6. B 7. C 8. D 9. C 10. B

|            | Year 12 Mathematics Trial 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                             |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question N | o. 13 Solutions and Marking Guidelines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                             |
| Ma         | anipulates algebraic expressions involving logarithmic and exponential functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                             |
| Outcome    | Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Marking Guidelines                                                                                                                                                          |
|            | (a)<br>$3e^{10x} - 5 = 0$<br>$e^{10x} = \frac{5}{3}$<br>$\ln(e^{10x}) = \ln(\frac{5}{3})$<br>$10x = \ln(\frac{5}{3})$<br>$x = \frac{\ln(\frac{5}{3})}{10}$<br>$\therefore x = 0.051 (2 \text{ sig figs})$<br>(b) (i)                                                                                                                                                                                                                                                                                                                                | 3 marks<br>Correct solution with correct<br>rounding.<br>2 marks<br>Substantial progress towards<br>correct solution<br>1 mark<br>Some progress towards<br>correct solution |
|            | $y = 2xe^{-x^{2}} + 1$ Let $u = 2x$ and $v = e^{-x^{2}}$<br>Then $u' = 2$ and $v' = -2xe^{-x^{2}}$<br>y' = ux' + vu'<br>$y' = 2x.(-2xe^{-x^{2}}) + e^{-x^{2}}.2$<br>$y' = 2e^{-x^{2}} - 4x^{2}e^{-x^{2}}$<br>$\therefore y' = 2e^{-x^{2}}(1-2x)$<br>(ii)<br>$u = 2xe^{-x^{2}} + 1$                                                                                                                                                                                                                                                                  | 2 marks<br>Correct solution.<br>1 mark<br>Substantial progress towards<br>correct solution.                                                                                 |
|            | $y = 2xe^{-1} + 1$<br>Crosses the y-axis when $x = 0$ . i.e at $(0,1)$<br>When $x = 0$ , $y' = 2e^{0}(1-0)$<br>y' = 2 that is, gradient of tangent is 2.<br>$\therefore$ gradient of normal is $\frac{-1}{2}$ .<br>Equation of normal:<br>$y - 1 = \frac{-1}{2}(x-0)$<br>$\therefore y = \frac{-1}{2}x + 1$ or $x + 2y - 2 = 0$<br>(c)<br>$y = \frac{1}{2}x + 1$ or $x + 2y - 2 = 0$<br>(c)<br>$y = \frac{1}{2}x + 1$ or $x + 2y - 2 = 0$<br>(c)<br>$y = \frac{1}{2}x + 1$ or $x + 2y - 2 = 0$<br>(c)<br>$y = \frac{1}{2}x + 1$ or $x + 2y - 2 = 0$ | 2 marks<br>Correct solution.<br>1 mark<br>Substantial progress towards<br>correct solution.                                                                                 |
|            | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                             |



| Year 12 Mathematics Trial Examination 2015       |                                                                                  |                                        |  |  |
|--------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------|--|--|
| Question No. 14 Solutions and Marking Guidelines |                                                                                  |                                        |  |  |
|                                                  | Outcomes Addressed in this Questi                                                | 011                                    |  |  |
| H4 exp                                           | resses practical problems in mathematical terms based on si                      | mple given models                      |  |  |
| H5 app                                           | lies appropriate techniques from the study of calculus, geon                     | tetry, probability, trigonometry       |  |  |
| H7 nse                                           | a solve problems<br>s the features of a graph to deduce information about the de | rivative                               |  |  |
| Outcome                                          | Solutions                                                                        | Marking Guidelines                     |  |  |
|                                                  | (a)                                                                              | 2 marks                                |  |  |
| H5                                               | $\frac{1}{d} \frac{4x^4 - 2}{4x^4 - (1 - x) \cdot 20x^4 - (4x^4 - 2) \cdot -1}$  | Correct solution.                      |  |  |
|                                                  | $\frac{1}{dx} \frac{1-x}{1-x} = \frac{1}{(1-x)^2}$                               | I mark<br>Uses quotient rule correctly |  |  |
|                                                  | $-\frac{20x^4-20x^3+4x^3-2}{2}$                                                  | oues quonem rate controlity.           |  |  |
|                                                  | $(1-x)^2$                                                                        |                                        |  |  |
|                                                  | $=\frac{20x^4-16x^5-2}{2}$                                                       |                                        |  |  |
|                                                  | $(1-x)^{*}$                                                                      |                                        |  |  |
|                                                  |                                                                                  |                                        |  |  |
| 1177                                             | (b) (i) Point of inflexion                                                       | 1 mark                                 |  |  |
| <b>r1</b> /                                      |                                                                                  | Correct answer.                        |  |  |
|                                                  |                                                                                  |                                        |  |  |
| H5, H7                                           | (ii)                                                                             | 3 marks                                |  |  |
| ,                                                | runchon increasing                                                               | Signs of derivatives correct, domains  |  |  |
|                                                  | Concave un                                                                       | correct.                               |  |  |
|                                                  | $\therefore f^*(x) > 0, \qquad a \le x \le b$                                    | Incomplete discussion, one             |  |  |
|                                                  | Point of inflexion                                                               | sign/domain incorrect.                 |  |  |
|                                                  | $f''(x) = 0, \qquad x = b$                                                       | 1 mark                                 |  |  |
|                                                  | Concave down                                                                     | At least 1 sign and domain correct.    |  |  |
|                                                  | $\therefore f''(x) < 0, \qquad b \le x \le c$                                    |                                        |  |  |
|                                                  |                                                                                  |                                        |  |  |
| HS                                               | $f(x) = x^{3} - 8x^{3} + 24x^{2} - 32x + 19$                                     |                                        |  |  |
|                                                  | $f'(x) = 4x^3 - 24x^2 + 48x - 32$                                                | 2 marks                                |  |  |
|                                                  | $f''(x) = 12x^2 - 48x + 48$                                                      | Correctly evaluates both derivatives.  |  |  |
|                                                  | $f'(2) = 4 \times 8 - 24 \times 4 + 48 \times 2 - 32$                            | Only one of the derivatives evaluated  |  |  |
|                                                  | = 0                                                                              | correctly OR correctly finds the first |  |  |
|                                                  | $f''(2) = 12 \times 4 - 48 \times 2 + 48$                                        | and second derivative without          |  |  |
|                                                  | = 0                                                                              | evaluating.                            |  |  |
|                                                  |                                                                                  |                                        |  |  |
| U4                                               |                                                                                  | 1 2                                    |  |  |
| 114                                              | Since $f(2) = 0 \implies$ the stationary point is at $x = 2$ .                   | 2 marks<br>Correct solution.           |  |  |
|                                                  | f(2)=3                                                                           | 1 mark                                 |  |  |
|                                                  | ie. Stationary point at (2,3)                                                    | correct co-ordinates only or correct   |  |  |
|                                                  | Since $f''(2) = 0 \implies \text{possible point of inflexion is at } x = 2$      | nature with justification.             |  |  |
|                                                  | Check for sign change                                                            |                                        |  |  |
|                                                  |                                                                                  |                                        |  |  |
|                                                  | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                           |                                        |  |  |
|                                                  | f''(x) 12 0 12                                                                   |                                        |  |  |
|                                                  |                                                                                  |                                        |  |  |
|                                                  | No sign change in $f''(x)$ , therefore, no point of                              |                                        |  |  |
|                                                  | inflexion.                                                                       |                                        |  |  |
|                                                  | Since $f''(x)$ is positive either side of stationary point,                      |                                        |  |  |
|                                                  | the curve must be concave up and hence a minimum                                 |                                        |  |  |
|                                                  | turning point at (2,3).                                                          |                                        |  |  |
|                                                  |                                                                                  |                                        |  |  |
|                                                  | J                                                                                | 1                                      |  |  |



| Vear 12 4   | exercisent Tack4 Mathematics                                                                                                                   | Examination 2015                      |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Ouestion    | No.15 Solutions and Marking Guidelines                                                                                                         | Examination 2015                      |
|             | Outcomes Addressed in this Question                                                                                                            | · · · · · · · · · · · · · · · · · · · |
| H2 - cons   | tructs arguments to prove and justify results                                                                                                  |                                       |
| H5 - appl   | ies appropriate techniques from the study of geometry and ,series to so                                                                        | olve problems                         |
| <i>(</i> .) | Solutions                                                                                                                                      | Marking Guidelines                    |
| (a)<br>(i)  | Gradient of $PQ$                                                                                                                               | Award 1 for correct solution          |
|             | $m_{PQ} = \frac{1}{3 - (-2)} = 2$                                                                                                              |                                       |
| (11)        | Equation of line $PQ$<br>$m_{PQ} = 2$ point (-2,1)                                                                                             | Award 1 for correct                   |
|             | y - 1 = 2(x - (-2))                                                                                                                            | Solution                              |
|             | y = 2x + 5                                                                                                                                     |                                       |
| (iii)       | $\beta = 63^{\circ}$ because $m = 2$                                                                                                           | Award 1 for correct solution          |
|             | and $\tan 63^\circ = 2$                                                                                                                        |                                       |
| (iv)        | <i>PQSK</i> is a rhombus and all sides of a rhombus are equal <i>PO</i> and <i>PK</i> are sides of a rhombus.                                  | Award 2 for correct                   |
|             | $\therefore PQ = PK$                                                                                                                           | Award 1 for substantial               |
|             | $PQ = \sqrt{(11-1)^2 + (3-(-2))^2}$                                                                                                            | progress towards correct solution     |
|             | $=\sqrt{100+25}=\sqrt{125}$                                                                                                                    |                                       |
|             |                                                                                                                                                |                                       |
| (v)         | In $\Delta PQS$ , $PQ = QS$ (PQSK is a rhombus and all sides of a rhombus are equal)                                                           | Award 2 for correct                   |
|             | $\therefore \Delta PQS$ is Isosceles                                                                                                           | solution                              |
|             | $\angle QPS = \angle QSP$ (angles opposite equal sides are equal in an Isosceles triangle)                                                     | Award 1 for substantial               |
|             | $\angle QPS = 63^{\circ}$ (proven in (iii))                                                                                                    | solution                              |
|             | $\therefore \angle QSP = 63^{\circ}$                                                                                                           |                                       |
|             | $\angle QPS + \angle QSP + \angle PQS = 180$ (angle sum of a mangle equals<br>180°)                                                            |                                       |
|             | $63^{\circ} + 63^{\circ} + \angle PQS = 180^{\circ}$                                                                                           |                                       |
|             | $\therefore \angle PQS = 54^{\circ}$                                                                                                           | Award 2 for correct                   |
| (vi)        | The diagonals of a rhombus intersect at $90^{\circ}$<br>$\therefore$ They will intersect at (3,1).                                             | solution<br>Award 1 for substantial   |
|             | The length from $(-2,1)$ to $(3,1)$ is 5 units.<br>$\therefore$ From $(3,1)$ to S has to be 5 units (Diagonals of a rhombus bisect each other) | progress towards correct<br>solution  |
|             | ∴ a = 3+5                                                                                                                                      |                                       |
|             | <i>a</i> = 8                                                                                                                                   |                                       |
|             |                                                                                                                                                |                                       |

.

| (  | b)                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                |
|----|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (i)                                                                                 | $P = \$600, r = 0.08, n = 30$ $A = P(1+r)^{n}$ $= 600 \times (1+0.08)^{30}$ $= 6037.60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Award 1 for correct solution                                                                                                                   |
|    | (ii)                                                                                | The initial \$600 invested at the beginning of 2008 will grow to<br>$A_1 = 600 \times (1.08)^{30}$ by 2038<br>The second \$600 invested at the beginning of 2009 will grow to<br>$A_2 = 600 \times (1.08)^{29}$ by 2038<br>The third \$600 invested at the beginning of 2010 will grow to<br>$A_3 = 600 \times (1.08)^{28}$ by 2038<br>The final \$600 invested at the beginning of 2037 will grow to<br>$A_{30} = 600 \times (1.08)^{18}$ by 2038<br>Total investement = $A_1 + A_2 + A_3 + \dots + A_n$<br>$= 600 \times (1.08^{30} + 1.08^{29} + 1.08^{28} + \dots + 1.08^4)$<br>$= 600 \times \frac{1.08(1.08^{30} - 1)}{1.08 - 1} = $73407.52$ | Award 3 for correct<br>solution<br>Award 2 for substantial<br>progress towards correct<br>solution<br>Award 1 for progress<br>towards solution |
| (( | c) In $\Delta$<br>$\angle AB$<br>B<br>Prod<br>$\angle F_A$<br>$\therefore \Delta B$ | $ABF$ and $\Delta DEF$ $FB = \angle EFD$ (Vertically opposite angles are equal) $ CE ($ opposite sides of parallelogram $ABCD$ are parallel , $CD$ is $ uced$ to $CE$ ) $AB = \angle FDE$ (Alternate angles on parallel lines are equal, $AB \mid  CE$ ) $ABF \mid   \Delta DEF$ (equiangular)                                                                                                                                                                                                                                                                                                                                                      | Award 2 for correct<br>solution<br>Award 1 for substantial<br>progress towards correct<br>solution                                             |

| Year 12     | Mathematics                                                                                           | Task 4 2015                                           |
|-------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Question 10 | 5 Solutions and Marking Guidelines                                                                    |                                                       |
| U5 000      | Outcome Addressed in this Question                                                                    | netry probability trigonometry                        |
| and         | series to solve problems                                                                              | meny, probability, argonomeny                         |
| Part        | Solutions                                                                                             | Marking Guidelines                                    |
| (a) (i)     | $l = r\theta$                                                                                         | 1 Mark: Correct answer.                               |
|             | $8\pi = 12\theta$                                                                                     |                                                       |
|             | $\theta = \frac{2\pi}{2\pi}$                                                                          |                                                       |
|             | 3                                                                                                     |                                                       |
| Gi)         |                                                                                                       |                                                       |
| (11)        | $A = \frac{1}{2} \times r^2 \times \theta \qquad \qquad A = \frac{1}{2} ab \sin \theta$               | 2 Marks: Correct answer.                              |
|             | $=\frac{1}{2}\times12^{2}\times\frac{2\pi}{2}$ $=\frac{1}{2}\times12\times12\times\sin\frac{2\pi}{2}$ |                                                       |
|             | 2 2 3 2 3                                                                                             | 1 Mark: Determines the area of the sector or triangle |
|             | $=48\pi \text{ cm}^2$ $=72\times\frac{\sqrt{3}}{2}=36\sqrt{3} \text{ cm}^2$                           | ine beeter of trangle.                                |
|             | 2                                                                                                     |                                                       |
|             | Area of segment = $48\pi - 36\sqrt{3} = 88.44 \text{ cm}^2$                                           |                                                       |
|             | , j                                                                                                   |                                                       |
| (h) (i)     |                                                                                                       | _                                                     |
| (0)(4)      | N                                                                                                     | I Mark: Correct answer.                               |
|             | $B_{h} = 20^{\circ} + 85^{\circ} = 105^{\circ}$                                                       |                                                       |
|             |                                                                                                       |                                                       |
|             | 20                                                                                                    |                                                       |
|             | \\ 85° \                                                                                              |                                                       |
| -           | $\downarrow \rightarrow A$                                                                            |                                                       |
|             | 3409                                                                                                  |                                                       |
|             |                                                                                                       |                                                       |
| (ii)        | After 2 hours Alex travels 40 km and Bella travels 50                                                 | 2 Marks: Correct answer.                              |
|             | km.                                                                                                   |                                                       |
|             | $4R^2 = 40^2 \pm 50^2 = 2 \times 40 \times 50 \times \cos 105^{\circ}$                                | 1 Mark: Uses the cosine rule                          |
|             | $AB^2 = 5125 \ 27618$                                                                                 |                                                       |
|             | AB = 71.66084133                                                                                      |                                                       |
|             | $AB \approx 72 \text{ km}$                                                                            |                                                       |
|             | MD = 72 Kill                                                                                          |                                                       |
|             | Alex and Bella are 72 km apart after 2 hours.                                                         |                                                       |
| (c)         | $LHS = \left(\sec\theta - \cos\theta\right)^2$                                                        | 2 Marilan Carrier ( 1. f.                             |
| <b>~</b> /  | $=\sec^2\theta - 2\sec\theta\cos\theta + \cos^2\theta$                                                | 2 warks: Correct solution.                            |
|             | $= \mathbf{i} + \tan^2 \theta - 2 \times \mathbf{i} + \cos^2 \theta$                                  | 1 Mark: Uses an appropriate                           |
|             | $=\tan^2\theta-1+\cos^2\theta$                                                                        | identity in an attempt to provide                     |
|             | $=\tan^2\theta - (1-\cos^2\theta)$                                                                    | a proof                                               |
|             | $=\tan^2\theta-\sin^2\theta$                                                                          |                                                       |
|             | = RHS                                                                                                 |                                                       |

| (d) (i) | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                         | <b>1 Mark:</b> All 12 combinations<br>shown.<br>May use other representations<br>for example, tree diagram.                                                                     |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ii)    | $P(win) = P(63 \text{ or } 64 \text{ or } 65) = \frac{3}{12} = \frac{1}{4}$                                                                                                                                                                                                                                                                                   | 2 Marks: Correct answer.                                                                                                                                                        |
|         |                                                                                                                                                                                                                                                                                                                                                               | 1 Mark: Determines the winning possibilities                                                                                                                                    |
| (iii)   | To end up with \$3 the player must win once and lose the other 4 times. There are five combinations of 1 win, 4 losses.<br>LLLLW<br>LLLWL<br>LLWLL<br>LWULL<br>WLLLL<br>WLLLL<br>Each of these has the same probability.<br>So P(\$3 left after 5 games) = $5 \times \frac{1}{4} \times \frac{3}{4} \times \frac{3}{4} \times \frac{3}{4} \times \frac{3}{4}$ | <ul> <li>2 marks: Correct answer.<br/>Decimal or percentage form<br/>acceptable</li> <li>1 Mark: For stating conditions<br/>under which player is left with<br/>\$3.</li> </ul> |
|         | $=\frac{405}{1024}$                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                 |
| (e)     | $\cos \theta = \frac{AD}{AC} \qquad \tan \theta = \frac{BC}{AC}$ $AD = AC \cos \theta \qquad BC = AC \tan \theta$ $\cos \theta = \frac{AC}{AB}$ $AB = AC \sec \theta$ Now $8AD + 2BC = 7AB$ $8AC \cos \theta + 2AC \tan \theta = 7AC \sec \theta$ $8 \cos \theta + 2 \tan \theta = 7 \sec \theta$                                                             | 2 Marks: Correct answer.<br>1 Mark: By referring to the<br>diagram, or otherwise, makes<br>some progress towards the<br>solution.                                               |