

Trial HSC Examination

Mathematics

Examiners ~ Mrs P. Biczo, Mr J. Dillon, Mr S. Faulds, Mrs D. Crancher, Mrs T. Tarannum

General Instructions

o Reading Time-5 minutes
o Working Time - 3 hours
o Write using a blue or black pen.
o Board approved calculators and mathematical templates and instruments may be used.
o Show all necessary working in Questions 11-16.
o This examination booklet consists of 15 pages including a standard integral page and multiple choice answer sheet.

Total marks (100)

Section I

Total marks (10)
o Attempt Questions 1 - 10
o Answer on the Multiple Choice answer sheet provided.
o Allow 15 minutes for this section.

Section II

Total marks (90)
o Attempt questions 11-16
o Answer each question in the Writing Booklets provided.
o Start a new booklet for each question with your name and question number at the top of the page.
o All necessary working should be shown for every question.
o Allow 2 hours 45 minutes for this section.

Name: \qquad

Teacher: \qquad

Section I

10 marks

Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple choice answer sheet for Questions 1-10.

1. The solution to $3 x^{2}-7 x=1$ is
(A) $\frac{-7 \pm \sqrt{37}}{6}$
(B) $\frac{7 \pm \sqrt{61}}{6}$
(C) $\frac{-7 \pm \sqrt{61}}{6}$
(D) $\frac{7 \pm \sqrt{37}}{6}$
2. The maximum value of the expression $-2 x^{2}-4 x+7$ is
(A) -1
(B) 1
(C) 7
(D) 9
3. A primitive function for $12 x^{2}-4$ could be
(A) $24 x$
(B) $4 x^{3}+1$
(C) $24 x+10$
(D) $4 x^{3}-4 x+1$
4. A function is defined by the following rule:

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \leq-2 \\
-1 & \text { if } & -2<x<0 \\
x & \text { if } & x \geq 0
\end{array}\right.
$$

What is the value of $f\left(a^{2}\right)$?
(A) a^{2}
(B) x
(C) -1
(D) 0
5. The domain of the curve $y=\log _{e}(x+1)$ is
(A) $x<1$
(B) $x>-1$
(C) $x \geq-1$
(D) $x>1$
6. The derivative of $y=\log _{4} x$ is
(A) $\frac{1}{x}$
(B) $\frac{1}{x \ln 4}$
(C) $\frac{4}{x}$
(D) $\frac{\ln 4}{x}$
7. In a large business the employees are 55% male and 45% female. Two employees are selected at random. What is the probability that both are male?
(A) 0.2025
(B) 0.2475
(C) 0.3025
(D) 0.5555
8. What is solution to the equation $\frac{\cos \theta}{\sqrt{3}}=-\frac{1}{2}$ for $0^{\circ} \leq \theta \leq 360^{\circ}$?
(A) $\theta=30^{\circ}$ or 330°
(B) $\theta=60^{\circ}$ or 300°
(C) $\theta=120^{\circ}$ or 240°
(D) $\theta=150^{\circ}$ or 210°
9.

The graph of the line $y=3 x-6$ is shown above. The line $y=3 x-6$ is moved horizontally 1 unit to the right. The resulting line will have an equation:
(A) $y=3 x+9$
(B) $y=3 x-7$
(C) $y=3 x-9$
(D) $y=3 x-8$
10. The second term of an arithmetic series is 37 and the sixth term is 17 . What is the sum of the first ten terms?
(A) 54
(B) 195
(C) 280
(D) 390

Section II

90 marks

Attempt Questions 11 - 16

Allow about $\mathbf{2}$ hours $\mathbf{4 5}$ minutes for this section

Answer each question in the appropriate writing booklet.
All necessary working should be shown in every question.

Question 11 (15 marks) Start a new booklet
(a) Factorise $x^{2}-4 y^{2}-x+2 y$.
(b) Graph on a number line, the solution to $|x+2|<3$.
(c) Simplify $\frac{1}{3 \sqrt{2}-1}+\frac{2}{3 \sqrt{2}+1}$.
(d) For what values of m will $2 x^{2}+m x+4=0$ have real and distinct roots?
(e) Consider the parabola with focus $(1,-2)$ and directrix $y=4$.
(i) Find the co-ordinates of the vertex.
(ii) Hence, find the equation of the parabola.
(f) $\quad A$ and B are the points $(0,1)$ and $(0,7)$ respectively. The point $P(x, y)$ moves so that the distance $P A$ is equal to twice the distance $P B$.
Show that the equation of the locus of P is given by $x^{2}+y^{2}-18 y+65=0$.

Question 11 continued
(g) The diagram below shows the graph of the hyperbola $y=\frac{-3}{x+1}$.

(i) Show that $y=\frac{-3}{x+1}$ and the line $y=2$ intersect when $x=-\frac{5}{2}$.
(ii) Copy the diagram on to your answer booklet.

Using the diagram, state for what values of $x, \frac{-3}{x+1}>2$. 2
(a) Determine if the function $f(x)=x^{4}-16$ is an even function, an odd function or neither. Justify your answer.
(b) Differentiate $y=\left(x^{4}-1\right)^{9}$ and hence find $\int x^{3}\left(x^{4}-1\right)^{8} d x$.
(c) (i) The graph below shows the area under the curve $y=\tan x$ (where x is measured in radians) between $x=0$ and $x=1$, and above the x axis.

Write three inequalities to describe the region inside the triangle.
(ii) Use Simpson's rule, with three function values, to calculate the volume of the solid generated when the region in part (i) is rotated about the x-axis. Give your answer to one decimal place.
(d) The function $f(x)$ is defined by the rule $f(x)=x^{3}-3 x^{2}$ in the domain $0 \leq x \leq 4$.
i) It is given, that $y=f(x)$ has a maximum turning point at $(0,0)$ and a minimum turning point at $(2,-4)$. Draw a neat sketch of the graph $y=f(x)$, showing clearly the turning points, the intercepts with the x-axis and the y-axis and the values at the extremities of the domain.
ii) Indicate on your sketch the region bounded entirely by the parts of the graph of $y=f(x)$ and the x-axis. Find the area of this region.
(a) Solve for x, giving answer to 2 significant figures :

$$
3 e^{10 x}-5=0
$$

(b) (i) Show that the derivative of $2 x e^{-x^{2}}+1$ is given by $2 e^{-x^{2}}\left(1-2 x^{2}\right)$.
(ii) Find the equation of the normal to the curve $y=2 x e^{-x^{2}}+1$, at the point where it crosses the y axis.
(c) Find the volume of the solid formed by rotating the area bounded by $y=\log _{e} x$, the x and y axis and the line $y=\log _{e} 3$ about the y axis.
(d) Differentiate $\log _{e}\left(\frac{\sqrt{x}}{2 x+1}\right)$ by using the log laws.
(e) Find $\int_{1}^{3} \frac{2 x}{x^{2}+3} d x$
(a) Differentiate: $\frac{4 x^{5}-2}{1-x}$
(b)

The diagram above shows the graph of the function $y=f(x)$ over the domain $a \leq x \leq c$.
(i) Name the feature at $x=b$.
(ii) Discuss the behavior of $y=f^{\prime}(x)$ and $y=f^{\prime \prime}(x)$ over the given domain.
(c) For the function $f(x)=x^{4}-8 x^{3}+24 x^{2}-32 x+19$:
(i) show that $f^{\prime}(2)=f^{\prime \prime}(2)=0$.
(ii) find the co-ordinates of the stationary point on $y=f(x)$ and determine its nature. 2
(d)

A cylindrical plastic water tank of radius r metres, height h metres and capacity 4000 litres can be manufactured for $\$ 25 / \mathrm{m}^{2}$ for the top and bottom and $\$ 15 / \mathrm{m}^{2}$ for the tank wall. These costs include both materials and the manufacturing process.
(i) Show the cost, \$C, of making this tank is given by the formula:
$C=\$\left(50 \pi r^{2}+\frac{120}{r}\right)$
(ii) Find the dimensions of the tank for cost to be a minimum and hence, find this cost to the nearest dollar.
(a)

In the diagram P is the point $(-2,1)$ and Q is the point $(3,11)$. Both points P and S lie on the line $y=1$. Point S has coordinates $(a, 1) . K$ is a point in the fourth quadrant. Line $P Q$ makes an angle of β with the line $y=1$.
(i) Find the gradient of $P Q$.
(ii) Find the equation of the line $P Q$.
(iii) Briefly explain why $\beta=63^{\circ}$ correct to the nearest degree.
(iv) $\quad P Q S K$ is a rhombus. Find the exact lengths of $P Q$ and $P K$.

Give a geometrical reason for your answer.
(v) Calculate the size of $\angle P Q S$. Give a reason for your answer.
(vi) By using the properties of a rhombus, or otherwise, show that the value of a, the x-coordinate of point S, is 8 .

Question 15 continued
(b) A person invests $\$ 600$ at the beginning of each year in a superannuation fund. Compound interest is paid at 8% per annum on the investment. The first $\$ 600$ is to be invested at the beginning of 2008 and the last is to be invested at the beginning of 2037. Calculate to the nearest dollar:
(i) The amount to which the 2008 investment will have grown by the beginning of 2038.
(ii) The amount to which the total investment will have grown by the beginning of 2038.
(c) In the diagram below, $A B C D$ is a parallelogram with $C D$ produced to E. $B E$ meets $A D$ at F. Prove that $\triangle A B F \mid \| \triangle D E F$.

(a)

A circle has centre O and radius of 12 cm . The length of arc $A B$ is $8 \pi \mathrm{~cm}$.
(i) What is the size of $\angle A O B$? Answer in radians.
(ii) Find the area of the minor segment cut off by the chord $A B$.

Give your answer to one decimal place.
(b) Alex and Bella leave from point O at the same time.

Alex travels at $20 \mathrm{~km} / \mathrm{h}$ along a straight road in the direction $085^{\circ} \mathrm{T}$.
Bella travels at $25 \mathrm{~km} / \mathrm{h}$ along another straight road in the direction $340^{\circ} \mathrm{T}$.

Draw a diagram to represent this information.
(i) Show that $\angle A O B$ is 105° where $\angle A O B$ is the angle between the directions taken by Alex and Bella.
(ii) Find the distance Alex and Bella are apart, to the nearest kilometre, after two hours.
(c) Prove $(\sec \theta-\cos \theta)^{2}=\tan ^{2} \theta-\sin ^{2} \theta$
(d) Four cards, numbered 3, 4, 5 and 6 are used in a game.

The four cards are placed face down and each player pays $\$ 1$ to take a turn to draw two cards, one at a time without replacement.

The two cards make a two digit number, with the first card drawn being the first digit of their number.

If the cards form a number over 60 , the player receives $\$ 3$ back (i.e. they win $\$ 2$),
otherwise, they receive nothing back.
The four cards are then shuffled and replaced for the next turn.
(i) Use a diagram to show all of the possible 2-digit numbers that could be drawn.
(iii) Calculate the probability that a player who brings $\$ 5$ to play will have $\$ 3$ left after 5 turns?
(e) A triangle $A B C$ is right-angled at C.
D is the point on $A B$ such that $C D$ is perpendicular to $A B$.
Let $\angle B A C=\theta$.

Given that $8 A D+2 B C=7 A B$.

Show that $8 \cos \theta+2 \tan \theta=7 \sec \theta$

Year 12 Trial	Mathematics	Examination 2015	
Question No.11	Solutions and Marking Guidelines		
Outcomes Addressed in this Question			

P3 Performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities.
P4 Chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques.

Outcome	Solutions	Marking Guidelines
P4	$\begin{aligned} & \text { (a) } x^{2}-4 y^{2}-x+2 y \\ & =(x-2 y)(x+2 y)-1(x-2 y) \\ & =(x-2 y)(x+2 y-1) \end{aligned}$	2 marks : correct answer I mark : substantial progress towards correct solution
P4	$\text { (b) } \begin{gathered} \|x+2\|<3 \\ \therefore-3<x+2<3 \\ \therefore-5<x<1 \end{gathered}$	2 marks : correct solution
P3	$\text { (c) } \begin{aligned} & \frac{1}{3 \sqrt{2}-1}+\frac{2}{3 \sqrt{2}+1} \\ = & \frac{3 \sqrt{2}+1+2(3 \sqrt{2}-1)}{(3 \sqrt{2}-1)(3 \sqrt{2}+1)} \\ = & \frac{9 \sqrt{2}-1}{17} \end{aligned}$	1 mark : substantial progress towards correct solution 2 marks : correct solution 1 mark : substantial progress towards correct solution
P4	(d) Given $2 x^{2}+m x+4=0, \quad \Delta=m^{2}-4 \times 2 \times 4$. $\therefore \Delta=m^{2}-32$ Real and distinct roots when $\Delta>0$. Solving $m^{2}-32>0$, $(m-\sqrt{32})(m+\sqrt{32})>0$ Graphing this concave up parabola gives $m<-\sqrt{32}$ and $m>\sqrt{32}$. (e)	2 marks : correct solution 1 mark: substantial progress towards correct solution

(i) Vertex is half way between focus and directrix. From the graph, V is $(1,1)$.
(ii) As concave down parabola, equation is in the form $(x-1)^{2}=-4 a(y-1)$ and $a=3$ (focal length)
\therefore parabola is $(x-1)^{2}=-12(y-1)$
(f) distance $P A$ is equal to twice the distance $P B$
$\therefore \sqrt{(x-0)^{2}+(y-1)^{2}}=2\left(\sqrt{(x-0)^{2}+(y-7)^{2}}\right)$
$\therefore x^{2} \div(y-1)^{2}=4\left(x^{2}+(y-7)^{2}\right)$
$\therefore x^{2}+y^{2}-2 y+1=4 x^{2}+4 y^{2}-56 y+196$
$\therefore 0=3 x^{2}+3 y^{2}-54 y+195$
$\therefore x^{2}+y^{2}-18 y+65=0$
(g) (i) $y=\frac{-3}{x+1}$ and $y=2$ meet when $2=\frac{-3}{x+1}$
$\therefore 2 x+2=-3$
$\therefore 2 x=-5$
$\therefore x=-\frac{5}{2}$.
(ii)

From part (i), the graphs of $y=\frac{-3}{x+1}$ and $y=2$ intersect when $x=-\frac{5}{2}$.
\therefore the graph of $y=\frac{-3}{x+1}$ is above the graph of $y=2$ when $\frac{-5}{2}<x<-1$.

1 mark : correct answer

1 mark : correct answer

2 marks : correct solution

1 mark: substantial progress towards correct solution

1 mark: correc

 solution2 marks : correct solution

1 mark: substantial progress towards correct solution or
indicates the line or indicates the line
equivalent on the diagram, so that the solution can be read from the diagram.
H8 uses techniques of integration to calculate areas and volumes

Multiple Choice Answers:

Year 12 Mathematics Trial Examination 2015
Question No. 14 Solutions and Marking Guideline
Outcomes Addressed in this Question
H4 expresses practical problems in mathematical terms based on simple given models
H5 applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems

H7 7 uses the features of a graph to deduce information about the derivative		
Outcome	Solutions	Marking Guidelines

45
(ii)

Function increasing	
$\therefore f^{\prime}(x)>0$,	$a \leq x \leq c$
Concave up	
$\therefore f^{\prime \prime}(x)>0$.	$a \leq x \leq b$
Point of inflexion	
$\therefore f^{\prime \prime}(x)=0$,	$x=b$
Coneave down	
$\therefore f^{\prime \prime}(x)<0$,	$b \leq x \leq c$

H5
(c) (i)

$$
f(x)=x^{4}-8 x^{8}+24 x^{2}-32 x+19
$$

$$
f^{\prime}(x)=4 x^{3}-24 x^{2}+48 x-32
$$

$$
f^{\prime \prime}(x)=12 x^{2}-48 x+48
$$

$$
\begin{aligned}
& f^{\prime \prime}(x)=12 x^{2}-48 x+48 \\
& f^{\prime}(2)=4 \times 8-24 \times 4 \div 48 \times 2-32
\end{aligned}
$$

$$
\begin{gathered}
=0 \\
\\
0
\end{gathered}
$$

$$
f^{\prime \prime}(2)=12 \times 4-18 \times 2+48
$$

$$
=0
$$

(ii)

Since $f^{\prime}(2)=0 \quad \Rightarrow$ the stationary point is at $x=2$. $f(2)=3$
ie. Stationary point at $(2,3)$
Since $f^{\prime \prime}(2)=0 \quad \Rightarrow$ possible point of inflexion is at $x=3$ Check for sign change

x	1	2	3
$f^{\prime \prime}(x)$	12	0	12

No sign change in $f^{\prime \prime}(x)$, therefore, no point of inflexion.
Since $f^{\prime \prime}(x)$ is positive either side of stationary point, the curve must be concave up and hence a minimum uming point at $(2,3)$

H4, H5	(d) (i) $\begin{aligned} & V=4 \mathrm{~m}^{3} \\ & \text { ie. } \pi r^{2} h=4 \\ & \quad h=\frac{4}{\pi r^{2}} \end{aligned}$ Cost of top and bottom of tank $\begin{aligned} \mathrm{C}_{1} & =2 \pi r^{2} \times \$ 25 \\ & =50 \pi r^{2} \end{aligned}$ Cost of wall of tank $\begin{aligned} C_{2} & =2 \pi r h \times 15 \\ & =30 \pi r h \\ & =30 \pi r \times \frac{4}{\pi r^{2}} \\ & =\frac{120}{r} \end{aligned}$ Total cost $C=50 \pi r^{2}+\frac{120}{r}$	2 marks Correct solution. 1 mark correctly finds cost function for top and bottom or wall.
H4, H5	(ii) $\begin{aligned} & \frac{d C}{d r}=100 \pi r-\frac{120}{r^{2}} \\ & \frac{d^{2} C}{d r^{2}}=100 \pi+\frac{240}{r^{\prime}} \end{aligned}$ since $r>0$, any stationary points will be MINIMUM.	3 marks Correct and complete solution with full justification where required. 2 marks Substantial progress towards correct solution. 1 mark Some progress towards a correct solution.

inds cost function for to d bottom or wall.

```
marks
progress towards corr
Some progress towards a correct
solution.
```


(b)
(i) $\quad P=\$ 600, r=0.08, n=30$

$$
\begin{aligned}
A & =P(1+r)^{n} \\
& =600 \times(1+0.08)^{30} \\
& =6037.60
\end{aligned}
$$

(ii) The initial $\$ 600$ invested at the beginning of 2008 will grow to $A_{1}=600 \times(1.08)^{20}$ by 2038
The second $\$ 600$ invested at the beginning of 2009 will grow to
$A_{2}=600 \times(1.08)^{29}$ by 2038
The third $\$ 600$ invested at the beginning of 2010 will grow to
$A_{3}=600 \times(1.08)^{23}$ by 2038
The final $\$ 600$ invested at the beginning of 2037 will grow to
$A_{30}=600 \times(1.08)^{1}$ by 2038

Award 3 for correc

 solutionAward 2 for substantial progress towards correct solution

Award 1 for progress owards solution

ward 2 for correct

 solutionAward 1 for substantial progress towards correct solution

Mark: All 12 combinations shown.
May use other representations for example, tree diagram

2 Marks: Correct answer

1 Mark: Determines the winning possibilities

2 marks: Correct answer. Decimal or percentage form acceptable

1 Mark: For stating conditions under which player is left with $\$ 3$.

2 Marks: Correct answe

1 Mark: By referring to the diagram, or otherwise, makes some progress towards the solution.

