$$
2017
$$

Hurlstone Agricultural High
School
HSC Assessment Task4 - Trial

Mathematics

Examiners

- Mr S Faulds
- Ms P Biczo
- Ms D Crancher
- Mr G Huxley
- Ms T Tarannum
- Ms M Sabah
General
Instructions
- Reading time - 5 minutes
- Working time - 180 minutes
- Write using black or blue pen
- NESA-approved calculators may be used
- A Reference sheet is provided for your use

In Questions 11 to 16, show relevant mathematical reasoning and/or calculations

Total marks:
 100

Section I-10 marks (pages 2-4)

- Attempt Questions 1 to 10
- Allow about 15 minutes for this section

Section II - 90 marks (pages 5-14)

- Attempt Questions 11 to 16
- Allow about 2 hours and 45 minutes for this section

Student Name:

\qquad
Class Teacher: \qquad

Section I

10 marks

Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions $1-10$. This answer sheet is attached to the back of your examination paper. It may be removed and handed in with your answer booklets for Section 2.

1. How many solutions are there to $\cos 2 \theta=\frac{\sqrt{3}}{2}$ within the interval $0^{\circ} \leq \theta \leq 360^{\circ}$?
A: 1
B: 2
C: 3
D: 4
2. A square is inscribed in a circle of radius 3 cm as shown.

NOT TO SCALE

What is the area of the square?
A: $81 \mathrm{~cm}^{2}$
B: $36 \mathrm{~cm}^{2}$
C: $9 \pi \mathrm{~cm}^{2}$
D: $18 \mathrm{~cm}^{2}$
3. Which inequality defines the domain for $y=\frac{1}{\sqrt{x^{2}-9}}$?
A: $x<3$ or $x>3$
B: $x \leq-3$ or $x \geq 3$
C: $3<x<3$
D: $3 x 3$
4. The quadratic equation $x^{2}+3 x-1=0$ has roots α and β.

What is the value of $\alpha \beta+\left(\alpha^{2}+\beta^{2}\right)$?
A: -10
B: -8
C: 10
D: 8
5. What is the value of $\int_{1}^{4}|x-3| d x$?
A: 1.5
B: 2.5
C: -1.5
D: -2.5
6. Which of the following trigonometric expressions is equivalent to $\tan \left(\frac{\pi}{2}-\theta\right)$?
A: $\tan \theta$
B: $-\cot \theta$
C: $-\tan \theta$
D: $\cot \theta$
7. The equation of the line passing through the point $(2,-4)$ with a gradient of $\frac{1}{2}$ is given by which equation?
A: $y=\frac{1}{2} x-4$
B: $y=\frac{1}{2} x-5$
C: $y=\frac{1}{2} x+3$
D: $y=\frac{1}{2} x+4$
8.

Using Simpson's rule with 3 function values, which expression best represents the area bounded by the curve $y=f(x)$, the x-axis and the lines $x=1$ and $x=5$?
A: $\frac{2}{3}(1+4 a+b)$
B: $\frac{1}{2}(1+4 a+b)$
C: $\frac{2}{3}(4 a+b)$
D: $\frac{1}{2}(4 a+b)$
9.

Two identical spinners, containing the values 1,2 , and 3 are spun and the results on each are added together. What is the probability that the resulting sum is an even number?
A: $\frac{1}{3}$
B: $\frac{5}{9}$
C: $\frac{2}{3}$
D: $\frac{7}{9}$
10. An infinite geometric series has a first term of 2 and a limiting sum of 1.5 . What is the common ratio?
A: $-0 \cdot \dot{3}$
B: $-0 . \dot{6}$
C: $-1 \cdot 5$
D: -3.75

Section II starts on the next page.

Section II

90 marks

Attempt Questions 11 - 16
Allow about 2 hours and 45 minutes for this section

Answer each question in a new answer booklet.

All necessary working should be shown in every question.

Question 11 (15 marks) Start a new answer booklet.
(a) The surface area of a cube is $36 \mathrm{~cm}^{2}$.

What is the edge length of the cube correct to 3 significant figures?
(b) Simplify the following expression, giving your answer in simplest exact form with a rational

$$
\frac{\sqrt{3}}{2 \sqrt{7}-2}
$$

(c) Solve the equation:

$$
\left|\begin{array}{ll}
x & 2
\end{array}\right|=3 x+1
$$

(d) Fully factorise: $\quad 2 x^{4}-32$
(e) Find the value/s of x where the graphs of $x^{2}+y^{2}=16$ and $y=\frac{\sqrt{7}}{3} x$ intersect.
(f) Solve the exponential equation, giving your answer correct to 2 decimal places:

$$
3^{x}=4
$$

(g) Use a suitable substitution to solve the following equation:

$$
3 x^{4}-11 x^{2}-4=0
$$

(a) A function is defined as:

$$
\left\{\begin{array}{l}
f(x)=2 x-1 \text { for } 0 \leq x \leq 3 \\
f(x)=\frac{1}{3} x+4 \text { for } 3<x \leq 5
\end{array}\right.
$$

(i) What is the range of this function?
(ii) Find the value of $f(4)-f(2)$.
(b) Differentiate $(2 x+1)^{8}$ with respect to x.
(c) A rectangular box with a square base and no top is drawn below.

The volume of the box is $500 \mathrm{~cm}^{3}$.
(i) Show that the surface area (A) of the box is given by $A=x^{2}+\frac{2000}{x}$.
(ii) Find the least area of sheet metal required to make the box.
(d) A parabola has equation $8 y=x^{2} \quad 16$.
(i) Find the coordinates of its vertex.
(ii) Find the coordinates of its focus and the equation of its directrix.
(iii) Sketch the parabola, showing all relevant features.
(a) Solve for θ :

$$
\begin{equation*}
2 \cos ^{2} \theta+3 \sin \theta \cos \theta+\sin ^{2} \theta=0,0^{\circ} \leq \theta \leq 360^{\circ} \tag{3}
\end{equation*}
$$

(b) In the diagram, two circles with centres C and D intersect at A and B where

$$
A D=3 \mathrm{~cm}, A C=2 \mathrm{~cm}, \angle A C B=\frac{5 \pi}{6} \text { and } \angle A D B=\frac{\pi}{6} .
$$

NOT TO SCALE

The shaded region represents the common region of the two circles.
(i) Calculate the perimeter of the shaded region.
(ii) Calculate the area of the shaded region.
(c) Prove the identity: $\frac{1-\sin \theta}{\cos \theta}=\frac{\cos \theta}{1+\sin \theta}$
(d) A section of a rainforest is being designated for a species count. The shape is shown below.

The bearing of landmark A from landmark O is $248^{\circ} \mathrm{T}$ and is 24 km in distance. The distance from landmark A to B is 40 km and from landmark B to O is 35 km .

(i) Show that $\angle A O B=83^{\circ}$, to the nearest degree.
(ii) Calculate the area of the rainforest, correct to the nearest square kilometre.
(e)

In the figure above $A B \| D C, A B=q$ and $D C=p$.
Show that the length of BC is $\frac{(p-q) \sin 70^{\circ}}{\sin 60^{\circ}}$
(a) Differentiate with respect to x :

$$
y=2 x e^{3 x}
$$

(b) The sketch below shows part of the curve with equation $y=x^{2}(x+4)$.

The finite region R_{1} is bounded by the curve and the negative x-axis.
The finite region R_{2} is bounded by the curve, the positive x-axis and $A B$, where $A=(2,24)$ and $B=(b, 0)$ where $b>2$.

NOT TO
SCALE
(ii) If the areas of R_{1} and R_{2} are equal, find the exact value of b.
(c) Show that $\int_{0}^{5} \frac{3}{2 x+5} d x=\ln (3 \sqrt{3})$
(d) Differentiate $y=(\ln x)^{2}$ and hence evaluate $\int_{1}^{2} \frac{\ln x}{x} d x$
(e) The diagram below shows the graph of the function $f(x)=\frac{1}{2}\left(e^{x}+e^{x}\right)$.

The area bounded by the curve the x-axis and the lines $x=-2$ and $x=2$ is shaded.

Calculate the volume of the solid of revolution when this area is rotated about the x-axis. Leave your answer in exact form.

Question 15 (15 marks) Start a new answer booklet.
(a)

NOT TO
SCALE
$A B C D$ is a rectangle in which $A B=40 \mathrm{~cm}$ and $A D=60 \mathrm{~cm} . M$ is the midpoint of $B C$ and $D P$ is perpendicular to $A M$.
(i) Prove that triangles $A B M$ and $A P D$ are similar.
(ii) Calculate the length of $P D$.
(b) In the diagram, the points A, B and C are $(4,-6),(-18,0)$ and $(0,6)$ respectively.

NOT TO SCALE
(i) It is given that the equation of the line $A C$ is $3 x+y-6=0$. Show that the line $A C$ is perpendicular to the line $B C$.
(ii) $A B$ is the diameter of a circle which passes through the points A, B and C. Find the equation of the circle.
(c) The straight line $y=k x-4$ is a tangent to the hyperbola $y=\frac{1}{x}$. Find the value/s of k.
(d) A point $P(x, y)$ moves so that the perpendicular distance of the point to the line $3 x-4 y+1=0$ is 2 units.
(i) Find the equation of the locus of P.
(ii) Give a geometrical description of the locus.
(a) For the arithmetic sequence $5,11,17,23, \ldots$
(i) Write the rule to describe the nth term.
(ii) Find the sum of the first 100 terms.
(b) Two-digit numbers are formed from the digits 2, 3, 4, 5, 6. Repetition of digits is allowed. A two-digit number is then selected at random. What is the probability the number is a multiple of 3 ?
(c) The fourth and seventh terms of a geometric series are $\frac{15}{2}$ and 60 respectively. What is the first term?
(d) Kylo invests $\$ P$ at 7% per annum compounded annually.

He plans to withdraw $\$ 5000$ at the end of each year for eight years to cover university fees.
(i) Write down an expression for the amount $\$ A_{1}$ remaining in the account following the withdrawal of the first $\$ 5000$.
(ii) Find an expression for the amount $\$ A_{3}$ remaining in the account after the third withdrawal.
(iii) How much does Kylo need to invest if the account balance is to be $\$ 0$
at the end of the eight years?
(e) A game is played in which two coloured dice are thrown once. The six faces of the red die are numbered $1,3,5,7,9$ and 11 .
The six faces of the white die are numbered $2,4,6,8,10$ and 12 .
The player wins if the number on the red die is larger than the number on the white die.
(i) Show that the probability of the player winning a game is $\frac{5}{12}$.
(ii) What is the probability that the player wins exactly once in two successive games?
(iii) What is the probability that the player wins at least once in two successive games?

END OF EXAMINATION

\qquad
Class Teacher: \qquad

Hurlstone Agricultural
High School
HSC Assessment Task4

Section I - Multiple Choice Answer Sheet

Allow about 15 minutes for this section

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.
Sample:
$2+4=$
(A) 2
(B) 6
(C) 8
(D) 9
A
B
C
D

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A
B
C
D

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.

Start Here											
1	A	$\bigcirc \mathrm{B}$	$\bigcirc \mathrm{C}$	$\bigcirc \mathrm{D}$	\bigcirc	6	A	$\bigcirc \mathrm{B}$	$\bigcirc \mathrm{C}$	$\bigcirc \mathrm{D}$	\bigcirc
2	A	\bigcirc B	$\bigcirc \mathrm{C}$	$\bigcirc \mathrm{D}$	\bigcirc	7	A	$\bigcirc \mathrm{B}$	$\bigcirc \mathrm{C}$	$\bigcirc \mathrm{D}$	\bigcirc
3	A	$\bigcirc \mathrm{B}$	$\bigcirc \mathrm{C}$	$\bigcirc \mathrm{D}$	\bigcirc	8	A	$\bigcirc \mathrm{B}$	$\bigcirc \mathrm{C}$	$\bigcirc \mathrm{D}$	\bigcirc
4	A	$\bigcirc \mathrm{B}$	$\bigcirc \mathrm{C}$	$\bigcirc \mathrm{D}$	\bigcirc	9	A	$\bigcirc \mathrm{B}$	$\bigcirc \mathrm{C}$	$\bigcirc \mathrm{D}$	\bigcirc
5	A	$\bigcirc \mathrm{B}$	$\bigcirc \mathrm{C}$	$\bigcirc \mathrm{D}$	\bigcirc		A	$\bigcirc \mathrm{B}$	$\bigcirc \mathrm{C}$	$\bigcirc \mathrm{D}$	\bigcirc

Outcomes Addressed in this Question

P3 performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities
P4 chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques
H3 manipulates algebraic expressions involving logarithmic and exponential functions
Outcome
(a)

$$
\begin{aligned}
& \text { Surface area }=36 \mathrm{~cm}^{2} \\
& \text { Area of single face }=\frac{36}{6} \mathrm{~cm}^{2} \\
&=6 \mathrm{~cm}^{2} \\
& \text { Edge length }=\sqrt{6} \mathrm{~cm}^{2} \\
&=2.45 \mathrm{~cm}^{2}(3 \text { sig. figs. })
\end{aligned}
$$

P3
(b)

$$
\begin{aligned}
\frac{\sqrt{3}}{2 \sqrt{7}-2} & =\frac{\sqrt{3}}{2 \sqrt{7}-2} \times \frac{2 \sqrt{7}+2}{2 \sqrt{7}+2} \\
& =\frac{2 \sqrt{21}+2 \sqrt{3}}{4 \times 7-4} \\
& =\frac{2 \sqrt{21}+2 \sqrt{3}}{24} \\
& =\frac{\sqrt{21}+\sqrt{3}}{12}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& |x-2|=3 x+1 \\
& x-2=3 x+1 \\
& \text { OR } \\
& -x+2=3 x+1 \\
& 1=4 x \\
& x=-\frac{3}{2} \\
& x=\frac{1}{4}
\end{aligned}
$$

Checking solutions:

$$
\begin{aligned}
\left|-\frac{3}{2}-2\right| \neq 3 \times-\frac{3}{2}+1 & \left|\frac{1}{4}-2\right|=3 \times \frac{1}{4}+1 \\
\left|-\frac{7}{2}\right| \neq-\frac{7}{2} & \left|-\frac{7}{4}\right|=\frac{7}{4}
\end{aligned}
$$

$\therefore x=\frac{1}{4}$ is the only valid solution.
(d)

$$
\begin{aligned}
2 x^{4}-32 & =2\left(x^{4}-16\right) \\
& =2\left(x^{2}-4\right)\left(x^{2}+4\right) \\
& =2(x-2)(x+2)\left(x^{2}+4\right)
\end{aligned}
$$

2 marks

Correct factorisation.

1 mark

Substantial progress towards a correct factorisation.
(e) Graphs intersect when:

$$
\begin{aligned}
x^{2}+\left(-\frac{\sqrt{7}}{3} x\right)^{2} & =16 \\
x^{2}+\frac{7 x^{2}}{9} & =16 \\
9 x^{2}+7 x^{2} & =144 \\
16 x^{2} & =144 \\
x^{2} & =9 \\
x & = \pm 3
\end{aligned}
$$

(f)

$$
\begin{aligned}
3^{x} & =4 \\
\log 3^{x} & =\log 4 \\
x \log 3 & =\log 4 \\
x & =\frac{\log 4}{\log 3} \\
& =1.26(2 \text { dec. pl. })
\end{aligned}
$$

P4
(g)

$$
\begin{aligned}
\text { Let } X & =x^{2} \\
\therefore 3 X^{2}-11 X-4 & =0 \\
3 X^{2}-12 X+X-4 & =0 \\
3 X(X-4)+(X-4) & =0 \\
(X-4)(3 X+1) & =0 \\
X & =4,-\frac{1}{3}
\end{aligned}
$$

But, $X=x^{2}$

$$
\begin{aligned}
\therefore x^{2} & =4,-\frac{1}{3} \\
& = \pm 2 \text { only }\left(\frac{1}{\sqrt{-3}} \text { has no solutions }\right)
\end{aligned}
$$

2 marks

Correct solution giving both possible answers.
1 mark
Substantial progress towards a correct solution.

2 marks

Correct solution. Rounding not important.

1 mark

Substantial progress towards a correct solution.

2 marks

Correct solution.
1 mark
Substantial progress towards a correct solution.

Multiple Choice Answers	
$\mathbf{1}$	D
2	D
3	A
4	C
5	B
$\mathbf{6}$	D
7	B
$\mathbf{8}$	C
$\mathbf{9}$	B
$\mathbf{1 0}$	A

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{lc}
2 Trial \& Mathematics Advanced \\
on No. 13 \& Solutions and Marking Guidelines
\end{tabular} \& Examination 2017 \\
\hline \multicolumn{3}{|c|}{Outcomes Addressed in this Question} \\
\hline Part \& Solutions \& Marking Guidelines \\
\hline a.

b. \& $$
\begin{aligned}
& 2 \cos ^{2} \theta+3 \sin \theta \cos \theta+\sin ^{2} \theta=0 \\
& (2 \cos \theta+\sin \theta)(\cos \theta+\sin \theta)=0
\end{aligned}
$$

$$
\begin{array}{c|c}
2 \cos \theta+\sin \theta=0 & \cos \theta+\sin \theta=0 \\
\sin \theta=-2 \cos \theta & \sin \theta=-\cos \theta \\
\frac{\sin \theta}{\cos \theta}=-2 & \frac{\sin \theta}{\cos \theta}=-1 \\
\tan \theta=-2 & \tan \theta=-1 \\
\theta=116^{\circ} 34^{\prime}, 296^{\circ} 34^{\prime} & \theta=135^{\circ}, 315^{\circ}
\end{array}
$$

\[
\therefore \theta=116^{\circ} 34^{\prime}, 135^{\circ}, 296^{\circ} 34^{\prime}, 315^{\circ}

\] \& | Award 3 ~ Correct solution for x and y and correct reasoning |
| :--- |
| Award 2 ~ Correct solution for x and y |
| Award 1 ~ Makes some progress towards solution |

\hline \& | $l=r \theta$ |
| :--- |
| Arc length of small circle $=l_{\text {small }}=\frac{5 \pi}{6} \times 2=\frac{5 \pi}{3} \mathrm{~cm}$ |
| Arc length of large circle $=l_{\text {large }}=\frac{\pi}{6} \times 3=\frac{\pi}{2} \mathrm{~cm}$ |
| Perimeter of the shaded region $=\frac{5 \pi}{3}+\frac{\pi}{2}=\frac{13 \pi}{6} \mathrm{~cm}$ |
| ii) | \& | Award 2 ~ Correct solution |
| :--- |
| Award 1 ~ Makes substantial progress towards solution |

\hline \& \[
$$
\begin{aligned}
& A_{\text {shaded region }}=A_{\text {small segment }}+A_{\text {large segment }} \\
& A=\left\{\frac{1}{2} \times 2^{2} \times\left(\frac{5 \pi}{6}-\sin \frac{5 \pi}{6}\right)\right\}+\left\{\frac{1}{2} \times 3^{2} \times\left(\frac{\pi}{6}-\sin \frac{\pi}{6}\right)\right\} \\
& A=2\left(\frac{5 \pi}{6}-\sin \frac{5 \pi}{6}\right)+\frac{9}{2}\left(\frac{\pi}{6}-\sin \frac{\pi}{6}\right) \\
& A=2\left(\frac{5 \pi}{6}-\frac{1}{2}\right)+\frac{9}{2}\left(\frac{\pi}{6}-\frac{1}{2}\right) \\
& A=\frac{29 \pi-39}{12} \mathrm{~cm}^{2}
\end{aligned}
$$

\] \& | Award 3 ~ Correct solution |
| :--- |
| Award 2 ~ Makes substantial progress towards solution |
| Award 1 ~ Makes limited progress towards solution |

\hline
\end{tabular}

c.

$$
\begin{aligned}
\mathrm{LHS} & =\frac{1-\sin \theta}{\cos \theta} \\
& =\frac{1-\sin \theta}{\cos \theta} \times \frac{1+\sin \theta}{1+\sin \theta} \\
& =\frac{(1-\sin \theta)(1+\sin \theta)}{\cos \theta(1+\sin \theta)} \\
& =\frac{1-\sin ^{2} \theta}{\cos \theta(1+\sin \theta)} \\
& =\frac{\cos ^{2} \theta}{\cos \theta(1+\sin \theta)} \\
& =\frac{\cos \theta}{1+\sin \theta} \\
& =\text { RHS }
\end{aligned}
$$

(i) In $\triangle A O B$,

Let $\angle A O B=\theta$
d.

$$
\begin{aligned}
& \cos \theta=\frac{24^{2}+35^{2}-40^{2}}{2(24)(35)} \\
& \cos \theta=\frac{67}{560} \\
& \theta=83^{\circ} \\
& \therefore \angle A O B=83^{\circ}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
A & =\frac{1}{2} a b \sin C \\
& =\frac{1}{2} \times 24 \times \sin 83^{\circ} \\
& =417 \mathrm{~km}^{2}
\end{aligned}
$$

e.

Draw $B E$ parallel to $A D$.
$\frac{B C}{\sin 70^{\circ}}=\frac{p-q}{\sin 60^{\circ}}$
$\therefore B C=\frac{(p-q) \sin 70^{\circ}}{\sin 60^{\circ}}$

Award 2 ~ Correct
solution

Award 1 ~ Makes substantial progress towards solution

(c)
$\int_{0}^{5} \frac{3}{2 x+5} d x=\frac{3}{2} \times \int_{0}^{5} \frac{2}{2 x+5} d x$
$=\frac{3}{2}[\ln (2 x+5)]_{0}^{5}$
$=\frac{3}{2}[\ln 15-\ln 5]$
$=\frac{3}{2}[\ln 3]=\ln \left(3^{\frac{3}{2}}\right)=\ln (3 \sqrt{3})$
(d) $\quad \frac{d y}{d x}=\frac{d}{d x}(\ln x)^{2}$
$=2(\ln x) \times \frac{1}{x}$
$=\frac{2 \ln x}{x}$
$\int \frac{2 \ln x}{x} d x=(\ln x)^{2}+c$
$\int_{1}^{2} \frac{\ln x}{x} d x=\left[\frac{1}{2}(\ln x)^{2}\right]_{1}^{2}$
$=\frac{1}{2}\left[(\ln 2)^{2}-(\ln 1)^{2}\right]$
$=\frac{1}{2}(\ln 2)^{2}$
(e)

$$
\begin{aligned}
& y=\frac{1}{2}\left(e^{x}+e^{-x}\right) \\
& y^{2}=\frac{1}{4}\left(e^{x}+e^{-x}\right)^{2} \\
& y^{2}=\frac{1}{4}\left(e^{2 x}+e^{-2 x}+2\right) \\
& V=\pi \int_{-2}^{2} \frac{1}{4}\left(e^{2 x}+e^{-2 x}+2\right) \\
& V=\frac{\pi}{4}\left[\frac{e^{2 x}}{2}-\frac{e^{-2 x}}{2}+2 x\right]_{-2}^{2} \\
& V=\frac{\pi}{4}\left[\frac{e^{4}}{2}-\frac{e^{-4}}{2}+4-\frac{e^{-4}}{2}+\frac{e^{4}}{2}+4\right] \\
& V=\frac{\pi}{4}\left[e^{4}-e^{-4}+8\right] u^{3}
\end{aligned}
$$

Award 2 marks for the correct answer.

Award 1 mark for substantial progress towards the solution

Award 3 marks for the correct answer.

Award 2 mark for substantial progress towards the correct solution.

Award 1 mark for some progress towards the correct solution.

Award 3 marks for the correct answer.

Award 2 mark for substantial progress towards the correct solution.

Award 1 mark for some progress towards the correct solution.

Outcomes Addressed in this Question:

H5 applies appropriate techniques from the study of probability and series to solve problems

