\qquad

TEACHER: \qquad

HURLSTONE

 AGRICULTURAL HIGH SCHOOL
2019

Mathematics

Examiners	Mr D Potaczala Ms P Biczo, Ms. T Tarannum,
\quad Ms D Crancher, Mr J Dillon	

General

Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black pen
- NESA-approved calculators may be used
- A Reference sheet is provided
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total marks: \quad Section I-10 marks (pages 3-8)
100

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section

Section II - 90 marks (pages 9-17)

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section

SECTION I

10 marks

Attempt Questions 1 - 10

Allow about 10 minutes for this sections.

Use the multiple-choice answer sheet for Questions 1 - 10

Question 1

What is the value of $\frac{e^{2}}{6}$, correct to 3 significant figures?
A. 1.231
B. 1.232
C. 1.23
D. 1.22

Question 2

What is the solution to the equation $\cos 2 x=\frac{1}{2}$ in the domain $-\pi \leq x \leq \pi$?
A. $\quad x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{-5 \pi}{6}, \frac{-\pi}{6}$
B. $\quad x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
C. $x=\frac{\pi}{12}, \frac{11 \pi}{12}, \frac{13 \pi}{12}, \frac{23 \pi}{12}$
D. $\quad x=\frac{\pi}{12}, \frac{11 \pi}{12}, \frac{-11 \pi}{12}, \frac{-\pi}{12}$

Question 3

The diagram shows the parabola $y=4 x-x^{2}$ meeting the $y=2 x$ line at $(0,0)$ and $(2,4)$.

Which expression gives the area of the shaded region bounded by the parabola and the line?
A. $\int_{0}^{4} x^{2}-2 x d x$
B. $\int_{0}^{4} 2 x-x^{2} d x$
C. $\int_{0}^{2} x^{2}-2 x d x$
D. $\int_{0}^{2} 2 x-x^{2} d x$

Question 4

Which trigonometric equation represents the graph given below?

A. $y=2 \sin \left(\frac{2 \pi}{3} x\right)$
B. $y=2 \sin \left(\frac{3 \pi}{2} x\right)$
C. $y=2 \sin \left(\frac{2}{3} x\right)$
D. $y=2 \sin \left(\frac{3}{2} x\right)$

Question 5

The derivative of the curve $f(x)=4^{x}$ is given by which of the following?
A. $f^{\prime}(x)=4 \times 4^{x}$
B. $f^{\prime}(x)=\log _{e} 4 \times 4^{x}$
C. $f^{\prime}(x)=4 \times e^{x}$
D. $f^{\prime}(x)=\log _{e} 4 \times e^{x}$

Question 6

$\int e^{4 x+1} d x$ is given by which of the following?
A. $\frac{e^{4 x+1}}{\ln 4}+c$
B. $\frac{e^{4 x+1}}{4}+c$
C. $e^{4 x+1}+c$
D. $4 e^{4 x+1}+c$

Question 7

In the diagram below, what is the value of x ?

A. 49°
B. 59°
C. 108°
D. 121°

Question 8

In a class of 30 students, 8 have brown hair, 12 have brown eyes and 4 have both.
What is the probability that a student selected at random has either brown hair or brown eyes but not both?
A. $\frac{2}{15}$
B. $\frac{2}{5}$
C. $\frac{8}{15}$
D. $\frac{2}{3}$

Question 9

A flat circular disc is being heated so that the rate of increase of the area $\left(A \mathrm{in} \mathrm{m}^{2}\right)$, after t hours, given by $\frac{d A}{d t}=\frac{1}{8} \pi t$. Initially the disc has a radius of 2 metres.
Which of the following is the correct expression for the area after t hours?
A. $\quad A=\frac{1}{8} \pi t^{2}$
B. $\quad A=\frac{1}{16} \pi t^{2}$
C. $A=\frac{1}{8} \pi t^{2}+4 \pi$
D. $\quad A=\frac{1}{16} \pi t^{2}+4 \pi$

Question 10

It is assumed that the number $N(t)$ of ants in a certain nest at time $t \geq 0$ is given by

$$
N(t)=\frac{A}{1+e^{-t}}
$$

where A is a constant and t is measured in months.

At time $t=0, N(t)$ is estimated at 2×10^{5} ants. What is the value of A ?
A. 2×10^{5}
B. 2×10^{-5}
C. 4×10^{5}
D. 4×10^{-5}

SECTION II

90 marks

Attempt Questions 11 - 16

Allow about 2 hour 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Additional writing booklets are available.
In Questions $11-16$, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a new booklet

(a) Solve $2^{2 x+1}=32$.
(b) Solve $|x-2| \leq 3$.
(c) Factorise fully $36-x^{2}$.
(d) A parabola has a directrix $y=-2$ and a focus $(5,4)$. Find the coordinates of the vertex.
(e) (i) Rationalise the denominator in the expression:

$$
\frac{1}{\sqrt{n}+\sqrt{n+1}}
$$

where n is an integer and $n \geq 1$.
(ii) Using your result from part (i), or otherwise, find the value of the sum:

$$
\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots+\frac{1}{\sqrt{99}+\sqrt{100}}
$$

(f) A point $P(x, y)$ moves so that the sum of the squares of the distances from each of the points $A(-1,0)$ and $B(3,0)$ is equal to 40 .
Show that the locus of $P(x, y)$ is a circle and state its radius and centre.

Question 12 (15 marks) Start a new booklet

(a) Evaluate $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}$.
(b) Differentiate $y=\frac{x-1}{3 x^{2}}$.
(c) The region bounded by the $y=1+\sqrt{x}$ and the x-axis between $x=0$ and $x=4$ is rotated about the x-axis to form a solid. Find the volume of the solid.

(d) Consider the curve $y=x^{3}-x^{2}-x+1$.
(i) Find the stationary points and determine their nature.
(ii) Given the point $P\left(\frac{1}{3}, \frac{16}{27}\right)$ lies on the curve, prove that it is a point of inflection.
(iii) Sketch the curve labelling the stationary points, point of inflection and y-intercept.

Question 13 (15 marks) Start a new booklet

(a) Solve $\tan x=\frac{1}{3}$, where $0 \leq x \leq 2 \pi$.

Give your answer(s) in radians to two decimal places.
(b) In the diagram, $P Q$ is an arc of a circle with radius 10 cm and centre O.
T is the midpoint of $O P$. Angle $P O Q$ is $\frac{2 \pi}{3}$.

Find the perimeter of the shape $P T Q$ in exact form.
(c)

The diagram above shows the curves $y=\sin x$ and $y=\sin 2 x$ for $0 \leq x \leq \pi$, intersecting at $x=0, x=\frac{\pi}{3}$ and $x=\pi$.
Find the exact area of the shaded region bounded by the two curves.
(d) A corridor of width 1 m enters a room of width 27 m , intersecting in a right angle, as shown in the diagram. A straight rope $X Y$ touches the corner Z as shown in the diagram below. Let L be the length of $X Y$.

(i) Show that $L=\frac{1}{\cos \theta}+\frac{27}{\sin \theta}$.
(ii) Show that $\frac{d L}{d \theta}=\frac{\cos \theta}{\sin ^{2} \theta}\left(\tan ^{3} \theta-27\right)$.
(iii) Given that $0<\theta<\frac{\pi}{2}$, find the minimum value of L.

Give your answer as an exact value.

Question 14 (15 marks) Start a new booklet

(a) Solve for $k: \log _{5} 8=\log _{5} k-2 \log _{5} 3$.
(b) Use the trapezoidal rule, with five function values to find the area bounded by the curve $y=\ln \left(x^{2}-1\right)$, the x axis and the lines $x=2$ and $x=4$. Give your answer to 2 decimal places.
(c) Find $\int \frac{1}{2 x-1} d x$
(d) Given $f(x)=\log _{e} \sqrt{2-x}$, find using the log laws, or otherwise, $f^{\prime}(x)$.
(e) (i) Sketch the curve $y=\log _{e}(x-1)$ and shade the area bounded by the curve, the x axis, the y axis and the line $y=\log _{e} 5$.
(ii) Calculate the shaded area, giving your answer in simplest exact form.
(f) (i) Show that $\frac{d}{d x}\left(x e^{x}\right)=x e^{x}+e^{x}$.
(ii) Hence, find $\int x e^{x} d x$.

Question 15 (15 marks) Start a new booklet

(a) $A B C D$ is a quadrilateral with $\angle A B C=\angle B A D$ and $B C=A D$.

Not to scale
(i) Prove that $\triangle A B C \equiv \triangle B A D$.
(ii) Why are $\angle C A B$ and $\angle A B D$ equal?
(iii) Prove that $\angle D B C=\angle C A D$.
(b) A triangle has vertices $A(1,-3), B(3,3)$ and $C(-3,1)$.
(i) Find the coordinates of L and M, the midpoints of $A B$ and $B C$ respectively.
(ii) Show that $L M$ is parallel to $A C$ and that $L M=\frac{1}{2} A C$.
(c) The senior students at a school decide to send a delegation of two to a conference. The delegation will have one student from Year 11 and one from Year 12.
The candidates from Year 11 are Petra, Quentin and Rufus, who have probabilities of $\frac{1}{6}, \frac{1}{3}$ and $\frac{1}{2}$ respectively of being chosen by their classmates.
The candidates from Year 12 are Amelia, Bella, Charles and Diana, who have probabilities of $\frac{1}{8}, \frac{1}{4}, \frac{3}{8}$ and $\frac{1}{4}$ respectively of being chosen.
(i) Draw a tree diagram to show the possible pairs in the delegation. Include the probability on each branch.
(ii) What is the probability that the delegation includes either Quentin or Bella but not both?

Question 15 continues on next page

(d) A worker invests $\$ P$ at the beginning of each month into a retirement fund that pays 6% p.a. compounded monthly, on the money invested, for 20 years.
(i) Show that after 2 months there is $\$ P\left(1.005^{2}+1.005\right)$ in the fund. 1
(ii) Write an expression for the amount in the fund after one year. $\mathbf{1}$
(iii) The worker wishes to retire at the end of the 20 years with a lump sum of $\$ 450000$.

What investment must the worker make at the beginning of each month to achieve this?

Question 16 (15 marks) Start a new booklet

(a) A water tank has an initial capacity of 3000 litres and is leaking according to the formula $V=V_{0} e^{-k t}$, where t is in hours.
(i) Show that $\frac{d V}{d t}=-k V$.
(ii) What is the value of k if after 3 hours the volume is 2000 litres? Give your answer correct to 3 decimal places.
(iii) How long will it take for the amount of water in the tank to fall to 250 litres?
Give your answer correct to the nearest minute.
(b) The rate of emission of carbon pollution C, in tonnes per year from a factory from $1^{\text {st }}$ January
2011 is given by:

$$
C=500-\left(\frac{10}{1+t}\right)^{2} \text { where } t \text { is the time in years. }
$$

(i) What was the rate of emission of carbon pollution C on $1^{\text {st }}$ January 2011?
(ii) What was the rate of emission of carbon pollution C on $1^{\text {st }}$ January 2013?
(iii) What value does C approach as time passes?
(iv) Draw a sketch of C as a function of t.
(v) Calculate the total amount of carbon pollution emitted from the factory from $1^{\text {st }}$ January 2011 to $1^{\text {st }}$ January 2017? Answer correct to the nearest tonne.

Question 16 continues on next page

(c) A factory produces mobile phones. The annual production of phones, M, at time t years, is given by:

$$
M=2000 e^{k t} \text { where } k \text { is a constant. }
$$

After five years, the production has increased to 3200 phones per annum.
(i) Find the value of k. 1
(ii) What is the predicted production after 10 years? $\mathbf{1}$
(iii) How many years will it take for the production to double its original
output?
(iv) Find the rate of increase in production when the factory has been operating for 5 years.

End of Paper

Outcomes Addressed in this Question

PE2 Uses multi-step deductive reasoning in a variety of contexts

PE6 Makes comprehensive use of mathematical language, diagrams \& notation for communicating in a wide variety of situations
HE1 Appreciates interrelationships between ideas drawn from different areas of mathematics
HE7 evaluates mathematical solutions to problems and communicates them in an appropriate form

Outcome	Solutions	Marking Guidelines
PE2	Q1. $\frac{e^{2}}{6}=1.2315 \ldots$ 3 significant figures is $\mathbf{1 . 2 3}$.	1 mark
PE2	Q2. $\cos 2 x=\frac{1}{2}$ in the domain $-\pi \leq x \leq \pi$. Since it is $2 x$, change the domain to $-2 \pi \leq 2 x \leq 2 \pi$. $\begin{aligned} 2 x & =\cos ^{-1}\left(\frac{1}{2}\right) \\ 2 x & =-\frac{5 \pi}{3},-\frac{\pi}{3}, \frac{\pi}{3}, \frac{5 \pi}{3} \\ x & =-\frac{5 \pi}{6},-\frac{\pi}{6}, \frac{\pi}{6}, \frac{5 \pi}{6} \end{aligned}$	1 mark
PE2	Q3. The parabola $y=4 x-x^{2}$ is above the line $y=2 x$. $\begin{aligned} & \int_{0}^{2} 4 x-x^{2}-2 x d x \\ & =\int_{0}^{2} 2 \boldsymbol{x}-\boldsymbol{x}^{2} \boldsymbol{d} \boldsymbol{x} \end{aligned}$	1 mark
PE2	Q4. The graph has, amplitude $=2$ and period $=\frac{3}{2}$ $\therefore y=2 \sin \left(\frac{3}{2} x\right)$	1 mark
PE6	Q5. $\begin{aligned} & \frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a \\ & f(x)=4^{x} \\ & f^{\prime}(x)=4^{x} \ln 4 \\ & f^{\prime}(x)=4^{x} \times \log _{e} 4 \end{aligned}$	1 mark

HE7,	Q10.	
HE1	At time $t=0$,	
	$N(t)=\frac{A}{1+e^{-0}}=\frac{A}{1+1}=\frac{A}{2}$	1 mark
	$N(t)$ is estimated at 2×10^{5}. $2 \times 10^{5}=\frac{A}{2}$ $A=2 \times 2 \times 10^{5}$ $\boldsymbol{A}=\mathbf{4} \times \mathbf{1 0}^{5}$	

Year 12 Mathematics Trial 2019			
Question No. 11		Solutions and Marking Guidelines	
Outcomes Addressed in this Question			
P3 - performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities P4 - chooses and applies appropriate arithmetic, algebraic, graphical and geometric techniques			
Outcome		Solutions	Marking Guidelines
P3	(a)	$\begin{aligned} 2^{2 x+1} & =32 \\ 2^{2 x+1} & =2^{5} \\ 2 x+1 & =5 \\ x & =2 \end{aligned}$	2 marks correct solution 1 mark error made
P3	(b)	$\begin{aligned} \|x-2\| & \leq 3 \\ -3 \leq x-2 & \leq 3 \\ -1 \leq x & \leq 5 \end{aligned}$	2 marks correct solution 1 mark error made
$\begin{aligned} & \text { P3 } \\ & \text { P4 } \end{aligned}$		$\begin{aligned} 36-x^{2} & =6^{2}-x^{2} \\ & =(6-x)(x+x) \end{aligned}$	2 marks correct solution 1 mark error made
$\begin{aligned} & \text { P3 } \\ & \text { P4 } \end{aligned}$	(d)	$\mathrm{y} \text {-coordinate }=\frac{-2+4}{2}=1$ focus $(5,1)$	2 marks correct solution 1 mark error made
			2 marks correct solution 1 mark error made

$\begin{aligned} & \text { P3 } \\ & \text { P4 } \end{aligned}$	(e) (i) $\begin{aligned} \frac{1}{\sqrt{n}+\sqrt{n+1}} & =\frac{1}{\sqrt{n}+\sqrt{n+1}} \times \frac{\sqrt{n}-\sqrt{n+1}}{\sqrt{n}-\sqrt{n+1}} \\ & =\frac{\sqrt{n}-\sqrt{n+1}}{n-(n+1)} \\ & =\frac{\sqrt{n}-\sqrt{n+1}}{-1} \\ & =-\sqrt{n}+\sqrt{n+1} \end{aligned}$	2 marks correct solution 1 mark error made
P3 P4	(ii) $\begin{aligned} \frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\ldots+\frac{1}{\sqrt{99}+\sqrt{100}} & =\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\ldots+\sqrt{100}-\sqrt{99} \\ & =\sqrt{100}-\sqrt{1} \\ & =9 \end{aligned}$	3 marks correct solution 2 marks error made 1 mark establishes correct relationship of
P4	$\begin{align*} P A^{2}+P B^{2} & =40 \tag{f}\\ (x-(1))^{2}+(y-0)^{2}+(x-3)^{2}+(y-0)^{2} & =40 \\ x^{2}+2 x+1+y^{2}+x^{2}-6 x+9+y^{2} & =40 \\ 2 x^{2}+2 y^{2}-4 x & =30 \\ x^{2}+y^{2}-2 x & =15 \\ x^{2}-2 x+1+y^{2} & =15+1 \\ (x-1)^{2}+y^{2} & =16 \end{align*}$	
	$\text { Radius }=4$ Centre (1,0)	

Year 12 Mathematics Trial 2019			
Question No. 13 Solutions and Marking Guideline			
Outcomes Addressed in this Question			
P4 - chooses and applies appropriate arithmetic, algebraic, graphical and geometric techniques P5 - understands the concept of a function and the relationship between a function and its graph H6 - uses the derivative to determine the features of the graph of a function P6 - relates the derivative of a function to the slope of its graph P7 - determines the derivative of a function through routine application of the rules of differentiation H7 - uses the features of a graph to deduce information about the derivative H8 - uses techniques of integration to calculate areas and volumes			
Outcome		Solutions	Marking Guidelines
P4	(a)	$\begin{aligned} \lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+4\right)}{x-2} \\ & =\lim _{x \rightarrow 2} x^{2}+2 x+4 \\ & =12 \end{aligned}$	2 marks correct solution 1 mark error made

Outcome Addressed in this Question

H5 applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems

Part	Solutions	Marking Guidelines
(a)	$\begin{aligned} & \tan x=\frac{1}{3} \\ & x=0.32 \text { or } 3.46 \text { (to } 2 \text { d.p) } \end{aligned}$	Award 2 for correct solutions Award 1 for substantial progress towards solution or answers in degrees i.e. $x=18.43^{0}, 198.43^{\circ} \text { or } 18^{\circ} 26^{\prime}, 198^{\circ} 26^{\prime}$
(b)	$\begin{aligned} \text { Length of arc } P Q & =10 \times \frac{2 \pi}{3}=\frac{20 \pi}{3} \\ \text { Length } T Q & =\sqrt{5^{2}+10^{2}-2 \times 5 \times 10 \times \cos \left(\frac{2 \pi}{3}\right)} \\ & =\sqrt{25+100-100 \times\left(-\frac{1}{2}\right)} \\ & =\sqrt{125+50} \\ & =\sqrt{175}=\sqrt{25 \times 7}=5 \sqrt{7} \\ \text { Perimeter } P T Q & =\text { length of arc } P Q+\text { length } P T+\text { length } T Q \\ & =\left(\frac{20 \pi}{3}+5+5 \sqrt{7}\right) \mathrm{cm} \end{aligned}$	Award 3 for correct solution Award 2 for substantial progress towards solution Award 1 for limited progress towards solution
(c)	$\begin{aligned} & A=\int_{\frac{\pi}{3}}^{\pi}(\sin x-\sin 2 x) d x \\ & =\left[-\cos x+\frac{1}{2} \cos 2 x\right]_{\frac{\pi}{3}}^{\pi} \\ & =\left[-\cos \pi+\frac{1}{2} \cos 2 \pi\right]-\left[-\cos \frac{\pi}{3}+\frac{1}{2} \cos 2\left(\frac{\pi}{3}\right)\right] \\ & =\left[1+\frac{1}{2}\right]-\left[-\frac{1}{2}+\frac{1}{2}\left(-\frac{1}{2}\right)\right] \\ & =1+\frac{1}{2}+\frac{1}{2}+\frac{1}{4}=2 \frac{1}{4} \text { square units } \end{aligned}$	Award 3 for correct solution Award 2 for substantial progress towards solution Award 1 for limited progress towards solution
(d) (i)	$\begin{aligned} & L=\text { length } X Y=X Z+Y Z \\ & X Z=\frac{1}{\cos \theta} \\ & Y Z=\frac{27}{\sin \theta} \\ & \therefore L=\frac{1}{\cos \theta}+\frac{27}{\sin \theta} \end{aligned}$	Award 1 for correct solution

(ii)

$$
\begin{aligned}
L & =\frac{1}{\cos \theta}+\frac{27}{\sin \theta} \\
\frac{d L}{d \theta} & =\frac{-1(-\sin \theta)}{\cos ^{2} \theta}+\frac{-27 \cos \theta}{\sin ^{2} \theta} \\
& =\frac{\sin \theta}{\cos ^{2} \theta}-\frac{27 \cos \theta}{\sin ^{2} \theta} \\
& =\frac{\sin ^{3} \theta-27 \cos ^{3} \theta}{\cos ^{2} \theta \sin ^{2} \theta} \\
& =\frac{1}{\sin ^{2} \theta}\left(\frac{\sin ^{3} \theta-27 \cos ^{3} \theta}{\cos ^{2} \theta}\right) \\
& =\frac{1}{\sin ^{2} \theta} \times \frac{\cos \theta}{\cos \theta}\left(\frac{\sin ^{3} \theta-27 \cos ^{3} \theta}{\cos ^{2} \theta}\right) \\
& =\frac{\cos \theta}{\sin ^{2} \theta}\left(\frac{\sin ^{3} \theta-27 \cos ^{3} \theta}{\cos ^{3} \theta}\right) \\
& =\frac{\cos \theta}{\sin ^{2} \theta}\left(\frac{\sin ^{3} \theta}{\cos { }^{3} \theta}-\frac{27 \cos ^{3} \theta}{\cos ^{3} \theta}\right) \\
& \therefore \frac{d L}{d \theta}=\frac{\cos \theta}{\sin ^{2} \theta}\left(\tan ^{3} \theta-27\right)
\end{aligned}
$$

(iii)
$\frac{d L}{d \theta}=\frac{\cos \theta}{\sin ^{2} \theta}\left(\tan ^{3} \theta-27\right)$
for minimum value $\frac{d L}{d \theta}=0$
$\frac{\cos \theta}{\sin ^{2} \theta}\left(\tan ^{3} \theta-27\right)=0$
$\frac{\cos \theta}{\sin ^{2} \theta}=0$ or $\left(\tan ^{3} \theta-27\right)=0$
$\cos \theta=0$
No solution as $0<\theta<\frac{\pi}{2}$
$\tan ^{3} \theta=27$
$\tan \theta=3$

Award 3 for correct solution
Award 2 for substantial progress towards solution

Award 1 for limited progress towards solution

Award 3 for correct solution
Award 2 for substantial progress towards solution

Award 1 for limited progress towards solution

$$
\begin{aligned}
& \sin \theta=\frac{3}{\sqrt{10}} \text { and } \cos \theta=\frac{1}{\sqrt{10}} \\
& L=\frac{1}{\frac{1}{\sqrt{10}}}+\frac{27}{\frac{3}{\sqrt{10}}} \\
& L=\sqrt{10}\left(\frac{1}{1}+\frac{27}{3}\right) \\
& L=\sqrt{10}\left(\frac{30}{3}\right) \\
& \therefore L=10 \sqrt{10} \text { units }
\end{aligned}
$$

Year 12 Mathematics Trial 2019

Question No. 14

Solutions and Marking Guidelines

Outcomes Addressed in this Question

H3 Manipulates algebraic expressions involving logarithmic \& exponential functions
H5 Applies appropriate techniques from the study of calculus, geometry, probability, trigonometry \& series to solve problems
H8 Uses techniques of integration to calculate areas \& volumes
P5 Understands the concept of a function and the relationship between a function and its graph
P7 Determines the derivative of a function through routine application of the rules of differentiation

Outcome	Solutions	Marking Guidelines
H3	$\begin{aligned} & \text { (a) } \log _{5} 8=\log _{5} k-2 \log _{5} 3 \\ & \therefore \log _{5} 8=\log _{5} k-\log _{5} 3^{2} \\ & \therefore \log _{5} 8=\log _{5} \frac{k}{9} \\ & \therefore 8=\frac{k}{9} \\ & \quad k=72 \end{aligned}$	2 marks: correct solution 1 mark: substantial progress towards correct solution
H5	(b) $f(x)=\ln \left(x^{2}-1\right)$ $\begin{aligned} A & =\frac{0.5}{2}\{f(2)+2[f(2.5)+f(3)+f(3.5)]+f(4)\} \\ & =\frac{0.5}{2}\{\ln 3+2[\ln 5.25+\ln 8+\ln 11.25]+\ln 15\} \\ & =4.03 \text { (to } 2 \text { decimal places) } \end{aligned}$	3 marks: correct solution 2 marks: substantially correct solution 1 mark: substantial progress towards correct solution
H8	$\text { (c) } \begin{aligned} \int \frac{1}{2 x-1} d x & =\frac{1}{2} \int \frac{2}{2 x-1} d x \\ & =\frac{1}{2} \ln \|2 x-1\|+c \end{aligned}$	2 marks: correct solution 1 mark: substantial progress towards correct solution

H5	(ii) Since $\frac{d}{d x}\left(x e^{x}\right)=x e^{x}+e^{x}$
	$\int\left(x e^{x}+e^{x}\right) d x=x e^{x}+c$
	$\therefore \int x e^{x} d x+\int e^{x} d x=x e^{x}+c$
$\therefore \int x e^{x} d x+e^{x}=x e^{x}+c$	
	$\therefore \int x e^{x} d x=x e^{x}-e^{x}+c$

Year 12
Question 15

Mathematics
Trial HSC (Task 4) 2019

Solutions and Marking Guidelines

Outcome Addressed in this Question

P2 - provides reasoning to support conclusions which are appropriate to the context
H2 - constructs arguments to prove and justify results
H5 - applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems
H9 - communicates using mathematical language, notation, diagrams and graphs

(ii)	Outcomes are those marked E on the diagram	Award 1 for correct solution
H5	$\begin{aligned} P(Q \text { or } B \text { but not both }) & =\frac{1}{24}+\frac{1}{24}+\frac{1}{8}+\frac{1}{12}+\frac{1}{8} \\ & =\frac{10}{24}=\frac{5}{12} \end{aligned}$	
$\begin{gathered} \text { (d) (i) } \\ \text { H5 } \\ \text { H1 } \end{gathered}$	$\begin{aligned} r & =6 \% p a=0.5 \% \text { per month }=0.005 \\ M_{1} & =P(1.005) \\ M_{2} & =(P(1.005)+P) \times 1.005 \\ & =P(1.005)^{2}+P(1.005) \\ & =P\left(1.005^{2}+1.005\right) \end{aligned}$	Award 1 for correct solution
$\begin{aligned} & \text { (ii) } \\ & \text { H5 } \end{aligned}$	$M_{12}=P\left(1.005^{12}+1.005^{11}+\ldots \ldots1 .005\right)$	Award 1 for correct solution
(iii)	$n=12 \times 20=240 \quad M_{240}=\$ 450000$	Award 2 for correct solution
H5	$\begin{aligned} S_{240} & =\frac{1.005\left(1.005^{240}-1\right)}{1.005-1} \\ & =464.351 \end{aligned}$	Award 1 for substantial progress towards solution
	$\begin{aligned} P & =\frac{450000}{464.351} \\ & =\$ 969.09 \end{aligned}$	

Outcome Addressed in this Question

H4 - Expresses practical problems in mathematical terms based on simple given models.
H1 - seeks to apply mathematical technique to problems in a wide range of practical context

Part	Solutions	Marking Guidelines
(a) (i)	$\begin{array}{l}V=3000 e^{-k t} \\ \text { (ii) } \\ d t \\ \text { When } t=3 \text { then } V=2000\end{array}$	Award 1 for correct solution
Award 2 for correct solution		

progress towards solution\end{array}\right]\)| |
| :--- |

(iii)	$\begin{aligned} 2000 & =3000 e^{-3 k} \\ e^{-3 k} & =\frac{2}{3} \\ \log _{e} e^{-3 k} & =\log _{e} 0 . \dot{6} \\ -3 k & =\log _{e} 0 . \dot{6} \\ k= & \frac{\log _{e} 0 . \dot{6}}{-3}=0.135155036 \ldots \approx 0.135 \\ 2000 & =3000 e^{-3 k} \\ e^{-3 k} & =\frac{2}{3} \\ \log _{e} e^{-3 k} & =\log _{e} 0 . \dot{6} \\ -3 k & =\log _{e} 0 . \dot{6} \\ k & =\frac{\log _{e} 0 . \dot{6}}{-3}=0.135155036 \ldots \approx 0.135 \end{aligned}$	Award 2 for correct solution Award 1 for substantial progress towards solution
(b) (i)	We need to find t when $V=250$. $\begin{aligned} 250 & =3000 e^{-k \times t} \\ e^{-k t} & =0.08 \dot{3} \\ -k t & =\log _{e} 0.08 \dot{3} \\ t & =-\frac{1}{k} \log _{e} 0.08 \dot{3}=-\frac{\log _{e} 0.08 \dot{3}}{0.135155 . .} \\ & =18.385601 . . \approx 18 \mathrm{~h} 23 \mathrm{~min} \end{aligned}$	Award 1 for correct solution
(ii)	Initial calculation occurs on $1^{\text {st }}$ January 2011 or $t=0$ $\begin{aligned} C & =500-\left(\frac{10}{1+0}\right)^{2} \\ & =400 \text { tonnes per year } \end{aligned}$	Award 1 for correct solution
(iii)	$1^{\text {st }}$ January 2013 requires $t=2$ $\begin{aligned} C & =500-\left(\frac{10}{1+2}\right)^{2} \\ & =488.8 \text { tonnes per year } \end{aligned}$	Award 1 for correct solution
(iv)	$\begin{aligned} C & =\lim _{t \rightarrow \infty} 500-\left(\frac{10}{1+t}\right)^{2} \quad\left(\lim _{t \rightarrow \infty} \frac{10}{1+t} \approx 0\right) \\ & \approx 500 \text { tonnes per year } \end{aligned}$	Award 1 for correct solution

(v)

Area under the curve represents the amount of carbon pollution.

$$
\begin{aligned}
\int_{0}^{6} 500-\left(\frac{10}{1+t}\right)^{2} d t & =\int_{0}^{6} 500-100(1+t)^{-2} d t \\
& =\left[500 t+100(1+t)^{-1}\right]_{0}^{6} \\
& =\left[\left(500 \times 6+100(1+6)^{-1}\right)-\left(100(1+0)^{-}\right.\right. \\
& =2914.285714 \ldots \\
& \approx 2914 \text { tonnes }
\end{aligned}
$$

(ii)
(iii)

When $t=5$,

$$
\begin{aligned}
3200 & =2000 e^{k \times 5} \\
e^{5 k} & =\frac{3200}{2000}
\end{aligned}
$$

$$
\begin{aligned}
5 k & =\log _{e} \frac{8}{5} \\
k & =\frac{1}{5} \log _{e} \frac{8}{5} \\
& =0.09400072 \ldots
\end{aligned}
$$

We need to find M when $t=10$
$M=2000 e^{k \times 10}$
$=5120$

Award 2 for correct solution
Award 1 for substantial progress towards solution

Award 1 for correct solution

Award 1 for correct solution

Award 1 for correct solution

We need to find t when $M=4000$.

$$
\begin{aligned}
4000 & =2000 e^{k \times t} \\
e^{k t} & =2 \\
k t & =\log _{e} 2 \\
t & =\frac{1}{k} \log _{e} 2 \\
& =5 \frac{\log _{e} 2}{\log _{e} \frac{8}{5}} \\
& =7.373849237 . . \approx 7.4 \text { years }
\end{aligned}
$$

$$
\begin{aligned}
M & =2000 e^{k t} \\
\frac{d M}{d t} & =k 2000 e^{k t} \\
& =k M \\
& =\frac{1}{5} \log _{e} \frac{8}{5} \times 3200 \\
& =300.8023227 \ldots \approx 301
\end{aligned}
$$

