Mathematics

Trial Higher School Certificate Examination 2010

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this question paper
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions 1 - 10
- All questions are of equal value
- Start each question in a new writing booklet
- Write your examination number on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover

BLANK PAGE

Total Marks - 120

Attempt Questions 1-10
All Questions are of equal value
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1 (12 Marks) Use a Separate Booklet
a) Evaluate $\frac{\sqrt{5^{2}+144}}{13-6}$ to two decimal places.
b) Evaluate $\int_{1}^{5}(3 x-7) d x$
c) Rationalise the denominator and simplify:

$$
\frac{1}{2-\sqrt{3}}-\frac{1}{2+\sqrt{3}}
$$

d) Three towns form a triangle. Town A is 80 km from Town B and Town C is 40 km from Town A as shown below:

The bearing of Town B from Town A is 130°. The bearing of Town C from Town A is 240°.
i) Find the area enclosed by the 3 towns $\mathbf{2}$
ii) Using the cosine rule, find the distance to the nearest kilometre between Town B and Town C
e) Express the following as a single fraction

$$
\frac{5}{2 a+6}+\frac{a}{a^{2}-9}
$$

f) Solve $|2 x+5|<3$

End of Question 1

Question 2 ($\mathbf{1 2}$ Marks) Use a Separate Booklet Marks

a) Differentiate with respect to x :
i) $3 x^{2}+7^{6} \quad \mathbf{2}$
ii) $4 x^{2} e^{3 x^{3}} \quad 2$
iii) $\frac{\pi \cos x}{x^{2}} \quad \mathbf{2}$
b) Find $\int \frac{d x}{3 x+5} \quad \mathbf{2}$
c) On a diagram, indicate the region where the following inequalities hold
simultaneously: simultaneously:

$$
y+1 \geq 0, \quad x+y-2 \leq 0 \quad \text { and } x \geq 2
$$

d) Find the obtuse angle in degrees and minutes, that a line with gradient -2.5 makes with the positive x axis.

End of Question 2

Question 3 ($\mathbf{1 2}$ Marks) Use a Separate Booklet Marks
a) Find $\lim _{x \rightarrow-3} \frac{x^{2}+8 x+15}{x+3} \quad \mathbf{2}$
b) Evaluate $\int_{0}^{\frac{\pi}{6}}\left(x^{2}+\sin 2 x\right) d x$. Leave your answer in exact form. $\mathbf{2}$
c) i) On the same set of axes, sketch the functions $y=4 x-x^{2}$ and $y=3$
ii) Find the area contained between these two curves
d) Determine if the line $x+y+3=0$ is a tangent to the parabola $y=2 x^{2}+3 x-1$
e) For the curve $y=\sin \pi_{x}$, state the period and amplitude

End of Question 3

Question 4 (12 Marks) Use a Separate Booklet

a) The coordinates of the points A, B and C are, $(0,-2),(4,0)$ and ($6,-4)$ respectively.

(i) Find the length $A B$, and the gradient of $A B$.
(ii) Show that the equation of the line L, drawn through C parallel to $A B$, is $x-2 y-14=0$.
(iii) Find the coordinates of D, the point where L intersects the x-axis.
(iv) Find the perpendicular distance of the point B from the line L.
(v) Find the area of the quadrilateral $A B D C$.
b) For the arithmetic sequence
$2,7,12,17, \ldots \ldots \ldots$.
i) Find the general term T_{n}
ii) Find the $23^{\text {rd }}$ term $\quad 1$
iii) Find the sum of the first 47 terms 1
c) Find the exact value of x such that $\sec x+1=3$ where $0 \leq x \leq \frac{\pi}{2}$

End of Question 4

Question 5 (12 Marks) Use a Separate Booklet Marks

a) Calculate the area of the region enclosed by the graph of $y=\cos 2 x$ the x axis and the lines $x=0$ and $x=\frac{\pi}{4}$
b) The roots of the equation $2 x^{2}-7 x+12=0$ are α and β Find:
i) $\quad \alpha+\beta$
ii) $\alpha \beta$
iii) $\frac{1}{\alpha}+\frac{1}{\beta}$
iv) $\quad \alpha^{2}+\beta^{2}$
c) A pendulum consisting of a bob and a long string attached to a fixed point is set swinging with an initial arc of 40 cm . If each subsequent oscillation is $\frac{5}{6}$ of the preceding one, Find the total distance travelled by the bob before it comes to rest.
d) The gradient function of a curve is $y^{\prime}=\frac{4 x}{x^{2}+1}$ and the curve passes through the point $(0, e)$. Find the equation of the curve.

End of Question 5

Question 6 (12 Marks) Use a Separate Booklet Marks
a)

Given $\mathrm{AD}=\mathrm{AB}, \mathrm{DB}=\mathrm{DC}, \mathrm{AD} \| \mathrm{BC}$ and $\angle \mathrm{DAB}=100^{\circ}$.
Copy or trace the diagram into your answer booklet.
Find $\angle B D C$ giving reasons for each step.
b) Let $f(x)=x^{3}-6 x^{2}$
i) Find the coordinates where the curve crosses the axes.
ii) Find the coordinates of any stationary points and determine their nature.
iii) Find the coordinates of any points of inflexion.
iv) Sketch the curve $y=f(x)$, indicating clearly the intercepts and any stationary points and points of inflexion.
v) For what values of x is $y=f(x)$ increasing.

End of Question 6

Question 7 ($\mathbf{1 2}$ Marks) Use a Separate Booklet Marks

a) Given $f(x)=\sqrt{4-x^{2}}$, copy and complete the table of values to 3 decimal places.

x	0	0.5	1	1.5	2
$f(x)$					

ii) Hence evaluate an approximation for $\int_{0}^{2} \sqrt{4-x^{2}} d x$ using

Simpson's rule with 5 function values.
b) A pendulum on a grandfather clock is 50 cm long. When it swings the maximum length of the arc it makes is 40 cm .
i) In radians find the angle through which the pendulum swings.

ii) Find the shortest distance between the maximum positions of the pendulum.

c) The number of bacteria N a person has after being infected with a virus after t hours is given by:

$$
N=10000 e^{0.05 t}
$$

i) Find the number of bacteria after 10 hours
ii) Find the time required for the number of bacteria to reach 100000
iii) At what rate is the bacteria increasing after 1 day
d) The area bounded by $y^{2}=3-2 x-x^{2}, y \geq 0$ and between $x=-3$ and $x=1$ is revolved about the x axis. Calculate the volume of the 2 solid formed if this area is rotated about the x axis.

End of Question 7

Question 8 (12 Marks) Use a Separate Booklet Marks

a) Tiarn borrows $\$ 500000$ to buy a house. An interest rate of 9% p.a. compounded monthly is charged on the outstanding balance. The loan is to be repaid in equal monthly instalements (R) over a 25 year period.
i) Show the amount owing after 3 months is:

$$
A_{3}=5000001.0075^{3}-R\left[1+1.0075+1.0075^{2}\right]
$$

ii) Assuming this pattern continues the monthly repayment can be calculated using:

$$
A_{n}=5000001.0075^{n}-R\left[1+1.0075+1.0075^{2}+\ldots \ldots \ldots .+1.0075^{n-1}\right]
$$

How much should Tiarn be paying each month?
iii) How much interest does Tiarn pay over the 25 years?
iv) What is the equivalent simple interest rate of this loan?

1
b) i) Sketch the Parabola, whose focus is the point $(2,5)$ and whose directrix is the line $y=-3$. Indicate on your diagram the vertex and its coordinates
ii) Find the equation of the parabola.
c) If $f(x)=4-2^{-x}$ find:
i) $\quad f\left(x^{2}\right)$
ii) $\quad f(x)^{2}$
iii) Is $f(x)$ even, odd or neither $\mathbf{1}$

End of Question 8

Question 9 ($\mathbf{1 2}$ Marks) Use a Separate Booklet Marks
a) The acceleration $a \mathrm{~ms}^{-2}$ of a moving particle is given after t seconds by $a=-2$. Initially the particle is located at $x=-3$ and its velocity is $4 \mathrm{~ms}^{-1}$
i) Find the velocity (v) and displacement (x) as functions of time (t)
ii) Determine when the particle is at rest.
iii) When will the particle first be at the origin? 2
iv) Sketch displacement (x) as a function of time $(t) \quad \mathbf{2}$
b) i) Differentiate $y=3^{4 x-2}$ with respect to x
ii) Hence find: $\quad \int 3^{4 x-2} d x$

Question 10 ($\mathbf{1 2}$ Marks) Use a Separate Booklet Marks
a) A swimming pool is to be emptied for maintenance. The quantity of water Q litres, remaining in the pool at anytime, t minutes, after it starts to empty is given by:

$$
Q(t)=2000(25-t)^{2}, \quad t \geq 0
$$

i) At what rate is the pool being emptied at any time (t)
ii) How long will it take to half empty the pool to the nearest minute?
iii) At what time is the water flowing out at 20 kL / minute.
iv) What is the average water flow in the first 10 minutes in litres?
b) Adam is on a paddle board in the ocean 3 kilometres from the nearest point O on a straight beach. He needs to meet his friend Josh who is 6 kilometres along the beach from O . Adam is able to paddle at a rate of $4 \mathrm{~km} / \mathrm{h}$ and walk at a rate of $5 \mathrm{~km} / \mathrm{h}$.
i) Draw a diagram to represent this information.
ii) Show the total time $\mathrm{T}(x)$ hours, for Adam to reach Josh is given by:

$$
T(x)=\frac{\sqrt{x^{2}+9}}{4}+\frac{6-x}{5}
$$

iii) Find the minimum time for Adam to reach Josh on the beach.

End of Examination

STANDARD INTEGRALS

$$
\mathrm{NOTE}: \ln x=\log _{e} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; \quad x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

Mathematics
Trial Higher School Certificate Examination 2010

SOLUTIONS

Question 1	ion 1 Trial HSC Examination - Mathematics		2010
Part	Solution	Marks	Comment
a)	$\begin{aligned} \frac{\sqrt{5^{2}+144}}{13-6} & =4.9135 \ldots \\ & =4.912 \mathrm{dp} \end{aligned}$	1	
b)	$\begin{aligned} & \int_{\mathrm{I}}^{3}(3 x-7) d x \\ & =\left[\frac{3 x^{2}}{2}-7 x\right]_{1}^{5} \\ & =\left(\frac{75}{2}-35\right)\left(\frac{3}{2}-7\right) \\ & =8 \end{aligned}$	1	'
c)	$\begin{aligned} & \frac{1}{2-\sqrt{3}}+\frac{1}{2+\sqrt{3}} \\ & =\frac{(2+\sqrt{3})+(2-\sqrt{3})}{(2-\sqrt{3})+(2+\sqrt{3})} \\ & =\frac{2+\sqrt{3}+2-\sqrt{3}}{4-3} \\ & =4 \end{aligned}$	2	
d)	$\begin{aligned} & \text { i) } A=\frac{1}{2} a b \sin C \\ & A=\frac{1}{2} \times 40 \times 80 \times \sin 110^{\circ} \\ & =1503.5 \mathrm{~km}^{2} \\ & \text { ii) } a^{2}=b^{2}+c^{2}-2 b c \cos A \\ & a^{2}=40^{2}+80^{2}-2 \times 40 \times 80 \times \cos 110^{\circ} \\ & a^{2}=10188.93 \\ & a=100.9 \\ & a=101 \mathrm{~km} \end{aligned}$	4	1 corre ef use siverule whtherrect angle - correct answer i correct use costre. rule 1 correct rounded answer

Question 1	Trial HSC Examination - Mathematics		2010
Part	Solution	Marks	Comment
e)	$\begin{aligned} & \frac{5}{2 a+6}+\frac{a}{a^{2}-9} \\ & =\frac{5}{2(a+3)}+\frac{a}{(a+3)(a-3)} \\ & =\frac{5(a-3)+2 a}{2(a+3)(a-3)} \\ & =\frac{5 a-15+2 a}{2(a+3)(a-3)} \\ & =\frac{7 a-15}{2\left(a^{2}-9\right)} \end{aligned}$	2	1
f)	$\begin{array}{\|ll} \|2 x+5\|<3 & \\ 2 x+5<3 \text { or } & 2 x+5>-3 \\ 2 x<-2 & 2 x>-8 \\ -x<-1 & -x>-4 \\ \text { check } & \\ \therefore-4<x<-1 & \end{array}$	2	1
		/12	

Question 2	ion 2 Trial HSC Examina		2010
Question 2 Part Solution		Marks	Comment
a)	$\text { i) } \begin{aligned} & \frac{d}{d x}\left(3 x^{2}+7\right)^{6} \\ = & 6 \times 6 x\left(3 x^{2}+7\right)^{5} \\ = & 36 x\left(3 x^{2}+7\right)^{5} \end{aligned}$ $\begin{aligned} & \text { ii) } 4 x^{2} e^{3 x^{3}} \\ & u=4 x^{2} \quad v=e^{3 x^{3}} \\ & u^{\prime}=8 x \quad v^{\prime}=9 x^{2} e^{3 x^{3}} \\ & \frac{d}{d x}=8 x e^{3 x^{3}}+4 x^{2} \times 9 x^{2} e^{3 x^{3}} \\ & =8 x e^{3 x^{3}}+36 x^{4} e^{3 x^{3}} \\ & =4 x e^{3 x^{3}}\left[2+9 x^{3}\right] \end{aligned}$	2 2	1 1 1 1
	$\begin{aligned} & \text { iii) } \frac{\pi \cos x}{x^{2}} \\ & u=\pi \cos x \quad v=x^{2} \\ & u^{\prime}=-\pi \sin x \quad v^{\prime}=2 x \\ & \frac{d}{d x}=\frac{-\pi x^{2} \sin x-2 \pi x \cos x}{\left(x^{2}\right)^{2}} \\ & =\frac{\pi x(-x \sin x-2 \cos x)}{x^{4}} \\ & =\frac{\pi(-x \sin x-2 \cos x)}{x^{3}} \end{aligned}$	2	1 1
b)	$\begin{aligned} & \int \frac{d x}{3 x+5} \\ & =\frac{1}{3} \int \frac{3}{3 x+5} d x \\ & =\frac{1}{3} \ln (3 x+5)+C \end{aligned}$	2	1 1

Question 2	Trial HSC Examination - Mathematics	2010			
Part	Solution			Marks	Comment
c)	$y+1 \geqslant 0$	$x+y-2 \leqslant 0$	$x \geqslant 2$	2	

\begin{tabular}{|c|c|c|c|}
\hline Question 3 \& \multicolumn{2}{|l|}{Trial HSC Examination - Mathematics} \& 2010

\hline Part \& Solution \& Marks \& Comment

\hline a) \& $$
\begin{aligned}
& \lim _{x \rightarrow-3} \frac{x^{2}+8 x+15}{x+3} \\
& =\lim _{x \rightarrow-3} \frac{(x+3)(x+5)}{(x+3)} \\
& =\lim _{x \rightarrow-3} x+5 \\
& =2 .
\end{aligned}
$$ \& 2 \& $$
1
$$

\hline b) \& $$
\begin{aligned}
& \int_{0}^{\frac{\pi}{6}} x^{2}+\sin 2 x d x \\
& =\left[\frac{x^{3}}{3}-\frac{1}{2} \cos 2 x\right]_{0}^{\frac{\pi}{6}} \\
& =\left[\frac{\left(\frac{\pi}{6}\right)^{3}}{3}-\frac{1}{2} \cos \left(\frac{2 \pi}{6}\right)\right]-\left[-\frac{1}{2} \cos 0\right] \\
& =\frac{\pi^{3}}{648}-\frac{1}{4}+\frac{1}{2} \\
& =0.298
\end{aligned}
$$ \& 2 \& 1

1
1

\hline
\end{tabular}

Question 5 \quad Trial HSC Examination - Mathematics			2010
	Solution	Marks	Comment
a)	$\begin{aligned} & \int_{0}^{\frac{\pi}{4}} \cos 2 x \\ & =\left[\frac{1}{2} \sin 2 x\right]_{0}^{\frac{\pi}{4}} \\ & =\frac{1}{2} \sin \frac{\pi}{2}-\frac{1}{2} \sin 0 \\ & =\frac{1}{2} \times 1 \\ & =\frac{1}{2} u n i t^{2} \end{aligned}$	2	1 1
b)	$\begin{aligned} & 2 x^{2}-7 x+12=0 \\ & \alpha+\beta=\frac{-b}{a} \quad \alpha \beta=\frac{c}{a} \end{aligned}$		
	i) $\begin{aligned} & \alpha+\beta=\frac{-b}{a}=\frac{--7}{2} \\ & =\frac{7}{2} \end{aligned}$ ii) $\begin{aligned} & \alpha \beta=\frac{c}{a}=\frac{12}{2} \\ & =6 \end{aligned}$ iii) $\begin{aligned} & \frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta} \\ & =\frac{\left(\frac{7}{2}\right)}{6} \\ & =\frac{7}{12} \end{aligned}$	1 1 2	1 1
	$\begin{aligned} & \text { iv) } \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta \\ & =\left(\frac{7}{2}\right)^{2}-2 \times 6 \\ & =\frac{1}{4} \end{aligned}$	2	1

Question 6	Trial HSC Examination - Mathematics		2010
Part	Solution	Marks	Comment
a)	```Let \(\angle \mathrm{ADB}=x^{\circ}\) \(\triangle A D B\) is isosceles \((A B=A D)\) \(\angle A D B=\angle A B D\) (base angles of \(\triangle A D B=\)) then \(2 x+100=180^{\circ}(\) angle sum \(\Delta)\) so \(x=40^{\circ}\) \(\therefore \angle A D B=40^{\circ}\) then \(\angle D B C=40^{\circ}(\) alt \(\angle ' \mathrm{~s}=\mathrm{ADC} \mathrm{BC})\) \(\because \triangle D B C\) is isosceles (\(\mathrm{DB}=\mathrm{DC}\)) \(\therefore \angle D B C=40^{\circ}\) (base \(\left.\angle ' s \triangle \mathrm{DBC}\right)\) \(\therefore \angle B D C=180^{\circ}-40^{\circ}-40^{\circ}\) (angle sum \(\triangle \mathrm{DBC}\)) \(=100^{\circ}\) \(\therefore \angle B D C=100^{\circ}\)```	3	1
b)	$f(x)=x^{3}-6 x^{2}$	2	
	$\begin{aligned} & x^{2}(x-6)=0 . \\ & x=0,6 . \\ & \therefore \text { crosses arcs }(0,0)(6,0) \end{aligned}$ ii) $f^{\prime}(x)=3 x^{2}-12 x$ Sp where $f^{\prime}(x)=0$ $\begin{aligned} & 3 x(x-4)=0 \\ & x=0,4 \\ & y=0,-32 . \end{aligned}$ Natwe: $f^{\prime \prime}(x)=6 x-12$ at $(0,4) f^{\prime \prime}(x)<0 \therefore \max (0,4)$ $(4,-32) f^{\prime \prime}(2)>0 \therefore \min .(4,-32)$ so max IP at $(0,4)$ min TP at $(4,-32)$ iii) POI when $f^{\prime \prime}(x)=0$ and concovity changes. $\begin{array}{rl} f^{\prime \prime}(x)=0 & 6 x-12=0 \\ & x=2 \\ y=-16 . \end{array}$ at $\left.\begin{array}{rl}x & =1, f^{\prime \prime}(x) \\ x & =3, \\ f^{\prime \prime}(x) & >0\end{array}\right\} \therefore \begin{aligned} \text { concavity } \\ \text { changes }\end{aligned}$ \therefore POl at $(2,-16)$	2	2. must use a test for nature 2 (leach) 1 mark but must test for concavity.

Question 6 Trial HSC Examination - Mathematics			2010
Part	Solution	Marks	Comment
iv)		3	I shape 2 all pts marked (intercepts, TP and POI) [imarkif intercepts and $T P]$.
v)	$y=f(x)$ increasing for $x<0, x>4$.	1	1
		/12	

Question 7	Trial HSC Examination - Mathematics		2010
Part	Solution	Marks	Comment
d)	$\begin{aligned} & y^{2}=3-2 x-x^{2} \\ & V=\pi \int_{a}^{b} y^{2} d x \\ & V=\pi \int_{-3}^{1} 3-2 x-x^{2} d x \\ & =\pi\left[3 x-x^{2}-\frac{x^{3}}{3}\right]_{-3}^{1} \\ & =\pi\left[\left(3-1-\frac{1}{3}\right)-(-9-9+9)\right] \\ & =\frac{32 \pi}{3} \end{aligned}$	2	1 1
		112	

\begin{tabular}{|c|c|c|c|}
\hline Question 8 \& ion 8 Trial HSC Examination - Mathematics \& \& 2010

\hline Part \& Solution \& Marks \& Comment

\hline a) \& i)
$$
\begin{aligned}
& r=9 \div 100 \div 12 \\
& r=0.0075 \\
& A=P(1+r)^{n} \\
& A_{1}=500000(1.0075)^{1}-R \\
& A_{2}=A_{1}(1.0075)^{1}-R \\
& A_{2}=500000(1.0075)^{2}-R(1.0075)-R \\
& A_{3}=A_{2}(1.0075)^{1}-R \\
& A_{3}=500000\left[(1.0075)^{2}-R(1.0075)-R\right](1.0075)-R \\
& =500000(1.0075)^{3}-R(1.0075)^{2}-R(1.0075)-R \\
& =500000(1.0075)^{3}-R\left[1+1.0075+1.0075^{2}\right]
\end{aligned}
$$
as required \& 2 \& 1

1

\hline \& | ii) $\begin{aligned} & A_{n}=0 \text { as all money is repaid } \\ & \therefore 0=500000(1.0075)^{300}- \\ & R\left[1+1.0075+1.0075^{2}+\ldots . .+1.0075^{n-1}\right] \\ & R=\frac{500000(1.0075)^{300}}{\left[1+1.0075+1.0075^{2}+\ldots .+1.0075^{n-1}\right]} \end{aligned}$ |
| :--- |
| geometric series with $a=1, r=1.0075, n=300$ $\begin{aligned} & S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \\ & S_{300}=\frac{1\left(1.0075^{300}-1\right)}{1.0075-1} \\ & S_{300} \approx 1121.121937 \\ & R=\frac{500000(1.0075)^{300}}{S_{300}} \\ & R=\$ 4195.98 \end{aligned}$ |
| iii) $\begin{aligned} & \text { Total repaid }=\$ 4195.98 \times 300 \\ & =\$ 1258794.00 \\ & \text { Interest }=\$ 1258794-500000 \\ & =\$ 758794.00 \end{aligned}$ | \& 2

1 \& 1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question 8} \& Trial HSC Examination - Mathematics \& \& \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline 2010 \\
\hline \text { Comment } \\
\hline
\end{array}
\]} \\
\hline Part \& \multicolumn{2}{|l|}{Solution} \& Marks \& \\
\hline a) \& \multicolumn{2}{|l|}{iv)
\[
\begin{aligned}
\& S I=\operatorname{Pr} n \\
\& 758794=500000 \times r \times 25 \\
\& r=6.07 \%
\end{aligned}
\]} \& 1 \& 1 \\
\hline b) \& 1) \& \& 2. \& \begin{tabular}{l}
1 correct shape \\
2 correct veriex
\end{tabular} \\
\hline \& ii) \&
\[
\begin{aligned}
-2)^{2} \& =4 \cdot 4(y-1) \\
\& =16(y-1)
\end{aligned}
\] \& \[
1
\] \& \\
\hline c) \& \multicolumn{2}{|l|}{\begin{tabular}{l}
i)
\[
\begin{aligned}
\& f(x)=4-2^{-x} \\
\& f\left(x^{2}\right)=4-2^{-x^{2}}
\end{aligned}
\] \\
ii)
\[
\begin{aligned}
\& {[f(x)]^{2}=\left[4-2^{-x}\right] \times\left[4-2^{-x}\right]} \\
\& =16-2^{3} \times 2^{-x}+\left(2^{-x}\right)^{2} \\
\& =16-2^{3-x}+2^{-2 x}
\end{aligned}
\] \\
iii)
\[
\begin{aligned}
\& f(-x)=4-2^{-(-x)} \\
\& =4-2^{x} \\
\& \neq f(x) \text { or }-f(x)
\end{aligned}
\] \\
\(\therefore\) the function is neither odd nor even
\end{tabular}} \& 1

1
1
1 \& 1

\hline \& \& \& /12 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question 9 Trial HSC Examination - Mathematics} \& 2010 \\
\hline \& Solution \& Marks \& Comment \\
\hline a) \& \begin{tabular}{l}
i)
\[
\begin{aligned}
\& a=-2 x=-3 \quad v=4 m s^{-1} \\
\& a=-2 \\
\& v=\int-2 d t \\
\& =-2 t+c
\end{aligned}
\] \\
when \(t=0 \quad v=4\)
\[
\begin{aligned}
\& 4=-2 \times 0+c \\
\& c=4
\end{aligned}
\]
\[
\therefore v=-2 t+4
\]
\[
x=\int-2 t+4 d t
\]
\[
=-t^{2}+4 t+c
\] \\
when \(t=0 \quad x=-3\)
\[
-3 \equiv 0+0 \equiv c
\]
\end{tabular} \& 2 \& 1 \\
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& c=-3 \\
\& \therefore x=-t^{2}+4 t-3
\end{aligned}
\] \\
ii) \\
Particle at rest when \(\nu=0\)
\[
\begin{aligned}
\& v=-2 t+4 \\
\& 0=-2 t+4 \\
\& 2 t=4 \\
\& t=2 \sec \text { onds }
\end{aligned}
\] \\
\(\therefore\) particle at rest when \(t=2 \mathrm{sec}\) onds \\
iii) \\
Particle at the origin when \(x=0\)
\[
\begin{aligned}
\& x=-t^{2}+4 t-3 \\
\& 0=-t^{2}+4 t-3 \\
\& 0=-\left(t^{2}-4 t+3\right) \\
\& 0=-(t-3)(t-1) \\
\& \therefore t=1 \text { or } 3 \mathrm{sec} \text { onds }
\end{aligned}
\] \\
particle first at the origin when \(t=1 \mathrm{sec}\) ond
\end{tabular} \& 2

2 \& | 1 |
| :--- |
| 1 |
| 1 |
| 1 |
| 1 |

\hline
\end{tabular}

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Question } 9 & \text { Trial HSC Examination - Mathematics } & \text { 2010 } \\ \hline \text { Part } & \text { Solution } & & \text { Marks } & \text { Comment } \\ \hline \text { iv) } & \begin{array}{l}1 \text { for correct } \\ \text { shape } \\ \text { 1 for correct }\end{array} \\ \text { intercepts }\end{array}\right]$

Question 9		Trial HSC Examination - Mathematics	2010
Part	Solution	$\int 3^{4 x-2} d x$ $=\frac{1}{4 \ln 3} \int 4 \ln 3\left(3^{4 x-2}\right)$ $=\frac{1}{4 \ln 3} \times\left(3^{4 x-2}\right)+c$ $=\frac{\left(3^{4 x-2}\right)}{4 \ln 3}+c$	1
	Comment		

Question 10	ion 10 Trial HSC Examination - Mathematics		2010
Part	Solution	Marks	Comment
a)	i) $\begin{aligned} & Q(t)=2000(25-t)^{2}, t \geq 0 \\ & Q^{\prime}(t)=-4000(25-t) \end{aligned}$ \therefore it is emptying at a rate of $4000(25-t)$ litres/minute ii) Pool full at $t=0$ $\begin{aligned} & Q(t)=2000(25-0)^{2} \\ & =1250000 \text { litres } \\ & \therefore \text { half full }=625000 \text { litres } \\ & 625000=2000(25-t)^{2} \\ & 312.5=625-50 t+t^{2} \\ & t^{2}-50 t+312.5=0 \end{aligned}$	2	1
	$\begin{aligned} & 2 t^{2}-100 t+625=0 \\ & t=\frac{--100 \pm \sqrt{100^{2}-4 \times 2 \times 625}}{2 \times 2} \\ & t=\frac{100 \pm \sqrt{5000}}{4} \\ & t=\frac{100 \pm 50 \sqrt{2}}{4} \\ & t=\frac{2(50 \pm 25 \sqrt{2})}{4} \\ & t=\frac{50 \pm 25 \sqrt{2}}{2} \\ & t=7.322 \text { or } 42.68 \\ & \therefore t=7 \text { minutes } \\ & \therefore \text { it will take } \approx 7 \text { minutes to half empty the pool } \\ & \text { iii) } \\ & 20 \mathrm{~kL}=20000 \mathrm{~L} / \mathrm{min} \\ & 20000=-4000(25-t) \\ & 20000=-100000+4000 t \\ & 4000 t=120000 \\ & t=30 \text { min } s \\ & \therefore \text { the flow rate will be } 20 \mathrm{~kL} \text { after } 30 \text { minutes } \end{aligned}$	2	

Question 10	Trial HSC Examination - Mathematics		2010
Part	Solution	Marks	Comment
a)	iv) when $t=10$ $\begin{aligned} & Q(t)=2000(25-10)^{2} \\ & =2000 \times 225 \\ & =450000 \mathrm{~L} \text { left in the pool } \end{aligned}$ when $t=0$ $\begin{aligned} & Q(t)=1250000 \mathrm{~L} \\ & \text { Average }=\frac{(1250000-450000)}{10} \\ & =80000 \mathrm{~L} / \mathrm{min} \end{aligned}$	2	1 1
b)		1	1
	ii) Using Pythagoras and $S=\frac{D}{T}$ \therefore he paddles a distance of $\sqrt{x^{2}+9}$ at $4 \mathrm{~km} / \mathrm{h}$ \therefore Paddles $-\frac{\sqrt{x^{2}+9}}{4}$ hours \therefore he walks a distance of $6-x$ at $5 \mathrm{~km} / \mathrm{h}$ \therefore Walks $-\frac{6-x}{5}$ hours The total time $T(x)=\frac{\sqrt{x^{2}+9}}{4}+\frac{6-x}{5}$	2	11

Question 10	Trial HSC Examination - Mathematics		2010
Part	Solution	Marks	Comment
b)	iii) $\begin{aligned} & T(x)=\frac{\sqrt{x^{2}+9}}{4}+\frac{6-x}{5} \\ & T^{\prime}(x)=\frac{x}{4 \sqrt{x^{2}+9}}-\frac{1}{5} \\ & =\frac{5 x-4 \sqrt{x^{2}+9}}{20 \sqrt{x^{2}+9}} \end{aligned}$ Min when $T^{\prime \prime}(x)=0$ $\begin{aligned} & 0=\frac{5 x-4 \sqrt{x^{2}+9}}{20 \sqrt{x^{2}+9}} \\ & 0=5 x-4 \sqrt{x^{2}+9} \\ & 5 x=4 \sqrt{x^{2}+9} \text { (square both sides) } \\ & 25 x^{2}=16 x^{2}+144 \end{aligned}$	2	1
	$\begin{aligned} & 9 x^{-2}=144 \\ & x^{2}=16 \\ & x= \pm 4(x \neq-4) \\ & \therefore x=4 \end{aligned}$ check min imum when $x<4, T^{\prime}(x)<0$ when $x>4, T^{\prime}(x)>0$ \therefore min imum at $x=4$ \therefore Adam paddles to $\mathrm{C}-4$ kilometres from O $\begin{aligned} & T(x)=\frac{\sqrt{x^{2}+9}}{4}+\frac{6-x}{5} \\ & T(4)=\frac{\sqrt{4^{2}+9}}{4}+\frac{6-4}{5} \\ & =1.65 \text { hours } \\ & =1 \text { hour \& } 39 \mathrm{~min} s \end{aligned}$		1
		/12	

