

Mathematics Trial Higher School Certificate Examination 2010

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this question paper
- All necessary working should be shown in every question

Total marks – 120

- Attempt Questions 1 10
- All questions are of equal value
- Start each question in a new writing booklet
- Write your examination number on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your examination number and "N/A" on the front cover

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

BLANK PAGE

Total Marks – 120 Attempt Questions 1-10 All Questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Questic	on 1 (12 Marks)	Use a Separate Booklet	Marks
a)	Evaluate $\frac{\sqrt{5^2 + 144}}{13 - 6}$	to two decimal places.	1
b)	Evaluate $\int_{1}^{5} (3x-7) dx$	c	1
c)	Rationalise the denor	minator and simplify:	2

$$\frac{1}{2-\sqrt{3}} - \frac{1}{2+\sqrt{3}}$$

e)

f)

d) Three towns form a triangle. Town A is 80 km from Town B and Town C is 40 km from Town A as shown below:

The bearing of Town B from Town A is 130° . The bearing of Town C from Town A is 240° .

i)	Find the area enclosed by the 3 towns	2
ii)	Using the cosine rule, find the distance to the nearest kilometre between Town B and Town C	2
Expre	ess the following as a single fraction	
$\frac{5}{2a+e}$	$\frac{1}{6} + \frac{a}{a^2 - 9}$	2
Solve	$\left 2x+5\right <3$	2

Quest	ion 2	(12 Marks)	Use a Separat	te Booklet		Marks
a)	Differ	entiate with resp	ect to x:			
	i)	$3x^2 + 7^{-6}$				2
	ii)	$4x^2e^{3x^3}$				2
	iii)	$\frac{\pi \cos x}{x^2}$				2
b)	Find	$\int \frac{dx}{3x+5}$				2
c)	On a c simult	liagram, indicate raneously:	the region where the	e following inequa	alities hold	2
		$y+1 \ge 0,$	$x + y - 2 \le 0$	and $x \ge 2$		

d) Find the obtuse angle in degrees and minutes, that a line with gradient -2.5 2 makes with the positive *x* axis.

Ques	tion 3 (12 Marks)	Use a Separate Booklet	Marks
a)	Find $\lim_{x \to -3} \frac{x^2 + 8x + 1}{x + 3}$	5	2
b)	Evaluate $\int_{0}^{\overline{6}} (x^2 + \sin 2x)$) dx . Leave your answer in exact form.	2
c)	i) On the same set of a	tes, sketch the functions $y = 4x - x^2$ and $y = 3$	2
	ii) Find the area contain	ned between these two curves	2
d)	Determine if the line x	$+ y + 3 = 0$ is a tangent to the parabola $y = 2x^2 + 3x - 1$	2

e)	For the curve $y = \sin \pi x$, state the period and amplitude	2

Question 4 (12 Marks) Use a Separate Booklet

Marks

a) The coordinates of the points A, B and C are, (0, -2), (4, 0) and (6, -4) respectively.

2

Quest	tion 5	(12 Marks)	Use a Separate Booklet	Marks
a)	Calcuthe <i>x</i>	ulate the area of the axis and the lines a	region enclosed by the graph of $y = \cos 2x$ $x = 0$ and $x = \frac{\pi}{4}$	2
b)	The r Find:	roots of the equation	n $2x^2 - 7x + 12 = 0$ are α and β	
	i)	$\alpha + \beta$		1
	ii)	αβ		1
	iii)	$\frac{1}{\alpha} + \frac{1}{\beta}$		2
	iv)	$\alpha^2 + \beta^2$		2

- c) A pendulum consisting of a bob and a long string attached to a fixed point is set 2 swinging with an initial arc of 40cm. If each subsequent oscillation is $\frac{5}{6}$ of the preceding one, Find the total distance travelled by the bob before it comes to rest.
- d) The gradient function of a curve is $y' = \frac{4x}{x^2 + 1}$ and the curve passes through the point (0, *e*). Find the equation of the curve.

3

Given AD = AB, DB = DC, $AD \parallel BC$ and $\angle DAB = 100^{\circ}$. Copy or trace the diagram into your answer booklet.

Find $\angle BDC$ giving reasons for each step.

Let $f(x) = x^3 - 6x^2$ b)

i)	Find the coordinates where the curve crosses the axes.	2
ii)	Find the coordinates of any stationary points and determine their nature.	2
iii)	Find the coordinates of any points of inflexion.	1
iv)	Sketch the curve $y = f(x)$, indicating clearly the intercepts and any stationary points and points of inflexion.	3
v)	For what values of x is $y = f(x)$ increasing.	1

Question 7		(12 Marks) Use a Separate Booklet					Marks	
a)	i)	Given $f(x) = \sqrt{4 - x^2}$, copy and complete the table of values to 3 decimal places.						
		x	0	0.5	1	1.5	2	
		f(x)						
	ii)	Hence	evaluate an	approximati	on for $\int_{0}^{2} \sqrt{4}$	$\frac{1}{x^2}dx$ using		2
		Simps	son's rule wi	th 5 function	values.			
b)	A pendulum on a grandfather clock is 50 cm long. When it swings the maximum length of the arc it makes is 40 cm.							
	i)	In radians find the angle through which the pendulum swings.						1
	ii)	Find the shortest distance between the maximum positions of the pendulum.						2
c)	The n after t	umber o t hours i	of bacteria N s given by:	a person has	after being	infected with a	a virus	
			<i>N</i> = 10000	$e^{0.05t}$				
	i)	Find t	he number o	f bacteria aft	er 10 hours			1
	ii)	Find the time required for the number of bacteria to reach 100000						2
	iii)	At wh	at rate is the	bacteria inc	reasing after	1 day		1
d)	The a $x = -$ solid	rea bour $3 \text{ and } x = 1$	nded by $y^2 =$ = 1 is revolv if this area is	= $3 - 2x - x^2$, ed about the s rotated about	$y \ge 0$ and b x axis. Calcu at the x axis.	etween Ilate the volun	ne of the	2

Question 8		(12 Marks) Use a Separate Booklet			
a)	Tiarn comp to be	borrows \$500 000 to ounded monthly is ch repaid in equal month	buy a house. An interest rate of 9% p.a. arged on the outstanding balance. The loan is ally instalements (R) over a 25 year period.		
	i) Show the amount owing after 3 months is:			2	
	$A_3 = 500000 \ 1.0075^3 - R \left[1 + 1.0075 + 1.0075^2 \right]$				
	ii)	Assuming this patter calculated using:	ern continues the monthly repayment can be	2	
		$A_n = 500000 \ 1.007$	5 $^{n} - R \left[1 + 1.0075 + 1.0075^{2} + \dots + 1.0075^{n-1} \right]$		
		How much should 7	Tiarn be paying each month?		
	iii)	How much interest	does Tiarn pay over the 25 years?	1	
	iv)	What is the equival	ent simple interest rate of this loan?	1	
b)	i)	Sketch the Parabola is the line $y = -3$.	a, whose focus is the point (2,5) and whose directrix Indicate on your diagram the vertex and its coordinates	2	
	ii)	Find the equation o	of the parabola.	1	
c)	If f(.	$(x) = 4 - 2^{-x}$ find:			
	i)	$f(x^2)$		1	
	ii)	$f(x)^{2}$		1	
	iii)	Is $f(x)$ even, odd of	or neither	1	

Questi	on 9	(12 Marks) Use a Separate Booklet	Marks
a)	The ac $a = -2$	ecceleration $a \text{ ms}^{-2}$ of a moving particle is given after <i>t</i> seconds by a. Initially the particle is located at $x = -3$ and its velocity is 4 ms ⁻¹	
	i)	Find the velocity(v) and displacement (x) as functions of time (t)	2
	ii)	Determine when the particle is at rest.	2
	iii)	When will the particle first be at the origin?	2
	iv)	Sketch displacement (x) as a function of time (t)	2
b)	i)	Differentiate $y = 3^{4x-2}$ with respect to x	
	ii)	Hence find: $\int 3^{4x-2} dr$	3
	11)	10100 ma. JS ax	1

Questi	ion 10	(12 Marks)	Use a Separate Booklet	Marks
a) A sw wate to en		nming pool is to Q litres, remainin ty is given by:	be emptied for maintenance. The quantity of ng in the pool at anytime, <i>t</i> minutes, after it starts	
		Ç	$Q(t) = 2000(25-t)^2, t \ge 0$	
	i)	At what rate is t	the pool being emptied at any time (t)	1
	ii)	How long will it	t take to half empty the pool to the nearest minute?	2
	iii)	At what time is	the water flowing out at 20 kL / minute.	2
	iv)	What is the aver	rage water flow in the first 10 minutes in litres?	2
b)	Adam point (is 6 kii and wa	is on a paddle bo O on a straight be ometres along th alk at a rate of 5k	bard in the ocean 3 kilometres from the nearest each. He needs to meet his friend Josh who he beach from O. Adam is able to paddle at a rate of 4km/h cm/h.	
	i)	Draw a diagram	to represent this information.	1
	ii)	Show the total the	ime $T(x)$ hours, for Adam to reach Josh is given by:	2
		7	$T(x) = \frac{\sqrt{x^2 + 9}}{4} + \frac{6 - x}{5}$	L
	iii)	Find the minimu	um time for Adam to reach Josh on the beach.	2

End of Examination

STANDARD INTEGRALS

$\int x^n dx$	$=\frac{1}{n+1}x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0$			
$\int \frac{1}{x} dx$	$= \ln x, x > 0$			
$\int e^{ax} dx$	$=\frac{1}{a}e^{ax}, a \neq 0$			
$\int \cos ax dx$	$=\frac{1}{a}\sin ax, a \neq 0$			
$\int \sin ax dx$	$= -\frac{1}{a}\cos ax, a \neq 0$			
$\int \sec^2 ax dx$	$=\frac{1}{a}\tan ax, a \neq 0$			
$\int \sec ax \tan ax dx$	$=\frac{1}{a}\sec ax, a \neq 0$			
$\int \frac{1}{a^2 + x^2} dx$	$=\frac{1}{a}\tan^{-1}\frac{x}{a}, a \neq 0$			
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$=\sin^{-1}\frac{x}{a}, a > 0, -a < x < a$			
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	$= \ln\left(x + \sqrt{x^2 - a^2}\right), x > a > 0$			
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	$= \ln \left(x + \sqrt{x^2 + a^2} \right)$			
NOTE : $\ln x = \log_e x$, $x > 0$				

Trial Higher School Certificate Examination 2010

SOLUTIONS

Ques	Solution 1 That HSC Examination - Mathematics		2010
Part	Solution	Marks	Comment
a)	$\frac{\sqrt{5^2 + 144}}{13 - 6} = 4.9135$	1	-
b)	$\int_{1}^{5} (3x-7)dx$	1	
	$= \left[\frac{3x^2}{2} - 7x\right]_1$ $= (\frac{75}{2} - 35)(\frac{3}{2} - 7)$		•
c)		- <u>_</u>	
	= 5 + 12 + 5 - 12 = $(5 - 12) + (5 - 12)$ = $(5 - 12) + (5 - 12)$		
d)	i) $A = \frac{1}{2}ab\sin C$ $A = \frac{1}{2} \times 40 \times 80 \times \sin 110^{\circ}$ $= 1503.5km^{2}$	4	l correct use siverule with correct angle 1 correct answer
	ii) $a^2 = b^2 + c^2 - 2bc \cos A$ $a^2 = 40^2 + 80^2 - 2 \times 40 \times 80 \times \cos 110^\circ$ $a^2 = 10188.93$ a = 100.9		i correct use cosme rule
	a = 100.9 a = 101km		rounded

12

Question 1		Trial HSC Examination - Mathematics		2010	
Part	t Solution		Marks	Comment	
e)	$\frac{5}{2a+6}$ +	$\frac{a}{a^2-9}$	2		
	$=\frac{5}{2(a+1)}$ $=\frac{5(a-1)}{2(a+1)}$ $=\frac{5a-1}{2(a+1)}$	$\frac{a}{33} + \frac{a}{(a+3)(a-3)}$ $\frac{-3}{33} + \frac{2a}{33(a-3)}$ $\frac{15+2a}{33(a-3)}$		L	
	$=\frac{7a-7}{2(a^2-7)}$	15 -9)		۱	
)	$\begin{vmatrix} 2x+5 < \\ 2x+5 < \\ 2x < -2 \end{vmatrix}$	<3 3 or $2x+5>-3$ 2x>-8	2	1	
	-x < -1 check $\therefore -4 < x$				
			/12		

Juest	tion 2	Trial HSC Examination - Mathematics		2010	
art	Solution		Marks	Comment	
)	i) $\frac{d}{dx}(3)$	$(x^2 + 7)^6$	2		
	$=6 \times 6x($	$3x^2 + 7)^5$		1	
	=36x(3x)	$(2^{2}+7)^{5}$		۱	
	ii) $4x^2\epsilon$	3 <i>x</i> ³	2		
	$u=4x^2$	$v = e^{3x^3}$			
	u' = 8x	$v'=9x^2e^{3x^3}$		1	
	$\frac{d}{dx} = 8xe$	$e^{3x^3} + 4x^2 \times 9x^2 e^{3x^3}$		1	
	$=8xe^{3x^3}$	$+36x^4e^{3x^3}$		1	
	$=4xe^{3x^3}$	$\left[2+9x^3\right]$			
	iii) $\frac{\pi c}{\pi c}$	<u>os x</u>			
	$u = \pi c d$	$v = x^2$	2		
	$u'=-\pi s$	$\sin x \qquad \nu' = 2x$			
	$\frac{d}{dx} = \frac{-\pi}{2}$	$\frac{x^2 \sin x - 2\pi x \cos x}{(x^2)^2}$		1	
	$=\frac{\pi x(-x)}{2}$	$rac{\sin x - 2\cos x}{x^4}$			
	$=\frac{\pi(-x)}{1-x}$	$\frac{x}{\sin x - 2\cos x}$			
_	$\int dx$	x ³	2		
	J_{3x+5}	3		1	
	$=\frac{1}{3}\int \frac{1}{3x}$	$\frac{dx}{dx}$			
	$=\frac{1}{-\ln(3)}$	(x+5)+C		1	

Ques	tion 2 Tri	al HSC Examination	- Mathematics		2010
Part	Solution			Marks	Comment
c)	y+1≥0 y≥-1	ス+y-2 ED y E 2-22	x)2	2	
		*			
				2	l correct lines
	<u> </u>		actili	-⊒=o	l correct region.
d)	$m = \tan \theta$			2	
	$-2.5 = \tan \theta$ $\theta = -68^{\circ}12'$ $\therefore \theta = 180^{\circ} -$	68°12′			1
	=111°48'			/10	1
				/12	

40 E.

. . . .

•

.

Quest	estion 3 Trial HSC Examination - Mathematics		2010	
Part	Solution		Marks	Comment
a)	$\lim_{x \to -3} \frac{x^2 + 8x + 3}{x + 3}$	15	2	
	= 11m (2c+ 8) 2c->-3 (2-	$\frac{(x+5)}{(3)}$		1
	= 2. X-3-3 = 2.			ı
b)	$\int_{0}^{\frac{\pi}{6}} x^2 + \sin 2x dx$		2	
	$=\left[\frac{x^3}{3} - \frac{1}{2}\cos 2x\right]$	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>		1
	$= \frac{(\frac{\pi}{6})^3}{\frac{3}{3} - \frac{1}{2}\cos(\frac{\pi}{6})}$	$\frac{2\pi}{6} \bigg = \bigg[-\frac{1}{2} \cos 0 \bigg]$		
	$=\frac{\pi^3}{648}-\frac{1}{4}+\frac{1}{2}$			1

Ques	tion 3	Trial HSC Examination - M	Iathematics	2010
Part	Solution		Marks	Comment
c)	i) $y = 42$ Pts o 42c - 1 $x^2 - 1$ (x - 1) x = 1 at x = 1 5c = 1	$\begin{aligned} x = 3 \\ f \text{ intersection :} \\ x^2 = 3 \\ +x + 3 = 0 \\ (x - 3) = 0 \\ x = 3 \\ 1, y = 4.1 - 1 (1, 3) \\ &= 3 \\ 3, y = 12 - 9 (3, 3) \\ &= 3 \end{aligned}$)	
	<	y (2,4) 3 (1,3) (3,3) y=	$\frac{y=3}{2}$ $4x-x^{2}$	l carrect dragram I all intecepts
	ii) 3 A - J = [ə = (ə	$(4nc - nc^2 - 3) \cdot dt x$ $nc^2 - \frac{nc^3}{3} - 3nc \int_{1}^{3}$ $\cdot 9 - \frac{n}{3} - 3 \cdot 3 \cdot (2.1 - 3)$	-3) 2	l correct Megrau
	= (1 = 4	8-9-9)-(-1-4) u ²		l correct answer

2

Question	uestion 3 Trial HSC Examination - Mathematics			2010
Part S	olution		Marks	Comment
Part S	iolution x + y + i y = 2x f + ang $2x^2 + 3$ $2x^2 + 3$ $2x^2 + 3$ $2x^2 + 1$ $x^2 - 1$ x + 1 x	$3=0 \Rightarrow y=-x-3.$ $2^{2}+3x-1.$ $y=nt, one point intersection: x-1=-x-3. 4x+1=0. 4x+1=0. y^{2}=0. =-1. there is one point of ection, x+y+3=0 is a$	2.	Comment
) A P	Amplitude Period = $\frac{2}{3}$	$\frac{1}{2\pi} = 1$	2	1
	52		/12	

.

Ques	Chatter Analise Examination - IV	athematics	2010
Part	Solution	Marks	Comment
a)	i) $AB = \sqrt{(4-0)^2 + (0+2)^2}$	2	
	= 116+4		
	= 120 = 255 U.		1
	mAB = 02		
	4-0		
	= <u>2</u> = <u>1</u>	2	l I
	II) & parallel to AB so ML=	눌. 1	
	44= == (2-6)		
	24+8=2-6		
	2-24-14=0		1
	iii) For D, y=0.	1	
6	x - 14=D		
	D(14,0)		a an <u>-:</u>
	1V) B(4,0) L: x-24-14=0	١	
	d=14.1+02-14 =14	- 14	
	1+(-2)2	5	
	- 14	e assu	1
	w) I ADDI (Imperius	m	
	V) Area ABUC (Hapero	2	
	$= \frac{1}{10} \left[(0 - 14)^2 + (-4 - 0)^2 \right]$	-	
	= J82+42		а 1
	= 130 or 455	2	
	A= 255 (255+455) = 55.655	5=30u	v
b)	i) 2 7 12 17	3	
9/	$T_{1} = 5n - 3$, v	ł
	- H - 13555 2732		
	ii) $T_{23} = 5 \times 23 - 3$		
	=112		1
	iii) $S = \frac{n}{2a+(n-1)d}$		
	2[2010]		
	$=\frac{47}{2}[2\times 2+(47-1)5]$		
	= 5499		1
	10 M.C		ð
C 0			

.

*

Quest	tion 4	Trial HSC Examination - Mathematics	22 	2010
Part	Solutio	n	Marks	Commen
2)	sec	$x+1=3$ Of $z \in \mathbb{Z}$	2	
	Se	ecor=2 Q1		1
	ie -	L = 2.		
	c	$\cos x = \frac{1}{2}$		
		x= 1/3 042412		١

.....

.

Ques	uon 5 I mar hSC Examination - Math	matics	2010
Part	Solution	Marks	Comment
a)	$\int_{0}^{\frac{\pi}{4}} \cos 2x$	2	
	$= \left[\frac{1}{2}\sin 2x\right]_{0}^{\frac{\pi}{4}}$		1
10 N.	$=\frac{1}{2}\sin\frac{\pi}{2}-\frac{1}{2}\sin \theta$ $=\frac{1}{2}\times 1$		ana nana na anang
	$=\frac{1}{2}unit^{2}$		1
b)	$2x^{2} - 7x + 12 = 0$ $\alpha + \beta = \frac{-b}{c} \qquad \alpha\beta = \frac{c}{c}$		
	-i)		
	$\alpha + \beta = \frac{-b}{a} = \frac{-2}{2}$ 7	1	
	$=\frac{1}{2}$		
	ii) $\alpha\beta = \frac{c}{a} = \frac{12}{2}$ $= 6$	1	
	iii) $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$	2	1
	$=\frac{\left(\frac{7}{2}\right)}{6}$		
	$=\frac{7}{12}$		1
	iv) $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ = $\left(\frac{7}{2}\right)^2 - 2\times6$	2	1
	(2)		

•

.

-

Ques	ion 5 Trial HSC Examination - Mathematics		2010	
Part	Solution	Marks	Comment	
c)	$a = 40 r = \frac{5}{6}$ r L $q. P. S_{ab} = \frac{a}{1-r}$	2		
	= <u>40</u> i- <u>5</u> 6		1	
	$=$ $\frac{40}{16}$			
	$= 240 \mathrm{cms}$	· ·	1	3 853 •
d)	$-y' = \frac{4x}{x^2 + 1}$	2.		
	$y = 2 \int \frac{2x}{x^2 + 1} dx$ = $2 \ln [x^2 + 1] + c$ when $x = 0$ $y = e$ $e = 2 \ln [0 + 1] + c$ $\therefore c = e$ $\therefore y = 2 \ln [x^2 + 1] + e$		1	
			-	
20		/12		10

٠

.

Ques	tion 6	2010		
Part	Solution	60 database databas	Marks	Comment
a)	Let $\angle AI$ $\triangle ADB$ is $\angle ADB =$	$DB = x^{\circ}$ isosceles (AB = AD) $\angle ABD(base \ angles \ of \ \Delta ADB =)$	3	1
	then $2x$ - so $x = 40$ $\therefore \angle ADB$ then $\angle D$ $\therefore \angle DBC$ $\therefore \angle DBC$	$L100 = 180^{\circ}(angle sum \Delta)$ $P = 40^{\circ}$ $BC = 40^{\circ}(alt \angle s = AD\Box BC)$ is isosceles (DB=DC) $T = 40^{\circ}(base \angle s \Delta DBC)$		1
	$=100^{\circ}$	$r = 180^{\circ} - 40^{\circ} - 40^{\circ} (angle sum \Delta DBC)$		1
b)	f(x) = <u>1) x²-</u> x>(x) x=(x) x=(x)	$x^3 - 6x^2$ $bx^2 = 0$ $(bx^2 = 0)$ $(bx^2 = 0$ $(bx^2 = 0)$ $(bx^2 = 0$ $(bx^2 = 0)$ $(bx^2 = 0)$	2	a.
	11) fr(2) 37 37 37 37 37 37 37 37 37 37 37 37 37	$\begin{array}{l} = 3x^{2} - 12x \\ = 3x^{2} - 12x \\ = 0, \\ (x - 4) = 0 \\ = 0, \\ = 0, \\ = 0, \\ = 0, \\ -32 \\ = : f^{11}(x) = 6x - 12 \\ = : f^{11}(x) = 6x - 12 \\ +) f^{11}(x) < 0 \\ = : max (0, 4) \\ = 32) f^{11}(x) > 0 \\ = : min. (4, -32) \end{array}$	2	must use a test for nature
	80 1110 mi	x TP at (0, 4) in TP at (4, -32))	a (leach)
	(11) POI con f"(2) at z= z= :. POI	when $f''(x) = 0$ and cavity changes. =0 $6x - 12 = 0$ 7L = 2 y = -16. 1, $f''(x) < 0$]: concavity 3, $f''(x) > 0$ J changes. ad (2, -16)	1	I more but must test for concavity.
			Į –	

Quest	tion 7 Trial HSC Examination - Mathematics		2010	
Part	Solution	Marks	Comment	
a)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	1	
	$\int_{a}^{b} f(x)dx \approx \frac{h}{3} [(y_0 + y_n) + (4 \times odds) + (2 \times evens)]$	2	1	
	$\approx \frac{0.5}{3} [(2+0) + 4(1.936 + 1.323) + 2(1.732)]$		I	
	* 5.085 01 5 <u>12</u>			
b)	$I = r\theta$	1		
	$40 = 50\theta$			
	- 40			
	$\theta = \frac{1}{50}$		1	
	$\theta = 0.8 radians$			
- 1	ji)			
	$a^2 = b^2 + c^2 - 2bc\cos A$	2		
	2 502 502 2 50 50 4	202,474		
	$a^{-} = 50^{-} + 50^{-} - 2 \times 50 \times 50 \times \cos \frac{1}{5}$		1	
	a = 38.94cm		1	
c)	i) N = 10000 - ^{0.05}	1		
	$N = 10000e^{0.05 \times 10}$			
	N = 16497	1	1	
	V = 10487			
	ii)	2		
	$100000 = 10000e^{0.037}$	2		
	$10 = e^{0.05t}$		1	
	$\ln 10 = \ln(e^{0.05t})$			
	$\ln 10 = 0.05t(\ln e)$			
	$t = \frac{\ln 10}{0.05}$			
	= 46hours		1	
	$\begin{bmatrix} 111 \\ N' = 500 e^{0.05t} \end{bmatrix}$	1		
	when $t = 24$ hours			
	$N' = 500e^{0.05 \times 24}$			
	= 1660 bacteria/bour		1	

Question 7		Trial HSC Examination - Mathematics		2010	
Part	Solution	ation		Comment	
d)	$y^2 = 3 -$	$2x - x^2$ 2	2		
	$V = \pi \int_{a}^{b} f$	$v^2 dx$			
	$V = \pi \int_{-3}^{1}$	$3-2x-x^2dx$		1	
	$=\pi \int 3x$	$-x^2 - \frac{x^3}{3}\Big _{-3}^{1}$			
	$=\pi\left[\left(3\right)\right]$	$-1-\frac{1}{3}\left(-9-9+9\right)$			
	$=\frac{32\pi}{3}$			1	
		1	12		

Quesi	10n 8 I rial HSC Examination - Mathematics		30	2010		
Part	Solution			Marks	Comment	
a)	i)				2	
	$r = 9 \div 1$	00÷12				
	r = 0.00	75				
	$A = P(1 \cdot$	+ r)"				
	$A_{\rm I} = 500$	$000(1.0075)^{1}$	R		8	1
	$A_2 = A_1($	$(1.0075)^{1} - R$				
	$A_2 = 500$	$0000(1.0075)^2 -$	R(1.0075) - R			
	$A_3 = A_2($	$(1.0075)^{1} - R$				
	$A_{2} = 500$	$000[(1.0075)^2]$	-R(1.0075) - R	(1.0075) - R		
	= 50000	1^{-1} $(1,0075)^3 = P(1)$	$(0075)^2 = R(1.00)^2$	(75) - R		
	_ 50000	$\alpha_{(1,0075)} = \Lambda_{(1,0075)}$	$1 \cdot 1 \cdot 0.075 \cdot 1 \cdot 0.075$	/3)—K		1
	= 50000	u(1.00/5) - K	1+1.0075+1.007	2		1
	as requi	red				
	ii)					
	$A_n = 0$ a	s all money is re	epaid		2	
	∴ 0=500	000(1.0075)300				
	R[1+1.0]	0075 + 1.0075 ² +	++1.0075 ⁿ⁻¹]			1
	P_	500000(1	.0075) ³⁰⁰			
	$K = \frac{1}{1+1}$	1.0075+1.0075	$^{2} + \dots + 1.0075^{n-1}$	1		
	geometr	<i>ic series</i> with a	r = 1, r = 1.0075, n	= 300		
	a (1	·" -1)				
	$S_n = \frac{1}{n}$	·-1				
	1	1.0075 ³⁰⁰ -1)				
	$S_{300} = -$	1.0075-1				
	$S_{300} \approx 11$	21.121937				
	$p_{p} = 500$	000(1.0075) ³⁰⁰				
	<i>N</i> =	S_{300}				1
	<i>R</i> = \$41	95.98				
	iii)					
	Total re	paid = \$4195.98	×300		1	
	=\$1258	794.00				
	Interest	= \$1258794 - 5	00000			
	merest					1

~

rari	Colution	Maulia	Commant
	Solution	Marks	Comment
a)	iv)	1	
	$SI = \Pr n$		
	$758794 = 500000 \times r \times 25$	8	1
	<i>r</i> = 6.07%		1
b))	2.	
		e	l correct Shape 2 correct Vertex
	-2- -2- -3- -3- -2- -2- -2- -2- -2- -2-		
	$(0, 2)^2 = 4.4(y-1)$	1	
	= 16(9-1)	1	
c)	= 16(g-1) i)	1	
c)	i) $f(x) = 4 - 2^{-x}$ $f(x^2) = 4 - 2^{-x^2}$	1	1
c)	$= 16 (G^{-1})$ i) $f(x) = 4 - 2^{-x}$ $f(x^2) = 4 - 2^{-x^2}$ ii) $[f(x)]^2 = [4 - 2^{-x}] \times [4 - 2^{-x}]$ $= 16 - 2^3 \times 2^{-x} + (2^{-x})^2$	1	1
c)	i) $f(x) = 4 - 2^{-x}$ $f(x^{2}) = 4 - 2^{-x^{2}}$ ii) $[f(x)]^{2} = [4 - 2^{-x}] \times [4 - 2^{-x}]$ $= 16 - 2^{3} \times 2^{-x} + (2^{-x})^{2}$ $= 16 - 2^{3-x} + 2^{-2x}$ iii)	1	1
c)	= 16(4-1) i) $f(x) = 4-2^{-x}$ $f(x^{2}) = 4-2^{-x^{2}}$ ii) $[f(x)]^{2} = [4-2^{-x}] \times [4-2^{-x}]$ $= 16-2^{3} \times 2^{-x} + (2^{-x})^{2}$ $= 16-2^{3-x} + 2^{-2x}$ iii) $f(-x) = 4-2^{-(-x)}$ $= 4-2^{x}$	1	1
c)	$= 16 (G^{-1})$ i) $f(x) = 4 - 2^{-x}$ $f(x^2) = 4 - 2^{-x^2}$ ii) $[f(x)]^2 = [4 - 2^{-x}] \times [4 - 2^{-x}]$ $= 16 - 2^3 \times 2^{-x} + (2^{-x})^2$ $= 16 - 2^{3-x} + 2^{-2x}$ iii) $f(-x) = 4 - 2^{-(-x)}$ $= 4 - 2^x$ $\neq f(x) = f(x)$	1	1
c)	i) $f(x) = 4 - 2^{-x}$ $f(x^{2}) = 4 - 2^{-x^{2}}$ ii) $[f(x)]^{2} = [4 - 2^{-x}] \times [4 - 2^{-x}]$ $= 16 - 2^{3} \times 2^{-x} + (2^{-x})^{2}$ $= 16 - 2^{3-x} + 2^{-2x}$ iii) $f(-x) = 4 - 2^{-(-x)}$ $= 4 - 2^{x}$ $\neq f(x)or - f(x)$	1	1

.....

ues	Colution - Mathematics	1 3 4 . 3	2010
irt	Solution	Marks	Comment
	i)	2	
	$a = -2 \ x = -3 \ v = 4ms^{-1}$		
	a = -2		
	$v = \int -2dt$		
	=-2t+c		
	when $t = 0$ $v = 4$		
	$4 = -2 \times 0 + c$		
	<i>c</i> = 4		1
	$\therefore v = -2t + 4$		÷.
	$x = \int -2t + 4dt$		
	$= -t^2 + 4t + c$		
	when $t = 0$ $x = -3$		
	-3 = 0 + 0 = c		
	- <i>c</i> = -3		
	$\therefore x = -t^2 + 4t - 3$		1
	ii)		
	Particle at rest when $v=0$	2	1
	v = -2t + 4		
	0 = -2t + 4		
	2t = 4		
	$t = 2 \sec onds$		1
	\therefore <i>particle</i> at rest when $t = 2 \sec onds$		
	iii)		
	Particle at the origin when $x = 0$	2	
	$x = -t^2 + 4t - 3$		
	$0 = -t^2 + 4t - 3$		
	$0 = -(t^2 - 4t + 3)$		1
	0 = -(t-3)(t-1)		
	$\therefore t = 1 \text{ or } 3 \sec onds$		1
	particle first at the origin when $t = 1 \sec ond$		•

Question q	estion q Trial HSC Examination - Mathematics		2010
Part Soluti	on	Marks	Comment
) iv)	x 2 1	2	1 for correct shape 1 for correct intercepts
-1 -1		++ <u>+</u> 5 ⇒ t	
		<u></u>	
i) $y = 3^{4}$ $4x - 2$	$x=\log_3 y$	3	1
4x-2 $\frac{\ln}{\ln x}$	$\frac{\ln y}{\ln 3}$		
$x = \frac{\ln x}{4}$	$\frac{1}{4}$ $\frac{1}{\ln 3} + \frac{1}{2}$		
$\frac{dx}{dy} = \frac{1}{4\ln x}$	$\frac{1}{4\ln 3} \times \frac{1}{y}$		1
$\frac{dy}{dx} = 4 \ln x$	$4\ln 3y$ $3(3^{4x-2})$		1
	<u>61 - 18238</u>	/12	

Quest	tion 9	Trial HSC Examination - Mathema	tics	2010
Part	Solutio	n	Marks	Comment
	ii)	5	1	,
	$\int 3^{4x-2} a$	lx		
	1	• 227 - 200 A 2 92		
	$=\frac{1}{4\ln 3}$	$\int 4 \ln 3(3^{4x-2})$		
	1	(241-2)		
	= 4ln 3	$\times (3^{-1}) + c$		
	(3 ^{4x-2})		1
	= 4 ln :	3		3 1
1			/12	

Dart	Colution	Menles	Commont
rart	501U(10II	Marks	Comment
a)	i)	1	
	$Q(t) = 2000(25-t)^2, t \ge 0$		
	Q'(t) = -4000(25-t)		
	: it is emptying at a rate of		
	4000(25-t) litres/minute		1
	Pool full at $t = 0$	2	
	$(2(t) - 2000(25 - 0)^2)$		
	Q(t) = 2000(25-0)	2	
	= 1250000 litres		1
	\therefore hair full = 625000 litres		1
	$625000 = 2000(25 - t)^2$		
	$312.5 = 625 - 50t + t^2$		
	$t^2 - 50t + 312.5 = 0$		
	$-2t^2 - 100t + 625 = 0$		• • • • • • • • • • • • • • • • • •
	$100\pm\sqrt{100^2-4\times2\times625}$		
	I=		
	$100 \pm \sqrt{5000}$		
	$l = \frac{1}{4}$		
	$100\pm 50\sqrt{2}$		
	$i = \frac{1}{4}$		
	$t = \frac{2(50 \pm 25\sqrt{2})}{100}$		
	4		
	$t = \frac{50 \pm 25\sqrt{2}}{100}$		
	2	0	
	t = 7.322 or 42.68		2
	$\therefore t = 7$ minutes		
	\therefore it will take \approx 7 minutes to half empty the pool		
	iii)		
	20kL = 20000L / min	2	
	20000 = -4000(25 - t)	1	1
	20000 = -100000 + 4000t		
	4000t = 120000		
	$t = 30 \min s$		
	.: the flow rate will be 20kL after 30 minutes		1
	and any of the other of a state where of the state		2000 C

f-

Ques	tion 10 Trial HSC Examination - Mathematics	1898 1998 - 1998	2010	
Part	Solution	Marks	Comment	
a)	iv)	2		
*	when $t = 10$	0.00		
	$Q(t) = 2000(25-10)^2$			
	= 2000 × 225			
	= 450000L left in the pool		1	
	when $t = 0$			
	Q(t) = 1250000L			
	(1250000 - 450000)		8	
	$Average = \frac{10}{10}$		1	
	$=80000L/\min$		0	
b)	i) B			
	1/2	1	1	
	-3 km	•••••••••••••		
			. <u> </u>	
	ii)	2		
	Using Pythagoras and $S = \frac{D}{T}$	2		
	$\frac{1}{\sqrt{2}}$			
	\therefore he paddles a distance of $\sqrt{x} + 9$			
	:. Paddles - $\frac{\sqrt{x^2+9}}{2}$ hours		1	
	4			
	$x = 10^{-10}$			
	at Skill/II			
	\therefore Walks - $\frac{6-x}{5}$ hours		1	
	The total time			
	$\sqrt{r^2+9}$ 6-r			
	$T(x) = \frac{\sqrt{x^{2}+y}}{4} + \frac{\sqrt{y^{2}+y}}{5}$			

.

Question 10		Trial HSC Examination - Mathematics		2010
Part	Solution		Marks	Comment
 b)	iii)	$\sqrt{x^2+9}$ 6-x	2	
	T(x) = -	4 + 5		
	T'(x) = -	$\frac{x}{4\sqrt{x^2+9}} - \frac{1}{5}$		1
	$=\frac{5x-4}{10}$	$\frac{\sqrt{x^2+9}}{2}$		
	20√. <i>Min</i> who	$x^2 + 9$ en $T'(x) = 0$		
	$0 = \frac{5x-3}{20}$	$\frac{4\sqrt{x^2+9}}{\sqrt{x^2+9}}$		
	0=5x-	$4\sqrt{x^2+9}$		
	$5x = 4\sqrt{3}$	$x^2 + 9$ (square both sides)		
 	$25x^2 = 1$	6x ² +144		
	$9x^2 = 14$	4		
	$x^2 = 16$			
	$x = \pm 4$ (2)	c ≠ -4)		
	$\therefore x = 4$	Den se		
	check n	in imum		
	when x -	< 4, T'(x) < 0		
	when x :	>4, T'(x) > 0		
	∴ min in	$num ext{ at } x = 4$		
	∴ Adam	paddles to C - 4 kilometres from O		
	T(x) = -	$\frac{\sqrt{x^2+9}}{4} + \frac{6-x}{5}$		
	T(4) = -	$\frac{\sqrt{4^2+9}}{4} + \frac{6-4}{5}$		
	=1.65hc	urs		10
	=1hour	& 39 min s		1
			/12	