Year 12

Mathematics

Trial HSC Examination

2015

General Instructions

- Reading time - 5 minutes
- Working time - 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided on the back page of this question paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I

10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section.

Section II

90 marks

- Attempt Questions 11-16
- Start each question in a new writing booklet
- Write your name on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your name and "N/A" on the front cover
- Allow about 2 hours 45 minutes for this section

BLANK PAGE

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1-10.

1 The period and amplitude of $y=3 \cos 2 x$ is:
(A) Amplitude $=2$, Period $=\frac{2 \pi}{3}$
(B) Amplitude $=3$, Period $=\pi$
(C) Amplitude $=\pi$, Period $=3$
(D) Amplitude $=\frac{2 \pi}{3}$, Period $=2$

2 What is the solution to the equation $2 \cos ^{2} x-1=0$ in the domain $0 \leq x \leq 2 \pi$?
(A) $x=\frac{\pi}{6}, \frac{11 \pi}{6}$
(B) $x=\frac{\pi}{4}, \frac{7 \pi}{4}$
(C) $x=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
(D) $x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$

3 An infinite geometric series has a first term of 3 and a limiting sum of 1.8.
What is the common ratio?
(A) $-0 . \dot{3}$
(B) $-0 . \dot{6}$
(C) -1.5
(D) $\quad-3.75$

4 Evaluate the $\int_{2}^{7} \frac{5}{x} d x$.
(A) $5(\ln 7-\ln 2)$
(B) $\frac{1}{5}(\ln 7-\ln 2)$
(C) $\frac{5}{49}-\frac{5}{4}$
(D) 0

5 Let α and β be the solution of $2 x^{2}-5 x-9=0$. Find the value of $\frac{1}{\alpha}+\frac{1}{\beta}$
(A) $-\frac{9}{2}$
(B) $-\frac{9}{5}$
(C) $-\frac{5}{9}$
(D) $\frac{5}{2}$

6 The equation of the normal to the curve $x^{2}=4 y$ at the point where $x=2$ is:
(A) $y=1$
(B) $x-y-1=0$
(C) $y=-1$
(D) $y+x-3=0$

7 The acceleration of a particle moving in a straight line is given by the formula $a=12 t+6$ with an initial velocity of $-36 \mathrm{~m} / \mathrm{s}$. When is the particle at rest?
(A) $t=0$
(B) $t=1$
(C) $t=2$
(D) $t=3$

8 A region in the first quadrant is bounded by the line $y=3 x+1$, the x-axis, the y axis, and the line $x=2$.

What is the volume of the solid of revolution formed when this region is rotated about the x-axis?
(A) 8 units 3
(B) 38 units 3
(C) 8π units 3
(D) 38π units 3

9 What are the coordinates of the focus of the parabola $x^{2}-2 x=6 y+11$
(A) $\left(-\frac{3}{2}, 1\right)$
(B) $\left(-\frac{1}{2}, 1\right)$
(C) $\left(1,-\frac{3}{2}\right)$
(D) $\left(1,-\frac{1}{2}\right)$

10 What is an expression for $[f(x)]^{2}$ if $f(x)=4+2^{-x}$?
(A) $16+2^{3-x}+2^{-2 x}$
(B) $16+2^{2-x}+2^{-2 x}$
(C) $17+2^{3-x}$
(D) $17+2^{2-x}$

Section II

90 marks
 Attempt Questions 11-16
 Allow about 2 hours 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)
Marks
(a) Simplify $\frac{y}{y^{2}-4}-\frac{2}{y-2}$
(b) Rationalise the denominator $\frac{\sqrt{2}}{\sqrt{7}+3}$
(c) Evaluate $\int_{0}^{\frac{\pi}{6}}\left(x^{2}+\sin 2 x\right) d x \quad 2$
(d) For the arithmetic sequence $4,9,14,19, \ldots$
(i) Write the rule to describe the nth term. 1
(ii) What is the $100^{\text {th }}$ term? 1
(iii) Find the sum of the first 100 terms. 1
(e) Differentiate
(i) $\tan 5 x \quad 1$
(ii) $\frac{\log _{e} x}{x}$
(iii) $x \cos x$ 1
(f) In the triangle $A B C, \angle A C B=30^{\circ}, \angle A B C=50^{\circ}$ and $B C=10 \mathrm{~cm}$. The foot of the perpendicular from A to $B C$ is D.

(i) Use the Sine Rule to find the length of $A B$ correct to 2 decimal places.
(ii) Hence or otherwise, find the length of $A D$.

Answer correct to two decimal places.
(a) Points $A(-3,1)$ and $B(1,3)$ are on a number plane.

(i) Find the gradient of line $O A$.
(ii) Show that $O A$ is perpendicular to $O B$.
(iii) $O A C B$ is a quadrilateral in which $B C$ is parallel to $O A$.

Show that the equation of $B C$ is $x+3 y-10=0$.
(iv) The point C lies on the line $x=-2$.

What are the coordinates of point C ?
(v) Show that the length of the line $B C$ is $\sqrt{10}$.
(vi) Find the area of $O A C B$.
(b) The table shows the values of a function $f(x)$ for five values of x.

x	1	1.5	2	2.5	3
$f(x)$	4	1.5	-2	2.5	8

Use Simpson's rule with these five vales to estimate $\int_{1}^{3} f(x) d x$.
(c) The parabola $y=x^{2}+1$ and the line $y=3 x+1$ intersect at the point A

(i) Find the x-coordinate of point $A \quad 1$
(ii) What is the area enclosed between the curves
(d) Evaluate $\log _{6} 9+\log _{6} 24 \quad 1$
(e) Solve $4^{x+1}=9$ correct to 2 decimal places 2

End of Question 12

(a) In the diagram, the shaded region bounded by the curve $y=\ln x$, the coordinate axes and the line $y=\ln 4$, is rotated about the y-axis.
Find the exact volume of the solid of revolution.

(b) In quadrilateral $A B C D$ the diagonals $A C$ and $B D$ intersect at E.
$A E=3, C E=6, B E=4, E D=8$.

Copy or trace the diagram into your booklet.
(i) Show that $\triangle A B E \| \triangle C D E \quad 3$
(ii) What type of quadrilateral is $A B C D$? Justify your answer.
(c) The parabola $y=a x^{2}+b x+c$ has a vertex at $(3,1)$ and passes through (0,0).
(i) Find the other x-intercept of the parabola.
(ii) Find a, b and c.
(d) John plays computer games competitively. Everytime he plays, John has a 0.8 chance of winning a game of Beastie and a 0.6 chance of winning a game of Dragonfire. In one afternoon of competition he plays one game of Beastie and one of Dragonfire.
(i) What is the probability that he will win both games?
(ii) What is the probability that he will win exactly one game?
(iii) What is the probability that he will win at least one game?

Question 14 (15 marks)
(a) A function $f(x)$ is defined by $f(x)=x^{2}(3-x)$.
(i) Find the stationary points for the curve $y=f(x)$ and determine their nature.
(ii) Sketch the graph of $y=f(x)$ showing the stationary points and x-intercepts.
(b) The displacement of an object at time (t) seconds is given by:

$$
x=3 e^{2 t}-4 e^{t}-10 t
$$

Find the time the object comes to rest.
(c) The third and seventh terms of a geometric series are 1.25 and 20 respectively. What is the first term?
(d) At the start of the year John puts $\$ 10$ into his personal safe which earns no interest. At the start of each month, John puts $\$ 5$ more then the previous month (ie. $\$ 15$ in the second month, $\$ 20$ in the third month...)

At the same time, Henry invests M dollars into a new saving account and deposits M dollars at the start of each following month. The money in the account earns interest at the rate of 0.4% per month compounding monthly.
(i) Show that the John has saved \$3510 after 3 years.
(ii) Write an expression involving Mshowing how much Henry saved after 2 months
(iii) If the total money saved by Henry and John is \$18035 after 3 years, find the value of M to the nearest dollar.

End of Question 14

(a) (i) On the same number plane graph:
$y=\sin x$ and $y=\cos 2 x$ for $0 \leq x \leq \pi$
(ii) Show that the curves intersect at $A=\frac{\pi}{6}$ and $B=\frac{5 \pi}{6}$.
(iii) Hence find the area bounded by

$$
y=\sin x \text { and } y=\cos 2 x \text { for } \frac{\pi}{6} \leq x \leq \frac{5 \pi}{6} .
$$

(b)

3 metres of fencing is being used to form a triangular garden against an existing wall. Let the length of the base $B C$ be x metres.
(i) Show that the area of the triangle $A B C$ is $0.5 x \sqrt{9-6 x}$.
(ii) What value of x gives the maximum possible area of the triangle?
(c) The radiation in a rock after a nuclear accident was 8,000 becquerel (bq). One year later, the radiation in the rock was $7,000 \mathrm{bq}$. It is known that the radiation in the rock is given by the formula:

$$
R=R_{0} e^{-k t} .
$$

where R_{0} and k are constants and t is the time measured in years.
(i) Evaluate the constants R_{0} and k. 2
(ii) What is the radiation of the rock after 10 years?

Answer correct to the nearest whole number.
(iii) The region will become safe when the radiation of the rock reaches 50 bq . After how many years will the region become safe?
(a) An object is moving in a straight line and its velocity is given by;

$$
v=1-2 \sin 2 t \text { for } t \geq 0
$$

where v is measured in metres per second and t in seconds.
Initially the object is at the origin.
(i) Find the displacement x, as a function of t.
(ii) What is the position of the object when $t=\frac{\pi}{3}$?
(iii) Find the acceleration a, as a function of t.
(iv) Sketch the graph of a, as a function of t, for $0 \leq t \leq \pi$.
(v) What is the maximum acceleration of the object?
(b) (i) Prove that $\frac{1}{1+\sin 3 \theta}+\frac{1}{1-\sin 3 \theta}=2 \sec ^{2} 3 \theta$.
(ii) Hence find $\int\left(\frac{4}{1+\sin 2 \theta}+\frac{4}{1-\sin 2 \theta}\right) d \theta$
(c) The diagram shows the sector $O A B$ with centre 0 and radius r .

The perpendicular from B meets the radius $O A$ at $C, B C=8 \mathrm{~cm}$ and $A C=4 \mathrm{~cm}$.

(i) Show that the radius r of the circle is 10 cm . 2
(ii) Find the area of the shaded region in this sector.

End of examination

BLANK PAGE

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, \quad n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\quad \ln x, \quad x>0 \\
& \int e^{a x} d x \quad=\quad \frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\quad \frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\quad \frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\quad \frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\quad \frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\quad \ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { Note } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

Mathematics

Section I Multiple-Choice Answer Sheet

1	$A \bigcirc$	$B \bigcirc$	CO	D \bigcirc
2	A \bigcirc	B \bigcirc	C	D \bigcirc
3	A \bigcirc	$B \bigcirc$	C	D \bigcirc
4	A \bigcirc	$B \bigcirc$	C	D \bigcirc
5	A \bigcirc	$B \bigcirc$	C	D \bigcirc
6	A \bigcirc	$B \bigcirc$	C	D
7	A \bigcirc	$B \bigcirc$	C	D
8	A \bigcirc	$B \bigcirc$	C	D
9	A \bigcirc	$B \bigcirc$	C	D
10	A \bigcirc	$B \bigcirc$	CO	D

Trial tasse 2015
Multiple choice
1.

$$
\begin{aligned}
& y=3 \cos 2 x . \\
& \text { amplitude }=3 \\
& \text { period } \frac{2 \pi}{2}=\pi
\end{aligned}
$$

B
2.

$$
\begin{aligned}
2 \cos ^{2} x-1 & =0 \\
\cos ^{2} x & =\frac{1}{2} \\
\cos x & = \pm \sqrt{\frac{1}{2}} \\
x & =\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}
\end{aligned}
$$

D
3.

$$
\left.\begin{array}{l}
a=3 \\
S=1.8 \\
S=\frac{a}{1-r} \\
1-r=\frac{a}{S} \\
r
\end{array}\right)=1-\frac{a}{S} .
$$

B

4

$$
\begin{aligned}
& \int_{2}^{7} \frac{5}{x} d x \\
& =\left.5 \ln x\right|_{2} ^{7} \\
& =5(\ln 7-\operatorname{lo} 2)
\end{aligned}
$$

A
5.

$$
\begin{aligned}
& 2 x^{2}-5 x-q=0 \\
& \alpha+\beta=-\frac{b}{a}=\frac{5}{2} \\
& \begin{aligned}
\alpha \beta & =\frac{c}{a}
\end{aligned}=\frac{-9}{2} \\
& \frac{1}{\alpha}+\frac{1}{\beta}=\frac{\beta+\alpha}{\alpha \beta} \\
&=\frac{5}{2} \div-\frac{q}{2} \\
&=\frac{5}{2} \times-\frac{2}{9} \\
&=-\frac{5}{9}
\end{aligned}
$$

c
6.

$$
\begin{aligned}
& x^{2}=4 y . \\
& y=\frac{x^{2}}{4} \\
& y=\frac{2 x}{4}=\frac{x}{2} \\
& x=2 \rightarrow y=\frac{4}{4}=1 \\
& y^{\prime}=\frac{2}{2}=1
\end{aligned}
$$

norial $m_{2}=-1$

$$
\begin{gathered}
y-1=-1(x-2) \\
y-1=-x+2 \\
y+x-3=0
\end{gathered}
$$

7.

$$
\begin{aligned}
& a=12 t+6 . \\
& r=6 t^{2}+6 t+c . \\
& t=0 \rightarrow V=-36 \\
& -36=c . \\
& V=6 t^{2}+6 t-36 \\
& =6\left(t^{2}+t-6\right) \\
& =6(t+3)(t-2) \\
& v=0 \rightarrow t=-3<0 \\
& \quad t=2 .
\end{aligned}
$$

C
8.

$$
\begin{aligned}
y & =3 x+1 \\
V & =\pi \int_{0}^{2}(3 x+1)^{2} d x \\
& =\pi \int_{0}^{2}\left(9 x^{2}+6 x+1\right) d x \\
& =\pi\left|3 x^{3}+3 x^{2}+x\right|_{0}^{2} \\
& =\pi\left|3 \times 2^{3}+3 \times 2^{2}+2\right| \\
& =38 \pi \text { unit }^{3}
\end{aligned}
$$

D/
9.

$$
\begin{aligned}
x^{2}-2 x & =6 y+11 . \\
(x-1)^{2} & =6 y+12 \\
(x-1)^{2} & =6(y+2) \\
(x-1)^{2} & =4 \times \frac{3}{2}(y+2)
\end{aligned}
$$

Vertex ($1,-2$)
Focal kergth: $\frac{3}{2}$
Foens ($1,-\frac{1}{2}$)
D
10.

$$
\begin{aligned}
{[f(x)]^{2} } & =\left[4+2^{-x}\right]^{2} \\
& =16+8 \times 2^{-x}+2^{-2 x} \\
& =16+2^{3} \times 2^{x}+2^{-2 x} \\
& =16+2^{3-x}+2^{-2 x}
\end{aligned}
$$

A

Question H
11.
a.

$$
\begin{aligned}
& \frac{y}{y^{2}-4}-\frac{2}{y-2} \\
= & \frac{y}{(y-2)(y+2)}-\frac{2}{y-2} \\
= & \frac{y-2(y+2)}{(y-2)(y+2)} \\
= & \frac{y-2 y-4}{y^{2}-4} \\
= & -\frac{y-4}{y^{2}-4}
\end{aligned}
$$

1 marts finds a common denominator

1 mark -correct answer

Question H

$$
\begin{aligned}
& \frac{\sqrt{2}}{\sqrt{7}+3} \times \frac{\sqrt{7}-3}{\sqrt{7}-3} \\
= & \frac{\sqrt{14}-3 \sqrt{2}}{7-9} \\
= & \frac{\sqrt{14}-3 \sqrt{2}}{-2}
\end{aligned}
$$

$$
1 \text { martz. }
$$

I Mark-correct answer

Quiestionr 11
©

$$
\begin{aligned}
& \int_{0}^{\pi / 6}\left(x^{2}+\sin 2 x d x\right. \\
= & \frac{x^{3}}{3}-\left.\frac{1}{2} \cos 2 x\right|_{0} ^{\pi / 6} \\
= & \left(\frac{(\pi / 6)^{3}}{3}-\frac{1}{2} \cos 2 \frac{\pi}{6}\right)-\left(0-\frac{1}{2} \cos 0\right) \\
= & \frac{\pi^{3}}{648}-\frac{1}{4}+\frac{1}{2} \\
= & \frac{\pi}{648}+\frac{1}{4} \\
= & 0.2978
\end{aligned}
$$

1 mark-Find the primitive function

1 merk - correct answor

Question II
d. $4,9,14,19$.
i.

$$
\begin{aligned}
a & =4 \\
d & =5 \\
T_{n} & =a+(n-1) d \\
& =4+n d-d \\
& =4+5 a-5 \\
& =5 r-1
\end{aligned}
$$

H.

$$
\begin{aligned}
T & =5 \times 100^{-}-1 \\
& =499
\end{aligned}
$$

ii.

$$
\begin{aligned}
S_{100} & =\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{100}{2}[2 \times 5+(100-1) \times 5] \\
& =25150
\end{aligned}
$$

Question "I
\dot{e}.
i.

$$
\begin{aligned}
& y=\tan 5 x \\
& y^{\prime}=5 \sec ^{2} 5 x
\end{aligned}
$$

1. $y=\frac{\log _{e} x}{x}$

$$
\begin{aligned}
u & =\log _{e} x, u^{\prime}=\frac{1}{x} \\
v & =x, v^{\prime}=1 \\
y^{\prime} & =\frac{u^{\prime} v-v^{\prime} u}{v^{2}} \\
& =\frac{\frac{1}{x} \times x-\log _{e} x}{x^{2}} \\
& =\frac{1-\operatorname{lig}_{e} x}{x^{2}}
\end{aligned}
$$

717.

$$
\begin{aligned}
y & =x \cos x \\
u & =x, u^{\prime}=1 \\
v & =\cos x, v^{\prime}=-\sin x \\
y^{\prime} & =u^{\prime} v+v^{\prime} u \\
& =\cos x-x \sin x
\end{aligned}
$$

1 mark-corred answor

1 mark

1 mark.

Question II
f.

$$
\angle B A C=180-30-50=100^{\circ}
$$

i.

$$
\begin{aligned}
& \frac{A B}{\sin 30}=\frac{B C}{\sin 100} \\
& \begin{aligned}
A B & =\frac{B C \times \sin 30}{\sin 100} \\
& =\frac{10 \times \sin 30}{\sin 100}
\end{aligned}
\end{aligned}
$$

\qquad
ii.

$$
\begin{aligned}
\sin 50 & =\frac{A D}{A B} \\
A D & =A B \times \sin 50 \\
& =\frac{10 \times \sin 30}{\sin 100} \times \sin 50 \\
& \approx 3.89 \mathrm{cor}
\end{aligned}
$$

-1 mark to find angle BAC
or using sine rule with correct values

- Imark-correct answer

1 mark - correct answer

Question 12.
a.

$$
\text { i. } \begin{aligned}
& A(-3,1), B(1,3), \\
& m_{O A}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
&=\frac{0-1}{0+3}=-\frac{1}{3}
\end{aligned}
$$

ii.

$$
\begin{aligned}
& m_{O B}=\frac{0-3}{0-1}=3 . \\
& m_{O A} \times m_{O B}=-\frac{1}{3} \times 3=-1 \\
& \therefore O A \perp O B .
\end{aligned}
$$

iii. $B C \| O A$

$$
\begin{aligned}
& M_{B C}=m_{O A}=-\frac{1}{3} \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=-\frac{1}{3}(x-1) \\
& 3 y-9=-x+1 \\
& x+3 y-10=0
\end{aligned}
$$

N.

$$
x=-2 .
$$

Sub $x=-2$ into $x+9 y-10=0$

$$
\begin{gathered}
-2+3 y-10=0 \\
3 y=12 \\
y=4 \\
\therefore C(-2,4)
\end{gathered}
$$

\checkmark.

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
B C & =\sqrt{(-2-1)^{2}+(4-3)^{2}}=\sqrt{10}
\end{aligned}
$$

vi.

$$
\begin{aligned}
& O A=O B=\sqrt{10}=B C . \\
& O A \perp O B .
\end{aligned}
$$

$\therefore \quad \triangle A C B$ is a square.
1 matz-correct assures

1 mark

1 merk-uses the gradient intercept former
buarte_correct answerer

1 mark - correct answer

1 nark

1 mark.
$A=S \varphi S=\sqrt{10} \times \sqrt{10}=10$ square unit.

Question 12
b.

$$
\begin{aligned}
\int_{1}^{3} f(x) d x & =\frac{h}{3}\left[y_{0}+y_{4}+4\left(y_{1}+y_{3}\right)+2 y_{2}\right] \\
& =\frac{0.5}{3}[4+8+4(1.5+2.5)+2 \times(-2)] \\
& =4
\end{aligned}
$$

inark-uses
Simpsar's rule
tnark-correct answes.

Question 12
c.

$$
\text { i. } \quad \begin{aligned}
& y=x^{2}+1 \\
& y=3 x+1
\end{aligned}
$$

points of intersection

$$
\begin{aligned}
& x^{2}+1=3 x+1 \\
& x^{2}-3 x=0 \\
& x(x-3)=0 \\
& x=0 \\
& x=3 .
\end{aligned}
$$

\therefore The x coordinate of A is s

$$
\text { ii. } \begin{aligned}
& \int_{0}^{3}(3 x+1)-\left(x^{2}+1\right) d x \\
= & \int_{0}^{3}\left(3 x-x^{2}\right) d x \\
= & \frac{3 x^{2}}{2}-\left.\frac{x^{3}}{3}\right|_{0} ^{3} \\
= & \frac{3 \times 3^{2}}{3}-\frac{3^{3}}{3} \\
= & \frac{9}{5} \text { Square unit. }
\end{aligned}
$$

1 mark - find x coordinate of A

In ark - Find the primitive function

- Inark-correct answer

Question 12
d.

$$
\begin{aligned}
& \log _{6} 9+\log _{6} 24 \\
= & \log _{6}(9 \times 24) \\
= & \log _{6}(216) \\
= & \log _{6} 6^{3} \\
= & 3
\end{aligned}
$$

e. $\quad 4^{x+1}=9$.

$$
\begin{aligned}
\log 4^{x+1} & =\log 9 \\
(x+1) \log 4 & =\log 9 \\
x+1 & =\frac{\log 9}{\log 4} \\
x+1 & =1.58 \\
x & =0.58
\end{aligned}
$$

Question 13
a.

$$
\begin{aligned}
y & =\ln x \\
e^{y} & =\operatorname{los} e^{x} \\
e^{y} & =x \operatorname{lor} e \\
x & =e^{y} \\
r & =\pi \int_{0}^{\log 4}\left(e^{y}\right)^{2} d y \\
& =\pi \int_{0}^{\ln 4} e^{2 y} d y \\
& =\pi\left[\frac{1}{2} e^{2 y}\right]_{0}^{\ln 4} \\
& =\frac{\pi}{2}\left(e^{2 \ln 4}-e^{0}\right) \\
& =\frac{15 \pi}{2} \text { eutic umits }
\end{aligned}
$$

1 ovark-uses volume formula
lonark - find primitice functior

1 mark - correct answer

Question 13
b.

i. $\ln \triangle A B E$ and $\triangle C D E$

$$
\begin{aligned}
& \frac{A E}{E C}=\frac{3}{6}=\frac{1}{2} \\
& \frac{B E}{D E}=\frac{4}{8}=\frac{1}{2}
\end{aligned}
$$

$\angle A E B=\angle D E C$ (vertically opposite ogles are equal)

$$
\therefore \triangle A B C \| \triangle C D E
$$

(Two pairs of corresponding sides are wi proportion and the include angles are equal)
ii. $\angle B A E=\angle D C E$ (maturing angles is similar triangles)

Therefore $\angle B A E$ and $\angle D C E$ are alternate angles and equal

$$
\therefore A B / / C D
$$

Therefor $A B C D$ is a trageziums.

- thank.. relevant statement or shaw some understanding. inath

Question 13.
c.

- The parabola is symmetrical about the vertex of $(3,1)$
- if the parabola passes through the origin it is concave donor and the other x intercept is

$$
\begin{align*}
& (6,0) \\
& \text { ii. } \operatorname{For}(0,0) \\
& y=a x^{2}+b x+c \\
& 0=c \text {. } \\
& \text { For (6,0) } \\
& y=a x^{2}+b x+c \\
& 0=36 a+6 b \text {. } \\
& \operatorname{For}(3,1) \\
& y=a x^{2}+b x+c . \\
& 1=9 a+3 b \\
& \left\{\begin{array}{l}
36 a+6 b=0 \\
9 a+3 b=1
\end{array}\right. \tag{2}\\
& \left\{\begin{array}{l}
36 a+6 b=0 \quad \text { (1) } \\
18 a+6 b=2 \quad \text { (2) }
\end{array}\right.
\end{align*}
$$

(1) $-(2)$
$18 a=-2$.

$$
a=-\frac{1}{9}
$$

sub $a=-\frac{1}{9}$ into (2)

$$
\begin{aligned}
& 18 \times-\frac{1}{9}+6 b=2 \\
& b=\frac{2}{3} \\
& \therefore \quad a=-\frac{1}{9}, b=\frac{2}{3}, \quad c=0
\end{aligned}
$$

1 werk-correct answer.
incark-fints the value of a or shows same understanding
inath-finds. value of s

1 mate. finds value of e.

Question 13
d.

$$
\text { i. } \begin{aligned}
P(W W) & =0.8 \times 0.6 \\
& =0.48 .
\end{aligned}
$$

ii.

$$
\begin{aligned}
P(\text { exactly } 1 \text { game }) & =0.8 \times 0.4+0.2 \times 0.6 \\
& =0.44
\end{aligned}
$$

ii

$$
\begin{aligned}
P(\text { attest (gave) } & =1-P(L L) \\
& =1-0.2 \times 0.4 \\
& =0.92
\end{aligned}
$$

1 mark - correct answer

1 mark

1 mark

Question 14.
a.

$$
\text { i. } \begin{aligned}
f(x) & =x^{2}(3-x) \\
& =3 x^{2}-x^{3}
\end{aligned}
$$

For stationary points

$$
\begin{gathered}
f^{\prime}(x)=0 . \\
f^{\prime}(x)=6 x-3 x^{2} \\
6 x-3 x^{2}=0 \\
3 x(2-x)=0 \\
\cdot x=0 \rightarrow y=0 \\
\therefore x \neq 2 \rightarrow y=4 . \\
\therefore(0,0),(2,4)
\end{gathered} \begin{aligned}
& \text { At }(0,0), f^{\prime \prime}(0)=6-6 x \\
&=6>0, \text { Mir } \\
& A t(2,4), f^{\prime \prime}(2)=6-12 \\
&=-6<0, \text { Max. }
\end{aligned}
$$

ii. x intercept

$$
\begin{aligned}
y=0 \rightarrow & 3 x^{2}-x^{3}=0 \\
& x^{2}(3-x)=0 \\
& x=0 \text { and } x=3
\end{aligned}
$$

mark -stationary points

1 mark -max
mark-mis

1 mark - shows max or min

1 nark- correct shape.

Question 14
b.

$$
\begin{aligned}
x & =3 e^{2 t}-4 e^{t}-10 t \\
v & =6 e^{2 t}-4 e^{t}-10 \\
& =2\left(3 e^{2 t}-2 e^{t}-5\right)
\end{aligned}
$$

The object comes to rest whom $v=0$

$$
2\left(3 e^{2 t}-2 e^{t}-5\right)=0
$$

Let $e^{t}=o r$

$$
\begin{gathered}
2\left(3 m^{2}-2 m-5\right)=0 \\
2(m+1)(3 m-5)=0 \\
m+1=0 \\
m=-1 \\
e^{t}=-1 \text { (no solutions) }
\end{gathered}
$$

- $30 r-5=0$

$$
\left.\begin{array}{l}
m=\frac{5}{3} \\
e^{t}=\frac{5}{3} \\
t=\ln \frac{5}{3} \mathrm{~s} \\
t=0.51 \mathrm{~s}
\end{array}\right\}
$$

1 mark -find derivative

1 markfactorising as quadratic.

1 mark -correct answer
having exclude

$$
e^{t}=-1
$$

Question 14
C.

$$
\begin{aligned}
& T_{3}=a r^{2}=1.25 \quad \text { (1) } \\
& T_{f}=a r^{6}=20 \quad(2) \\
& \text { (2) } \div(1) \\
& \frac{a r^{6}}{a r^{2}}=\frac{20}{1.25} \\
& r^{4}=16 \\
& r= \pm 2 \\
& T_{3}=a r^{2} \\
& =a \times(\pm 2)^{2}=1.25 \\
& 4 a=1.25 \\
& a=\frac{1.25}{4} \\
& =\frac{5}{16} \text { or } 0.3125
\end{aligned}
$$

1 buark - Finds ror
two equations using interms of a G-P
t mark. correct answer

Question 14
d.
i. Johrós saving

$$
\$ 10+\$ 15+\$ 20+\cdots
$$

AD :

$$
\begin{aligned}
& a=10 \\
& d=5 \\
& n=3 \times 12=36
\end{aligned}
$$

$$
\begin{aligned}
S_{36} & =\frac{36}{2}(2 \times 10+35+5) \\
& =\$ 3510
\end{aligned}
$$

ii. Henry saved after 1 month

$$
A_{1}=M \times 1.004
$$

Sotted saved. is

$$
\begin{aligned}
& M \times 1.004^{2}+M \times 1.004 \\
& =M\left(1.004^{2}+1.004\right)
\end{aligned}
$$ Henry must save $\$ 18035-\$ 3510=\$ 14525$.

Henry's total saving

$$
M\left(1.004+1.004^{2}+1.004^{3}+\cdots+1.004^{36}\right)
$$

$G P:$

$$
\begin{aligned}
& a=1.004 \\
& r=1.004 \\
& n=36
\end{aligned}
$$

So

$$
\begin{aligned}
\not \& 14525 & =M \times 1.004 \frac{\left(1.004^{36}-1\right)}{1.004-1} \\
& =M \times 38.79266 \\
M & =\$ 374.43
\end{aligned}
$$

imark-finds ardor

1 mark - correct answer
park for sum
Jobs save together $\$ 18035$

$$
\begin{aligned}
& r=1.004 \\
& n=36
\end{aligned}
$$

1 mark - sum using GP correctly. 1 mark

Question 15
a.

ii.
$\sin x=\cos 2 x$.

- Wher $x=\frac{\pi}{6}$, $\sin \frac{\pi}{6}=\frac{1}{2}$

$$
\begin{aligned}
& \text { Wher } x=\frac{5 \pi}{6} \cdot \cos \frac{2 \pi}{6}=\frac{1}{2} \\
& \sin \frac{5 \pi}{6}=\frac{1}{2} \\
& \cos 2 \times \frac{5 \pi}{6}=\frac{1}{2} \\
& \int_{\pi / 6}^{5 \pi / 6}(\sin x-\cos 2 x) d x \\
& =-\frac{\cos x-\left.\frac{1}{2} \sin 2 x\right|^{5 \pi / 6}}{\pi / 6} \\
& =\left(-\frac{\cos 5 \pi / 6}{}-\frac{1}{2} \sin 2 \times \frac{5 \pi}{6}\right)-\left(-\cos \pi / 6-\frac{1}{2} \sin 2 \times \frac{\pi}{6}\right) \\
& =\left(\frac{\sqrt{3}}{2}+\frac{1}{2} \frac{\sqrt{3}}{2}\right)-\left(-\frac{\sqrt{3}}{2}-\frac{1}{2} \frac{\sqrt{3}}{2}\right) \\
& = \\
& =\frac{3 \sqrt{3}}{4} \\
& =\frac{6 \sqrt{3}}{4} \text { or } \frac{3 \sqrt{3}}{4} \\
& =
\end{aligned}
$$

inate $-y=\sin x$

I warck $-y=\cos 2 x$

1 Mark.

1 mank

1 mart- curred cursues.

Question 15
b.

$$
\begin{aligned}
h^{2} & =(3-x)^{2}-x^{2} \\
& =9-6 x+x^{2}-x^{2} \\
& =9-6 x \\
h & =\sqrt{9-6 x} \\
A & =\frac{1}{2} b \times h \\
& =\frac{1}{2}+x \times \sqrt{9-6 x} \\
& =0.5 x \times \sqrt{9-6 x} m^{2}
\end{aligned}
$$

1 mark. Fir d the height of the triangle

I wartz-carect answer

Question 15
b.
if.

$$
A=0.5 x \sqrt{9-6 x}
$$

Mare occurs what $A^{\prime}=0$.

$$
\begin{aligned}
& u=\frac{1}{2} x \rightarrow u^{\prime}=\frac{1}{2} \\
& v^{\prime}=(9-6 x)^{1 / 2} \rightarrow v^{\prime}=\frac{1 x-6}{2 \sqrt{9-6 x}} \\
& A^{\prime}=\frac{\sqrt{9-6 x}}{2}+\frac{1}{2} x \times \frac{-6}{2 \sqrt{9-6 x}} \\
&=\frac{\sqrt{9-6 x}}{2}-\frac{6 x}{4 \sqrt{9-6 x}} \\
&=\frac{2(9-6 x)-6 x}{4 \sqrt{9-6 x}} \\
&=\frac{18-18 x}{4 \sqrt{9-6 x}} \\
&=\frac{9(1-x)}{2 \sqrt{9-6 x}}=0 . \\
& \Rightarrow 9(1-x)=0 \\
& x=1
\end{aligned}
$$

Test.

$$
\begin{aligned}
& x=0.9 \rightarrow A^{\prime}=\frac{9(1-0.9)}{2 \sqrt{9-6 \times 0.9}}>0 \\
& x=1.1 \rightarrow A^{\prime}=\frac{9(1-1.0)}{2 \sqrt{9-6 \times 1 .}}<0 .
\end{aligned}
$$

\therefore Mare occurs where $x=1$

1 suark-find the first derivative

1 mark.

1 mark-correot answer

Question 15
c.
i. liaitially $t=0, R=8000$.

$$
\begin{aligned}
R & =R_{0} e^{-k t} \\
8000 & =R_{0} e^{-K_{0}} \\
R_{0} & =8000
\end{aligned}
$$

- cohert $=1$ and $R=7000$.

$$
\begin{aligned}
7000 & =8000 e^{-k} \\
e^{-k} & =\frac{7000}{8000} \\
-k & =\log _{e} \frac{7}{8} \\
k & =-\log _{e} \frac{F}{8} \\
& =0.13353139
\end{aligned}
$$

I mark
toark
ii. Wher $t=10$

$$
\begin{aligned}
R & =8000 e^{-\left(-\log c \frac{7}{8}\right) \times 10} \\
& =2104.60460 \mathrm{q} \\
& \approx 2105 \mathrm{bq}
\end{aligned}
$$

iii wher $R=50$.

$$
\begin{aligned}
50 & =8000 e^{-k t} \\
e^{-k t} & =\frac{50}{8000}=\frac{1}{160} \\
-1 k t & =\log _{e} \frac{1}{160} \\
t & =-\frac{1}{k} \log _{e} \frac{1}{160} \\
& =\log _{e} \frac{1}{160} \div \log _{e} \frac{7}{8} \\
& \approx 38.0073485 \\
& \approx 38 \text { years. }
\end{aligned}
$$

Question 16
a.

$$
\text { i. } \begin{aligned}
& x=\int(1-2 \sin 2 t) d t \\
&=t+\cos 2 t+c . \\
& \text { initially } t=0 \text { ant } x=0 \\
& 0=0+\cos 0+c \\
& c=-1 \quad(\cos 0=1) \\
& \therefore \quad x=t+\cos 2 t-1 .
\end{aligned}
$$

ii. when t $=\pi / 3$ then

$$
\begin{aligned}
x & =\frac{\pi}{3}+\cos 2 \times \frac{\pi}{3}-1 \\
& =\pi / 3-\frac{1}{2}-1 \\
& =\frac{\pi}{3}-\frac{3}{2} \quad \text { OR }-0.4528
\end{aligned}
$$

iii. $a=-4 \cos 9 t$
IV.

v.

$$
-4 \leqslant-4 \cos 2 t \leqslant 4
$$

Max acceleration is 4 mrs ${ }^{-2}$

1 mark - finds primitive function
i mark - scored answer

1 s ark 1 mark.
mark ark inank

Question 16
6.

$$
\begin{aligned}
& \text { i. } \frac{1}{1+\sin 3 \theta}+\frac{1}{1-\sin 3 \theta} \\
& =\frac{1-\sin 3 \theta+1+\sin 3 \theta}{(1+\sin 3 \theta)(1-3 \sin 3 \theta)} \\
& =\frac{2}{1-\sin ^{2} 3 \theta} \\
& =\frac{2}{\cos ^{2} 3 \theta} \\
& =2^{2} \sec ^{2} \theta
\end{aligned}
$$

$$
\begin{aligned}
& \int\left(\frac{4}{1+3 \sin 2 \theta}+\frac{4}{1-\sin 2 t}\right) d t \\
= & 4 \int\left(\frac{1}{1+\sin 2 x}+\frac{1}{1-\sin 2 t}\right) d \theta \\
= & 4 \int 2 \sec ^{2} 2 \theta \\
= & 4 \tan 2 \theta+C
\end{aligned}
$$

Questior 16
C.
i. Let $O C=x$

So $r=x+4$
$\operatorname{ir} \triangle O C B$

$$
\begin{aligned}
x^{2}+8^{2} & =(x+4)^{2} \\
x^{2}+64 & =x^{2}+8 x+16 \\
48 & =8 x . \\
x & =6 . \\
\therefore \quad r & =6+4 \\
& =10 \mathrm{em}
\end{aligned}
$$

ii .

$$
\begin{aligned}
& \sin \theta=\frac{8}{10} \\
& \theta= 0.927295 \\
&- \text { Aree of sector }=\frac{1}{2} \times 10^{2} \times 0.927295 \\
&=46.3647 \mathrm{cms}^{2} \\
& \text { - Aree of triangle }=\frac{1}{2} \times 8 \times 6 \\
&=24 \cos ^{2} \\
& \text { Shaded regiour }=46.3647-24 \\
&=22.3647 \cos ^{2}
\end{aligned}
$$

mertz-Use
Pythegoras' theoreor

1 mark - correct answer

1 mark

1 mant

1 mank

Ent of Exarsination.

