Year 12

Mathematics

Trial HSC Examination

2016

General Instructions

- Reading time - 5 minutes
- Working time - 3 hour
- Write using black or blue pen
- Board-approved calculators may be used
- A Reference Sheet is provided with this question paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Note: Any time you have remaining should be spent revising your answers.

Total marks - 100

Section I

10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section.

Section II

90 marks

- Attempt Questions 11 - 16
- Start each question in a new writing booklet
- Write your name on the front cover of each booklet to be handed in
- If you do not attempt a question, submit a blank booklet marked with your name and "N/A" on the front cover
- Allow about 2 hours 45 minutes for this section.

BLANK PAGE

Section I

10 marks

Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer sheet for Questions 1 - 10.

1 Which of the following is the value of $3 e^{3}$, correct to 3 significant figures?
(A) 60.2
(B) 60.3
(C) 60.256
(D) 60.257

2 Which graph shows the solution to $|2 x-5| \leq 13$?
(A)

(B)

(C)

(D)

3 Which statement correctly describes the roots of $2 x^{2}+4 x-5=0$
(A) The roots are equal, real and irrational.
(B) The roots are equal, real and rational.
(C) The roots are unequal, real and irrational.
(D) The roots are unequal and unreal.

4 Which of the graphs would represent the function below?

$$
\begin{cases}y=1-x & x<0 \\ y=1-x^{2} & 0 \leq x \leq 2 \\ y=3 & x>2\end{cases}
$$

(A)
(B)

(C) (D)

5 Given that $f(x)=\frac{4 x^{5}-8 x}{x^{3}}$, what is the value of $f^{\prime}(2)$?
(A) 2
(B) 8
(C) 12
(D) 18

6 Which of the following is the same as $\operatorname{cosec}(\pi+\theta)$?
(A) $\frac{-1}{\sin \theta}$
(B) $\frac{-1}{\cos \theta}$
(C) $\frac{1}{\cos \theta}$
(D) $\frac{1}{\sin \theta}$

7 A bag contains 12 marbles. Four of the marbles are blue, two are white and the remainder are red. Three marbles are drawn from the bag.
What is the probability that all three marbles are red?
(A) $\frac{1}{55}$
(B) $\frac{1}{22}$
(C) $\frac{1}{11}$
(D) $\frac{5}{22}$

8 Use Simpsons Rule with three function values to approximate: $\int_{e}^{3 e} \ln x d x$.
(A) $\frac{2}{3 e}$
(B) $\frac{e(4 \ln (5)+3)}{6}$
(C) $\frac{e(4 \ln (6)+6)}{3}$
(D) $\frac{e(\ln (48)+6)}{3}$

9 The amount of a substance (A) is initially 20 units.
The rate of change in the amount is given by $\frac{d A}{d t}=0.25 \mathrm{~A}$.
Which graph shows the amount of the substance over time?
(A)

(B)

(C)

(D)

10 The graph of $y=f(x)$ is shown below.

Which of these graphs could represent $y=f^{\prime}(x)$?
(A)
(B)

(C)

(D)

BLANK PAGE

Section II

90 marks

Attempt Questions 11 - 16
Allow about 2 hours and 45 minutes for this section
Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

(a) Expand and simplify $(2 \sqrt{2}-\sqrt{3})(\sqrt{2}-\sqrt{3})$.
(b) Simplify $\frac{a^{3}-b^{3}}{a^{2}-b^{2}}$
(c) Find the equation of the tangent to the curve $y=\left(x^{2}-2\right)^{4}$ at the point where $x=1$.
(d) Find $\int_{2}^{4} \frac{6 x^{4}-3 x^{3}-1}{x^{2}} d x$.
(e) Differentiate $\sqrt{x} e^{x}$.2
(f) Find the value of x (correct to the nearest mm).

(g) If α and β are the roots of $4 x^{2}-5 x-1=0$ find the value of:
(i) $\alpha+\beta$ and $\alpha \beta$
(ii) $\alpha^{2} \beta+\alpha \beta^{2} \quad 1$

End of Question 11
(a) Find the value(s) of m for which the equation $x^{2}+m x+(m+3)=0$ has real roots.
(b) A quadrilateral is formed by the points $A(-4,3), B(5,6) C(3,-1)$ and $D(0,-2)$ as shown in the diagram

(i) Show that the quadrilateral is a trapezium, with $A B \| D C$.
(ii) Show that the equation of $A B$ is $x-3 y+13=0$.
(iii) Find the perpendicular distance from D to $A B$.
(iv) Find the area of the trapezium $A B C D$.

Question 12 continues on page 12

(c) The sales team at Frontier phone company sell 12000 phones in the first month of operation. They increase their sales by 800 phones each month on the preceding month's sales.
(i) Find the number of phones sold in the last month of the second year of operation.
(ii) Find the number of phones sold over the entire two year period.
(iii) Sampson, another phone company commenced business at exactly the same time as Frontier. Their sales team sell 5000 phones in their first month of operation and increase their sales by 1500 each month on the preceding month's sales.

After how many months will both companies total sales become equal?

End of Question 12

Question 13 (15marks) Use a SEPARATE writing booklet

(a) Given $f(x)=\log _{10} 2 x$, find $f^{\prime}(2)$ as an exact value.
(b)
(i) Show that $\frac{d}{d x}\left[\cos ^{3} 3 x\right]=-9 \sin 3 x \cos ^{2} 3 x$
(ii) Hence, or otherwise, find $\int \sin 3 x-\sin ^{3} 3 x d x$
(c) The size of a colony of bees is given by the equation $P=5000 e^{k t}$ where P is the population after t weeks.
(i) If there are 6000 bees after one week, find the value of k to 2 decimal
places.
(ii) When will the colony (to the nearest day) triple in size? 1
(iii) What is the growth rate of the population after two weeks? 2
(d) In the diagram below, $A B=C D$ and $\angle B A C=\angle C D B=x^{\circ}$ Also $\angle B C A=y^{\circ}$.

Copy or trace the diagram into your writing booklet.
(i) Prove that $\triangle A B E \equiv \triangle D C E$
(ii) Show that $\angle A B E=180^{\circ}-(x+2 y)^{\circ}$.

End of Question 13

(a) A particular curve passes through the point $(2,7)$.

For this curve $\frac{d y}{d x}=6 e^{3 x-6}$. Write down the equation of the curve.
(b)
(i) Find the exact values of u for which $2 u^{2}+\sqrt{3} u-3=0$.
(ii) Hence or otherwise solve $2 \cos ^{2} x+\sqrt{3} \cos x-3=0$ for $0 \leq x \leq 2 \pi$.
(c) The graphs of $y=3 \cos 2 x$ and $y=-\frac{3}{2}$ are shown in the diagram below, where point A is the point of intersection of the two graphs and $0 \leq x \leq \pi$.

(i) Show that the x coordinate of point A is $\frac{\pi}{3}$
(ii) Hence find the exact value of the shaded area that is enclosed by $y=3 \cos 2 x, y=-\frac{3}{2}$ and the y-axis.

Question 14 continues on page 16

(d) Lola borrows $\$ 300000$ to buy a house. The loan agreement is for interest rate of 6% p.a. compounded monthly. She agreed to repay the loan in 25 years with equal monthly repayments of $\$ M$.
(i) Show that the amount owing after the second repayment is
$A_{2}=300000(1.005)^{2}-M(1+1.005)$
1
(ii) Calculate the monthly repayment M if the loan is paid off in 25 years. Give your answer to the nearest dollar.
(iii) If Lola doubles the amount of her monthly repayments, how much more quickly (in months) will she pay off the loan?

End of Question 14

(a) The point $P(x, y)$, moves so that it is equidistant from the points $A(-2,5)$ and $B(4,-7)$.
(i) Write an expression for $A P^{2}$.
(ii) Write the fully simplified equation that describes the locus of P.
(b) The acceleration of a particle moving along the x-axis is given by

$$
\ddot{x}=6 t-14
$$

where x is the displacement from the origin in metres, t is the time in seconds and $t \geq 0$.

The particle is initially 2 m to the left of the origin, moving at $8 \mathrm{~m} / \mathrm{s}$ toward the right.
(i) Find expressions for the velocity and displacement of the particle.
(ii) At what times is the particle at rest?

Question 15 continues on page 18

(c) Consider the function $f(x)=1-3 x+x^{3}$, in the domain $-2 \leq x \leq 3$.
(i) Find the coordinates of the turning points and determine their nature.
(ii) Find the coordinates of the point of inflexion.
(iii) Draw a neat half page sketch of the curve $y=f(x)$ clearly showing all its essential features, in the domain $-2 \leq x \leq 3$
(iv) What is the maximum value of the function $f(x)$ in the domain $-2 \leq x \leq 3$?
(d) Find the exact value of the gradient of the tangent to the curve $y=x \ln x$ at the point where $x=e^{x}$.

End of Question 15

(a) The function $y=a x^{2}+b x+4$ and its gradient function intersect at points where $x=2$ and $x=4$.

Find the value of a and b.
(b) The graph below shows the line $y=6$ and the curve $y=3 \sec x$ for $0 \leq x \leq \frac{\pi}{4}$

(i) By solving the equation $3 \sec x=6$, show that the point A where the line and curve intersect has coordinates $\left(\frac{\pi}{3}, 6\right)$.
(ii) The region enclosed between the curve $y=3 \sec x$ and the x axis between $x=0$ and $\frac{\pi}{3}$ is rotated about the x axis.

Find the exact volume of the solid formed.
(c)
(i) Find the coordinates of the focus, S, of the parabola $y=x^{2}+1$.
(ii) The graphs of $y=x^{2}+1$ and the line $y=x+k$ have only one point of intersection, P. Show that the x-coordinate of P satisfies

$$
x^{2}-x+1-k=0
$$

(iii) Using the discriminant, or otherwise, find the value of k.
(d) From a point on a level ground an observer sees a balloon B and a helicopter H which are both stationary at the time.

The balloon is positioned due west of point A, at a distance of 2.8 km on an angle of elevation of 65° and the helicopter is positioned due east of point A, at a distance of 1.5 km on an angle of elevation of 72°, as shown in the diagram.

(i) Show that the distance between the helicopter and the balloon is approximately 2.0 km .
(ii) Find the bearing of the helicopter from the balloon. Answer correct to the nearest degree.

End of Examination

Mathematics

Section A Multiple-Choice Answer Sheet

1	$A \bigcirc$	$B \bigcirc$	C \bigcirc	D
2	A \bigcirc	B \bigcirc	C \bigcirc	D
3	A \bigcirc	B \bigcirc	C \bigcirc	D
4	$A \bigcirc$	B \bigcirc	C \bigcirc	D
5	A \bigcirc	$B \bigcirc$	C \bigcirc	D
6	A \bigcirc	$B \bigcirc$	C \bigcirc	D
7	A \bigcirc	$B \bigcirc$	C \bigcirc	D
8	A \bigcirc	$B \bigcirc$	C \bigcirc	D
9	A \bigcirc	B \bigcirc	$C \bigcirc$	D
10	$A \bigcirc$	$B \bigcirc$	$\mathrm{C} \bigcirc$	D

Multiple Choice Worked Solutions		
No	Working	Answer
1. 2	$\begin{aligned} 3 \times e^{3} & =60.2566 \ldots \\ & =60.3(35 t) \end{aligned}$ $\begin{aligned} & \|2 x-5\| \leq 13 \\ & -13 \leq 2 x-5 \leq 13 \\ & -8 \leq 2 x \leq 18 \\ & -4 \leq x \leq 9 \end{aligned}$	B
3	$\begin{aligned} & 2 x^{2}+4 x-5=0 \\ & \Delta=b^{2}-4 a c \\ &=4^{2}-4(2)(-5) \\ &=16+40 \\ &=56 \text { (which is positive and not a perfect square.) } \\ & \therefore \text { roots are unequal, real and irrational. } \end{aligned}$	C
4	Graph for $x<0$ is a straight line with a negative gradient and intercept of 1 on y axis, It does not include upper domain endpoint but it is common with next section. Graph for $0 \leq x \leq 2$ is a is a parabola which is concave down and has an intercept of 1 on y axis, includes both endpoints. Graph for $x>2$ is a horizontal straight line through 3 on y axis,. does not include lower domain endpoint.	A
5	$\begin{aligned} f(x) & =\frac{4 x^{5}-8 x}{x^{3}} \\ & =4 x^{2}-8 x^{-2} \\ f^{\prime}(x) & =8 x+16 x^{-3} \\ f^{\prime}(2) & =8(2)+16(2)^{-3} \\ & =16+\frac{16}{8} \\ & =18 \end{aligned}$	D

6	$\begin{gathered} \operatorname{cosec}(\pi+\theta)=\frac{1}{\sin (\pi+\theta)} \\ =-\frac{1}{\sin \theta} \end{gathered}$				A
7	6 of the 12 marbles are red.$\begin{aligned} P(R R R) & =\frac{6}{12} \times \frac{5}{11} \times \frac{4}{10} \\ & =\frac{1}{11} \end{aligned}$				C
8	$\begin{aligned} & \ln (2 e)=\ln (2)+\ln e=\ln (2)+1 \\ & \ln (3 e)=\ln (3)+\ln e=\ln (3)+1 \end{aligned}$				D
	x	e	$2 e$	$3 e$	
	$\ln (x)$	1	$\ln (2)+1$	$\ln (3)+1$	
	$\begin{aligned} \int_{e}^{3 e} \ln x d x \approx \frac{e}{3}(1 & +4(\ln (2)+1)+\ln (3)+1) \\ & \approx \frac{e}{3}(1+4 \ln (2)+4+\ln (3)+1) \\ & \approx \frac{e}{3}(4 \ln (2)+\ln (3)+6) \\ & \approx \frac{e}{3}\left(\ln \left(2^{4}\right)+\ln (3)+6\right) \\ & \approx \frac{e}{3}(\ln (16)+\ln (3)+6) \\ & \approx \frac{e}{3}(\ln (16 \times 3)+6) \\ & \approx \frac{e(\ln (48)+6)}{3} \end{aligned}$				

Initial value is 20 so this is y intercept. $\frac{d A}{d t}=0.25 A$

So it is exponential growth, not decay, since constant is 0.25

Question 11		2016	
	Solution	Marks	Allocation of marks
(a)	$(2 \sqrt{2}-\sqrt{3})(\sqrt{2}-\sqrt{3})$ $=2 \sqrt{4}-2 \sqrt{6}-\sqrt{6}+\sqrt{9}$ $=4-3 \sqrt{6}+3$ $=7-3 \sqrt{6}$	2	2 marks for correct answer
1			

b)

$$
\begin{aligned}
\frac{a^{3}-b^{3}}{a^{2}-b^{2}} & =\frac{(a-b)\left(a^{2}+a b+b^{2}\right)}{(a+b)(a-b)} \\
& =\frac{a^{2}+a b+b^{2}}{a+b}
\end{aligned}
$$

\checkmark correct $\begin{aligned} & \text { factorisation. }\end{aligned}$ of either denominator or numerator
numerator
(e)

$$
\begin{aligned}
\frac{d}{d x}\left(\sqrt{x} \cdot e^{x}\right) & =\frac{d}{d x}\left(\frac{1}{x} \cdot e^{x}\right) \\
& =\left(\frac{1}{x^{2}}\right)\left(e^{x}\right)+\left(e^{x}\right)\left(\frac{1}{2} x^{-\frac{1}{2}}\right) \\
& =\left(\sqrt{x}+\frac{1}{2 \sqrt{x}}\right)\left(e^{x}\right) \\
& =\frac{e^{x}(1+2 x)}{2 \sqrt{x}} \\
& =\frac{e^{x}+2 x e^{x}}{n}
\end{aligned}
$$

f)

$$
\begin{aligned}
\frac{x}{x+4.2} & =\frac{5.6}{8.2} \quad \text { correct set op of ratios. } \\
8.2 x & =5.6 x+23.52 \\
2.6 x & =23.5^{2} \\
x & =9.0461 \ldots \text { V correct answer. } \\
x & =9.0 \mathrm{~mm} \text { (nearest mm) }
\end{aligned}
$$

g) $\quad 4 x^{2}-5 x-1=0$
(i)

$$
\begin{gathered}
\alpha+\beta=\frac{-b}{a}=\frac{-(-5)}{4}=\frac{5}{4} \\
\alpha \beta=\frac{c}{a}=\frac{-1}{4}
\end{gathered}
$$

(ii)

$$
\begin{aligned}
& \alpha^{2} \beta+\alpha \beta^{2} \\
& =\alpha \beta(\alpha+\beta) \\
& =-\frac{1}{4} \times \frac{5}{4} \\
& =-\frac{5}{16}
\end{aligned}
$$

a) Criteria \quad| | Marks |
| :--- | :---: |
| \bullet Correct solution | 2 |
| \bullet Obtains discriminant and notes $\Delta \geq 0$ | 1 |

Sample answer

$$
\begin{aligned}
& \Delta=b^{2}-4 a c \\
& =m^{2}-4(m+3) \\
& =m^{2}-4 m-12
\end{aligned}
$$

For real roots $\Delta \geq 0$

$$
m^{2}-4 m-12 \geq 0
$$

$$
(m-6)(m+2) \geq 0
$$

$$
m \leq-2 \text { or } m \geq 6
$$

Question 12		2016	
	Solution	Marks	Allocation of marks
(b) ii)	Equation $A B$ using $m_{A B}=\frac{1}{3}$ and point $(-4,3)$ $\begin{aligned} y-3 & =\frac{1}{3}(x+4) \\ 3 y-9 & =x+4 \\ x-3 y+13 & =0 \end{aligned}$	1	1 mark for correct answer \{can also use the point $(6,5)\}$
(b) iii)	$\begin{aligned} D & =\left(x_{1}, y_{1}\right)=(0,-2) \\ d & =\left\|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right\| \\ & =\left\|\frac{1 \times 0-3 \times(-2)+13}{\sqrt{1^{2}+3^{2}}}\right\| \\ & =\left\|\frac{19}{\sqrt{10}}\right\| \\ & =\frac{19}{\sqrt{10}} \end{aligned}$	1	1 mark for correct answer
$\begin{aligned} & \text { (b) } \\ & \text { iv) } \end{aligned}$	$\begin{array}{rlrl} A B & =\sqrt{(6-3)^{2}+(5+4)^{2}} & & \\ & =\sqrt{(3)^{2}+(9)^{2}} & D C & =\sqrt{(3-0)^{2}+(-1+2)^{2}} \\ & =\sqrt{9+81} & & =\sqrt{(3)^{2}+(1)^{2}} \\ & =\sqrt{90} & & =\sqrt{9+1} . \\ & =3 \sqrt{10} & & =\sqrt{10} \\ \text { Area } & =\frac{h}{2}(a+b) & \\ & =\frac{1}{2} \times \frac{19}{\sqrt{10}}(3 \sqrt{10}+\sqrt{10}) & & \\ & =\frac{19}{2 \sqrt{10}}(4 \sqrt{10}) & & \\ & =38 \mathrm{sq} \text { units } & & \end{array}$	2	2 marks for correct answer 1 mark if only one of the distances is calculated correctly or if an error is made in the calculation of the area.

Question 12 (c) (i)
(i)

Criteria	Marks
\bullet Correct solution	2
-	Substitutes both a and d in correct formulae

Sample answer
$a=12000 \quad d=800$
$T_{n}=a+(n-1) d$
correct set up of $T_{2 a}$
$T_{24}=12000+23(800)$

$$
=30400 \text { phones }
$$

correct answer
(ii)

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\{a+l\} \\
& =\frac{24}{2}\{12000+30400\} \\
& =508800 \text { phones }
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& S_{\text {Sampson }}=S_{\text {Frontier }} \\
& \frac{n}{2}\{24000+(n-1) 800]=\frac{n}{2}[10000+(n-1) 1500\} \\
& n\{800 n+23200\}=n\{1500 n+8500\} \\
& 800 n^{2}+23200 n=1500 n^{2}+8500 n \\
& 700 n^{2}-14700 n=0 \\
& n^{2}-21 n=0 \\
& n(n-21)=0 \\
& n=0 \text { or } 21
\end{aligned}
$$

\therefore Total sales become equal after 21 months.

Question 13
a)

$$
\begin{aligned}
f(x) & =\log _{10} 2 x \\
& =\frac{\log _{e} 2 x}{\log _{e} 10} \\
& =\frac{1}{\ln 10} \ln 2 x \\
f^{\prime}(x) & =\frac{1}{\ln 10} \cdot \frac{2}{2 x} \\
& =\frac{1}{x \ln 10} \\
f^{\prime}(2) & =\frac{1}{2 \ln 10}
\end{aligned}
$$

\checkmark correct we of Change of blase
$r_{\text {correct }} f^{\prime}(x)$
correct substitution
b) $y=\cos ^{3} 3 x=(\cos 3 x)^{3}$
(i) $y^{\prime}=3(\cos 3 x)^{2}(-3 \sin 3 x)$

$$
\begin{aligned}
& =3(\cos 3 x)(-3 \sin \text { as required. } \\
& =-9 \sin 3 x \cos ^{2} 3 x \text { correct a th }
\end{aligned}
$$

correct ablest ane derivative.
(ii)

$$
\begin{aligned}
& \frac{d}{d x}(\cos 3 x)=-9 \sin 3 x \cos ^{2} 3 x \\
& \int d\left(\cos ^{3} 3 x\right)=\int\left(-9 \sin 3 x \cos ^{2} 3 x\right) d x \\
& \cos ^{3} 3 x=-9 \int \sin 3 x\left(1-\operatorname{Sin}^{2} 3 x\right) d x
\end{aligned}
$$

$$
\begin{aligned}
& \text { correct } \therefore \int(\operatorname{Sin} 3 x-\sin 3 x) d x=-\frac{1}{9} \operatorname{Cos}^{3} 3 x+C
\end{aligned}
$$

Question 15
C) (i)

$$
\begin{aligned}
p & =5000 e^{k t} \\
6000 & =5000 e^{k(1)} \\
e^{k} & =\frac{6}{5} \Rightarrow k \ln e=\ln 6 / 5 \\
k & =\ln 6 / 5 \\
& =0.182321 \ldots \\
& =0.18(\text { to } 2 d p)
\end{aligned}
$$

correct answer
(ii)

$$
\begin{aligned}
& 15000=5000 e^{0.18 t} \\
& 3=e^{0.18 t} \\
& \ln 3=0.18 t \ln e \\
& t=\frac{\ln 3}{0.18} \\
&=6.1034 \ldots .1 \text { weeks } \\
&=6 \text { days } \\
&=\frac{43 \text { days (ncanat }}{\mathrm{kt}} \\
& P=5000 e^{k t}
\end{aligned}
$$

$$
\begin{aligned}
& \text { i mark for correct } \\
& \text { answer in week }
\end{aligned}
$$

(iii)

$$
\begin{aligned}
P & =5000 e^{k t} \\
\frac{d P}{d t} & =5000 k e^{k t}(0.18) 2 \\
& =5000(0.18) e^{2} \quad \text { correct } \frac{d P}{d t} \\
& =1289.99647 .[1312.72 \text { if used } \ln 6 / 5]
\end{aligned}
$$

$$
\approx 1290 \text { bees/weok }
$$

d) i) In $\triangle A B E$ and $\triangle D C E$ $\begin{aligned} & \angle A=\angle D=x^{\circ} \text { (given) } \\ & A B=C D \text { (given) } \\ & \angle B E A=\angle C E D \text { (vertically opposite } \angle \text {) } \\ & \therefore \triangle A B E \equiv \triangle D C E(A A S) \end{aligned}$	2	2 marks for correct proof 1 mark for an incorrect or incomplete proof with some correct and relevant statements
ii) $\begin{array}{rlr} B E & =C E & \\ \angle E B C & =\angle E C B=y^{\circ} & \\ \hline \angle E B C \text { (corresponding sides of congruent } \Delta s) \\ \angle B E A=2 y^{\circ} & & \text { (exterior angle of } \triangle E B C) \\ \angle A B E & =180^{\circ}-x-2 y & (\angle \text { sum } \triangle A B E) \\ \angle A B E & =180^{\circ}-(x+2 y)^{\circ} & \end{array}$	2	2 marks for correct proof 1 mark for an incorrect or incomplete proof with some correct and relevant statements

Question 14		2016	
	Solution	Marks	Allocation of marks
(a)	$\begin{aligned} \frac{d y}{d x} & =6 e^{3 x-6} \\ y & =6 \int e^{3 x-6} d x \\ y & =6 \times \frac{1}{3} e^{3 x-6}+C \\ y & =2 e^{3 x-6}+C \end{aligned}$ When $x=2, y=7$ $\begin{aligned} 7 & =2 e^{3 \times 2-6}+C \\ 7 & =2 e^{0}+C \\ 7 & =2+C \\ C & =5 \\ y & =2 e^{3 x-6}+5 \end{aligned}$	2	2 marks for correct equation for y. 1 mark if valid attempt at solution which has a minor error in calculations, differentiation or algebra, or which is correct to a point but incomplete.
(b) (i)	$\begin{aligned} 2 u^{2}+\sqrt{3} u-3 & =0 \\ u & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\ & =\frac{-(\sqrt{3}) \pm \sqrt{3-4(2)(-3)}}{2(2)} \\ & =\frac{-(\sqrt{3}) \pm \sqrt{27}}{4} \\ & =-\frac{\sqrt{3}}{4} \pm \frac{3 \sqrt{3}}{4} \\ u & =\frac{\sqrt{3}}{2},-\sqrt{3} \end{aligned}$	2	2 marks for 2 correct exact solutions for u. 1 mark if valid attempt at solution with an error in calculation or algebra including giving extra incorrect answers.
(ii)	$2 \cos ^{2} x+\sqrt{3} \cos x-3=0$ Let $u=\cos x$ So, from part i) $\begin{aligned} & \cos x=\frac{\sqrt{3}}{2}, \\ & x=\frac{\pi}{6} \text { or } \frac{11 \pi}{6} \end{aligned}$ or $\cos x=-\sqrt{3} \quad$ No solution Solutions are $x=\frac{\pi}{6}$ or $\frac{11 \pi}{6}$	2	2 marks for exactly 2 correct solutions for x. 1 mark if valid attempt at solution with an error in calculation or algebra, or for answers in the wrong quadrants, including giving extra incorrect answers.

Q14
C) $3 \cos 2 x=-\frac{3}{2}$
(i)
must sheu this

$$
\begin{aligned}
& \cos 2 x=-\frac{1}{2} \\
& 2 x=\frac{2 \pi}{4}, \frac{4 \pi}{3} \\
& x=\frac{\pi}{3}, \frac{2 \pi}{3}
\end{aligned}
$$

$\therefore x$ coordinate of A is $\frac{\pi}{3}$
(ii)

$$
\begin{aligned}
& A=\int_{0}^{\frac{\pi}{3}} 3 \cos 2 x+\frac{3}{2} d x \\
& =\left[+\left[\frac{3}{2} \sin 2 x+\frac{3}{2} x\right]_{0}^{\frac{\pi}{3}}\right. \\
& =\left(+\frac{3}{2} \sin \left(\frac{2 \pi}{3}\right)+\frac{\pi}{2}\right)-\left(-\frac{3}{2} \sin (0)+0\right) \\
& =+\frac{3 \sqrt{3}}{4}+\frac{\pi}{2} \text { unitssquared }
\end{aligned}
$$

d)

$$
\begin{aligned}
& p=\$ 300000, r=6 \% \text { pa }=0.5 \% \text { pmonth }=0.005 \\
& n=25 \text { gears }=300 \text { monthis. }
\end{aligned}
$$

$$
\begin{aligned}
& P=\$ 300000, \\
& n=25 \text { gears }=300 \mathrm{mon} \text { thi } .
\end{aligned}
$$

(i)

$$
\begin{aligned}
n & =25 \text { year }=300 \mathrm{~m} \\
A_{1} & =300000(1.005)^{i}-M \\
A_{2} & =\left[300000(1.005)^{1}-M\right]_{1005}-M \\
& =300000(1.005)^{2}-1.005 M-M \\
& =300000(1.005)^{2}-M(1+1.005)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& =\frac{300000(1.005)-M\left(1.005^{299}\right)}{A_{n}}=\left\{\begin{array}{l}
300000(1.005)^{300} m\left(1+1.005+1.005^{2}+\ldots .1\right. \\
O
\end{array}\right. \\
M & =\frac{300000(1.005)^{300}-M\left(\frac{1.005^{300}-1}{1.005-1}\right)}{\frac{1.005^{300}-1}{0.005}} \\
& =\$ 1932.90420 \ldots \\
& =\$ 19.33
\end{aligned}
$$

Question 14

$$
\begin{aligned}
& 0=300000(1.005)^{n}-3866 \frac{(1.005-1)}{0.005} \quad \text { correct set up } \\
& =300000(1.005)^{n}-773200\left(1.005^{n}-1\right) \\
& =300000(1.005)^{n}-773200(1.005)^{n}-773200 \\
& 473200(1.005)^{7}=773200 \\
& 1.005^{n}=\frac{773200}{473200} \\
& \therefore n=\ln \left(\frac{773200}{473200}\right) \div \ln 1.005 \\
& =98.449 \ldots . \\
& =98.44 \text { months } \quad \checkmark \text { correct } \begin{array}{l}
\text { answerer. }
\end{array}
\end{aligned}
$$

d) (iii)

Question 15		2016	
	Solution	Marks	Allocation of marks
(a)	$\begin{aligned} & P(x, y), \text { and } \mathrm{A}(-2,5) \\ & A P^{2}=(x--2)^{2}+(y-5)^{2} \\ & A P^{2}=(x+2)^{2}+(y-5)^{2} \\ & A P^{2}=x^{2}+4 x+4+y^{2}-10 y+25 \\ & A P^{2}=x^{2}+4 x+y^{2}-10 y+29 \end{aligned}$	1	1 mark for correct expression
	$\begin{aligned} & P(x, y), \text { and } \mathrm{B}(4,-7) . \\ & P B^{2}=(x-4)^{2}+(y--7)^{2} \\ & P B=\sqrt{x^{2}-8 x+16+y^{2}+14 y+49} \\ & \quad=\sqrt{x^{2}-8 x+y^{2}+14 y+65} \\ & \text { Now } P A=P B \\ & \quad \text { so } P A^{2}=P B^{2} \\ & x^{2}+4 x+y^{2}-10 y+29=x^{2}-8 x+y^{2}+14 y+65 \\ & 12 x-24 y-36=0 \\ & x-2 y-3=0 \end{aligned}$	2	2 marks for correct equation. 1 mark for valid attempt at a solution which has an error or is incomplete.
$\text { (} b_{0} \text {) }$ i)	$\begin{aligned} & \ddot{x}=6 t-14 \\ & \ddot{x}=\frac{6 t^{2}}{2}-14 t+C_{1} \\ & \dot{x}=3 t^{2}-14 t+C_{1} \end{aligned}$ When $\quad t=0, \dot{x}=8$ $\text { So } \quad C_{1}=8$ $\begin{aligned} \dot{x} & =3 t^{2}-14 t+8 \\ \ddot{x} & =\frac{3 t^{3}}{3}-\frac{14 t^{2}}{2}+8 t+C_{2} \\ x & =t^{3}-7 t^{2}+8 t+C_{2} \end{aligned}$ $\begin{aligned} & \text { When } \quad t=0, x=-2 \\ & \therefore \quad C_{2}=-2 \\ & \quad x=t^{3}-7 t^{2}+8 t-2 \end{aligned}$	2	2 marks for correct equations for velocity and displacement 1 mark for correct integration but error made substitution 1 mark for error in integration but otherwise calculated correctly.
$\begin{aligned} & \text { (b) } \\ & \text { ii) } \end{aligned}$	$\begin{aligned} \dot{x} & =3 t^{2}-14 t+8 \\ & =(3 t-2)(t-4) \\ \therefore 3 \dot{t}-2 & =0 \text { or } \quad t-4=0 \\ t & =\frac{2}{3} \text { or } \quad t=4 \end{aligned}$	2	2 marks for 2 correct valu of t found from equations part(i) 1 mark if only one value found 1 mark if neither values a correct but working is correct except for a mino error

Q15
C) $f(x)=1-3 x+x^{3}$
(i)

$$
\begin{aligned}
& f^{\prime}(x)=-3+3 x^{2} \\
& f^{\prime \prime}(x)=6 x
\end{aligned}
$$

At TP $f^{\prime}(x)=-3+3 x^{2}=0$

$$
\begin{aligned}
& x^{2}=1 \\
& x= \pm 1 \\
& x=1 \Rightarrow y=1-3+1=-1 \quad(1,-1) \\
& x=-1 \Rightarrow y=1+3-1=3 \quad(-1,3) \\
& x=1 \Rightarrow f^{\prime \prime}(x)>0 \quad \therefore \text { minimum at }(1,-1) \\
& x=-1 \Rightarrow f^{\prime \prime}(x)<0 \quad \therefore \text { maximum at }(-1,3)
\end{aligned}
$$

(ii)

$$
\text { POI } \Rightarrow f^{\prime \prime}(x)=6 x=0 \quad \begin{aligned}
& \text { must check for } \\
& \left.x=0 \Rightarrow y=1 \quad \begin{array}{l}
\text { concavity change }
\end{array}\right) .
\end{aligned}
$$

\therefore POI is $(0,1) \begin{array}{llll}x & -1 & 0 & 1 \\ f^{\prime \prime}(x)>0 & 0 & <0\end{array}$ concavity changes

$$
\begin{aligned}
& x=-2 \Rightarrow y=1-3(-2)+(-2)^{3}=-1 \quad(-2,-1) \\
& x=3 \Rightarrow y=1-3(3)+(3)^{3}=19 \quad(3,19)
\end{aligned}
$$

 vial correct \checkmark ifuntichy sketch not indices ing clary
features. features.
(iii) maxim um value l $y=19$

Q15.
d)

$$
\begin{aligned}
y & =x \ln x \\
y^{\prime} & =(x)\left(\frac{1}{x}\right)+(1) \ln x \\
y^{\prime} & =1+\ln x \\
x=e^{x} \Rightarrow m=y^{\prime} & =1+\ln e^{x} \\
& =1+x \ln e \\
m_{T} & =1+x
\end{aligned}
$$

Question 16
a)

$$
\begin{aligned}
& y=a x^{2}+b x+4 \\
& y^{\prime}=2 a x+b
\end{aligned}
$$

At intersection points: $a x^{2}+b x+4=2 a x+b$ setting up

$$
\begin{aligned}
x=2 \Rightarrow 4 a+2 b+4 & =4 a+b \\
\therefore b & =-4 \\
x=4 \Rightarrow 16 a+4 b+4 & =8 a+b \\
\therefore a & =1
\end{aligned}
$$

b) (i)

$$
\begin{aligned}
& y=6 \\
& y=3 \sec x \\
& 3 \sec x=6 \\
& \sec x=2=\frac{1}{\cos x} \\
& \cos x=\frac{1}{2} \\
& x=\frac{\pi}{3}, \frac{5 \pi}{3}
\end{aligned}
$$

\checkmark correct trig reasoning or algebraic reason,
\checkmark correct solution
\therefore Point of intersectoin A is $(\pi / 3,6)$
(ii)

$$
\begin{aligned}
V & =\pi \int_{0}^{\pi / 1}(3 \sec x)^{2} d x=\pi \int 9 \sec ^{2} x d x \\
& =\pi[9 \tan x]_{0}^{\pi / 3} \\
& =\pi[9 \tan \pi / 3-9 \tan 0] \\
& =9 \pi(\sqrt{3})-0 \\
& =9 \sqrt{3} \pi \mathrm{u}^{3}
\end{aligned}
$$ correct integration

Question 16
c) $y=x^{2}+1 \Rightarrow x^{2}=y-1$
some working shaving
(i)

$$
\begin{aligned}
\therefore v(0,1) \quad 4 a & =1 \\
a & =1 / 4
\end{aligned}
$$

\therefore Focus $S(0,5 / 4)$
(ii)

$$
\text { i) } \begin{aligned}
& y=x^{2}+1 \\
y & =x+k \\
\therefore & x^{2}+1=x+k \\
& x^{2}-x+(1-k)=0
\end{aligned}
$$

(iii) For one point of intersection $\Delta=0$

$$
\begin{array}{r}
\Delta=b^{2}-4 a c=(-1)^{2}-(4)(1)(1-k)=0 \\
1-4+4 k=0 \\
k=\frac{3}{4}
\end{array}
$$

Question 16

$\angle B A H=180-72-65=43^{\circ}($ supplementary $\angle)$
$H B^{2}=B A^{2}+A H^{2}-2 \times B A \times A H \times \cos \angle B A H$ (Cos Rule)
$H B^{2}=2.8^{2}+1.5^{2}-2 \times 2.8 \times 1.5 \times \cos 43^{\circ}$

$$
=3.9466 \ldots
$$

$$
H P=\sqrt{3.9466 . .}
$$

$$
=1.9866 \ldots
$$

$$
=2.0 \mathrm{~km}(2 \mathrm{s.f})
$$

(ii)

In $\triangle B A H$

$$
\begin{aligned}
\cos B & =\frac{A B^{2}+B H^{2}-A H^{2}}{2 \times A B \times B H} \\
& =\frac{2.8^{2}+2.0^{2}-1.5^{2}}{2 \times 2.8 \times 2.0} \\
& =0.85722 . . \\
B & =\cos ^{-1}(0.85722 \ldots) \\
& =30.993826138853172244588323111713 \\
& =31^{\circ} \text { (nearest degree) }
\end{aligned}
$$

$$
\begin{aligned}
\angle A B M & \left.=65^{\circ} \text { (alternate } \angle S B M / / \times 4\right) \\
\therefore \text { bearing } & =\angle N B H \\
& =90+65-31 \\
& =124^{\circ}
\end{aligned}
$$

1 mark for correct working to achieve the answer required.

