Question 1.

(a) Evaluate $\frac{8 \pi}{2+\sqrt[3]{2}}$ as a decimal correct to 3 significant figures.
(b) Find $\frac{d}{d x}[5 x+\tan x]$.
(c) A group of cards are labelled $0,1,2, \ldots$ and 20.

Find the probability that when a card is chosen, it is a prime number?
(d) Find $\int \sec 3 x \tan 3 x d x$, using the table of standard integrals.
(e) Find the exact value for $\sec \frac{\pi}{6}$.
(f) The number line graph represents the solutions to the inequality equation

$$
|x-a| \leq b
$$

Find the values of a and b.
(g) Find integer p so that $(3-\sqrt{5})^{2}=14-\sqrt{p}$.

Question 2. [Start a New Page]

(a) Differentiate with respect to x the following:
(i) $\frac{\sin x}{x+1}$. $\mathbf{2}$
(ii) $\sqrt{1+e^{6 x}}$. 2
(iii) $\quad x^{3} \ln x$. $\quad 2$
(b) Find the domain for the function: $y=x+\ln (3-x) . \quad 1$
(c) Solve for $\theta: \tan \theta=0.3$ (correct to two decimal places) for $0<\theta<2 \pi$. $\mathbf{2}$
(d) Find a primitive function for $\frac{1}{3 x}$. $\quad 1$
(e) Evaluate $\int_{0}^{2}\left(e^{-x}+1\right) d x$, to two decimal places. $\quad \mathbf{2}$

Question 3.

(a) Find the equation of the normal to the curve $y=2 \cos x+3$ at the point $\left(\frac{\pi}{2}, 3\right)$.
(b) The diagram shows the coordinates of four points: $A(-1,0), B(0,2), C(3,5)$ and $D(8,0)$.

(i) Find the gradient of $B D$.
(ii) Find the equation of the line passing through B and D.
(iii) Find the angle of inclination of the line $B D$ (to nearest the degree).
(iv) Given $C P \| B D$, show that the equation of $C P$ is $x+4 y-23=0$.
(v) Find the coordinates of point P, where the line $C P$ intersects the x-axis.
(vi) Find the perpendicular distance of point C from the line segment $B D$.
(vii) Explain why the area of quadrilateral $A B C D$ is the same as the area of triangle $A B P$.

Question 4.

(a) For $\triangle P Q R$, find $\frac{p}{r}$ correct to 3 decimal places.

NOT TO SCALE
(b) The roots of the equation $x^{2}-2 x-5=0$, are $x=\alpha$ and $x=\beta$.

Find the value of $\frac{1}{\alpha}+\frac{1}{\beta}$.
(c) The diagram shows the sketch of the parabola $y=6 x-x^{2}-5$ and a line $y=x-5$.

(i) Find the x-coordinate of A.
(ii) Find the area of the shaded region bounded by the line and the parabola.
(d) Given the triangles $A B C$ and $C D E$ are different equilateral triangles. $B E$ intersects $A D$ at P, and A, C and E lie on the line segment $A E$.

NOT TO SCALE
$\begin{array}{lll}\text { (i) } & \text { Copy the diagram onto your writing booklet, and } \\ \text { prove that } \triangle A C D \equiv \triangle E C B \text {. } & \mathbf{3} \\ \text { (ii) Show that } \angle A P B=60^{\circ} \text {. } & \mathbf{2}\end{array}$
(a) Simplify: $1+\cos ^{2} x+\cos ^{4} x+\ldots$ for $0<x<\frac{\pi}{2}$.
(b) The first term of an Arithmetic series is a, the common difference is d and the $n^{\text {th }}$ term is L.
(i) Write down L, in terms of a, d and n.
(ii) Show that the sum, S_{n}, of the first n terms can be expressed as

$$
S_{n}=\frac{(L+a)}{2}\left[1+\frac{L-a}{d}\right] .
$$

(iii) Hence, or otherwise, find: $5+8+11+\ldots+173$.
(c) The sketch of the Gradient function $f^{\prime}(x)$ is shown below.

Sketch the graph of the function, $y=f(x)$, given $f(x)>2$ for $x>0$.
(d) The figure consists of a regular hexagon and a regular pentagon, with a common side $A B$.

Given vertex H and P lie on a straight line $X H P Y$ and $\angle P H A=x^{0}$.
Copy the diagram onto your writing booklet and find the value of x. Give reasons.
(a) Solve for $x: \quad \log _{3}(2 x-5)=1$.
(b) Differentiate $f(x)=\frac{3}{x}$ with respect to x, by first principles.
(c) A particle is moving in a straight line with velocity $v=3 e^{t}+6 e^{-t}$. It begins its motion at the Origin O, t is in seconds and v is in metres per second.
(i) What is its initial velocity? $\quad 1$
(ii) Is the particle ever at rest? Give reasons $\mathbf{1}$
(iii) Find the displacement function, x, of the particle, at time t minutes. $\mathbf{2}$
(iv) Find the time when the particle is at $x=10$. 2
(d) Sketch the graph of the curve $y=3 \sin 2 x$ for the interval $0 \leq x \leq \pi$.
(a) Given the sketch of the curve $y=\sec x$, for $0 \leq x<\frac{\pi}{2}$ and the line L as shown.

(i) Show that the equation of the line, L, is $y=1-\frac{2}{\pi} x$.
(ii) The area enclosed by the curve $y=\sec x$, the lines L and $x=\frac{\pi}{4}$, is rotated about the x-axis.
Find the exact volume for the solid of revolution.
(b) Use Simpson's rule, with three function values, to evaluate : $\int_{0}^{4} \frac{3 d x}{1+\sqrt{x}}$, (correct to two decimal places).
(c) Consider the function: $f(x)=x^{3}-3 k x+4$.
(i) Explain why $f(x)$ is an increasing function for all x when $k<0$.
(ii) Find the expression for each stationary point of $f(x)$, in terms of k, when $k>0$.
(iii) Prove that $f(x)$ has 3 distinct real x-intercepts when $k^{3}>4$.
(a) (i) Show that the locus of all points $P(x, y)$, which are equidistant from the origin O and to the line $y=4$, is the parabola:

$$
x^{2}=16-8 y
$$

(ii) Hence, find the coordinates of the vertex V.
(b) In the diagram $B X \| D C, X B$ bisects angle $A B C$ and $A X \perp B X$ at X.

$$
\text { Let } \angle A B X=\theta^{0} \text {. }
$$

Copy this diagram onto your writing booklet.
(i) State why $\angle B C D=\angle X B C$. 1
(ii) Show that triangle $B C D$ is isosceles.
(iii) Hence, explain why $\frac{A E}{E C}=\frac{A B}{B C}$.
(iv) If $\frac{B A}{B C}=3$, and by using the cosine rule, or otherwise, show that E is the midpoint of $B X$.
(a) The mass of a substance X is M grams, at time t years.

It decays at an instantaneous rate proportional to its mass at time t years, ie $\frac{d M}{d t}=-k M$, where k is the decay rate constant of proportionality.
(i) Verify that $M=M_{0} e^{-k t}$ satisfies the rate equation $\frac{d M}{d t}=-k M$, where M_{0} is the initial mass of substance X.
(ii) Hence, show that the time, T years, for half the mass of X to decay, is given by $\quad T=\frac{\ln 2}{k}$.
(iii) Find the decay rate constant, if the half-life of substance X is 3466 years? 1
(iv) Sketch the graph of $\frac{d M}{d t}$ against M.
(b) Consider the circle: $x^{2}+y^{2}=1$ and the line: $3 x+4 y+24=0$.

The points Q and R are the x and y-intercepts of the line $3 x+4 y+24=0$.
The point $P(x, y)$ lies on the circle as shown in the diagram.

(i) As P moves around the circle, show that the perpendicular distance, W, from the length $Q R$ to the circle, is given by: $W=3 x+4 y+24$.
(ii) Hence, or otherwise, find the least length of W.
(a) Mary visits the sock section of a shop that has 5 different pairs of socks individually arranged on a table.
She randomly selects socks one at a time.
(i) Explain why the probability that Mary does not have a matching pair of socks, after selecting the second sock, is $\frac{8}{9}$.
(ii) Find the probability she does not have a matching pair of socks after selecting the third sock.
(iii) What is the probability that, in the first 3 socks, Mary does have a matching pair?
(b) Mr Howzat borrows $\$ 30000$ from a bank. Interest is to be calculated at $12 \% p a$, compounded monthly, on the balance remaining over the term of the loan of 7 years.
Each year, at k regular intervals, (where $k=1,2,3, \ldots$ or 12), Mr Howzat repays $\$ F$ for each instalment.
(i) Show that the amount owing, $\$ A_{2}$, after the second instalment is paid, is given by:

$$
A_{2}=30000\left[(1 \cdot 01)^{\frac{12}{k}}\right]^{2}-F\left[1+(1 \cdot 01)^{\frac{12}{k}}\right] .
$$

(ii) Show that the amount of each instalment, $\$ F$, is given by:

$$
F=30000 \times 1 \cdot 01^{84} \times \frac{\left[1 \cdot 01^{\frac{12}{k}}-1\right]}{\left[1 \cdot 01^{84}-1\right]} .
$$

(iii) Calculate the value of each instalment if the instalments are made quarterly $(k=4)$.
(iv) How much would Mr Howzat have saved over the term of the loan if he had chosen to make monthly rather than quarterly instalments?

THE END

${ }^{\prime}(x)=\frac{-3}{x(x+0)}=-\frac{3}{x^{2}}$

$V=3-e^{t}+6 e^{-t \quad}$| $t=0$ |
| :--- |
| $x=0$ |

init eal uabucchy $=3+6=9 \mathrm{~m} / \mathrm{s} \quad 1$
(1)

(1)	
$\begin{align*} & e^{t}, e^{-t}>0 \text { for all } t \geqslant 0 \\ & v=3 e^{t}+6--^{-t} \geqslant 0 \tag{1} \end{align*}$ pouttiale never at west. as $\mathrm{V} \neq 0$	1
$\begin{align*} & x * \int\left(3+t+6 e^{-t}\right) d t \\ & x=3 t^{t}-6 e^{-t}+c \\ & -t=0 \quad x=0 \\ & \therefore 0=3-6+c \tag{2}\\ & \therefore c-3 \\ & \text { so } x=3 e^{t}-6 t^{-t} t 3 \end{align*}$	1 1
$\begin{array}{r} \therefore x-3 e^{t}-6 e^{t}+3=10 \\ 3 e^{t}-6 e^{t}-7=0 \\ 3 e^{2 t}-6-7 e^{t}=0 \\ x=e^{t}-6=0 \\ 3 u^{2}-7 x-6=0 \\ (3 u+2)(u-31)=0 \end{array}$	1

Q1.(a)

210.
) (t) Merkedi, wot metak.

$$
P(E)=10 \times \frac{1}{10} \times \frac{10-2}{10-1}=\frac{e}{9}
$$

$$
i^{2 \pi} \sum_{\frac{B}{a}}^{\frac{1}{9} / M} \quad P(E)=8 / 4
$$

$$
\text { i) } \frac{1}{2}_{\frac{2}{4} M}^{m} \frac{5}{8}_{\frac{2}{3}}^{m}
$$

$$
\text { PCE }=\text { mo match wfor } 3 \text { sorates) }
$$

$=\frac{8}{4} \times \frac{6}{8}=\frac{\frac{2}{3}}{3} \quad$ (2) 1

$$
\frac{0(0)^{2}(i i)}{0=30-00 \times 1-01^{54}-F\left[1+1.01+\ldots+1.01^{2}\right]}
$$

$$
0=30000 \times 1.01^{84}-F_{x}=\left(\frac{\left.r^{n}-1\right)}{\pi-1}, \quad 1\right.
$$

$$
\text { i.e. } F_{\times}\left[\frac{\left.\left(1-01^{12 / k}\right)^{\alpha}-1\right]}{1.01^{12 / / k}-1}=\frac{30000 \times 1.01^{84}}{1}\right.
$$

$$
\text { ie. } F \times\left[\frac{\left.1.01^{.4}-1\right]}{1.01^{62 / k}-1}=30000 \times 1.0184\right.
$$

$$
\therefore F=\frac{30000 \times 1.01^{84}\left(1.01^{12 / k}-1\right)}{\left(1.01^{04}-1\right)}
$$

$$
r_{2}=A_{1} k(-\infty)^{12 / k}-F /
$$

$$
=30000 \times 1.01^{2 \times 12 / k}-F\left(1+1.01^{12 / k}\right)
$$

$$
A_{2}=30000 \times\left[1-11^{\frac{4}{2}}\right]^{2}-F\left[1+i=1^{i 2 / k}\right]
$$

$\left.H_{n}=30000(1-\infty)^{0 / k}\right)^{n}-c\left(1+1-0 i^{2 / k}+1.01^{2 / k}+\ldots+(\cdots)^{(n-1))^{\frac{2}{k}}}\right]$

$$
\begin{aligned}
& \text { i) } P C E=a \text { wollakiory poes: in 3) } \\
& =1-P(\text { No moltab) } \\
& =1-\frac{2}{3} \\
& =\frac{\frac{1}{3}}{+P(M \bar{M} M)+P(\overline{M M M})} \\
& \sin \left[\frac{2}{4} \times \frac{1}{4}+\frac{2}{40} \times \frac{4}{4} \times \frac{1}{4}+\frac{8}{5} \times \frac{2}{8} \times \frac{1}{2}\right]=\frac{1}{3}
\end{aligned}
$$

Q9. .

$$
\begin{aligned}
& \text { Qa(b) (ii) Martods) } \\
& P(x, y) \text { (ied on } x^{2}+y^{2}= \\
& \therefore y= \pm \sqrt{1-x^{2}} \\
& \text { not } \\
& \text { will ocaus on lowe sancikuclo ! } \\
& \therefore y=-\sqrt{1-x^{2}} \\
& \therefore W=\frac{1}{5}\left(3 x-4 \sqrt{1-x^{2}}+24\right) \\
& \frac{d W}{d x}=\frac{1}{5}\left[3-4 x \frac{1}{2}\left(2-x^{2}\right)^{-\frac{1}{2}} x-2 x\right] \\
& * \frac{1}{5}\left[3+\frac{4 x}{\sqrt{1-x^{2}}}\right] \\
& \begin{array}{l}
\text { For postible mevimian volu-s } \\
\text { of } W \text { tsocur } \frac{2 W}{0 x}=0
\end{array} \\
& \begin{array}{l}
\therefore 3+\frac{4 x}{\sqrt{1-x^{2}}}=0 \\
\text { so. } 3 \sqrt{1-x^{2}}
\end{array} \\
& \text { so } x<0 \text { for monss } \\
& u_{0} x^{2}=4-a x^{2} \\
& 25 x^{2}=9 \\
& x^{2}=\frac{9}{26} \\
& \begin{array}{l}
x=\frac{t}{5} \\
x=-\frac{3}{5}, y=-\frac{4}{5}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { sinice } W^{\prime} \text { is comit diffible over } \\
\text { eane } \frac{d W}{d x} \text { chacigtes sign }(-0+)
\end{array} \\
& \begin{array}{l}
\therefore \text { a vecasive unin. T.it } x=-\frac{3}{5} \\
\text { since the ataer tip in }-1 \leqslant x \leqslant 4
\end{array} \\
& \therefore \text { (emss) min. (-wath is । } \\
& \text { W } \begin{aligned}
& \left.=\frac{1 \sqrt{3}}{5}\left(-\frac{3}{5}\right)+4\left(-\frac{4}{5}\right)+24\right] \\
& =3.8 \text { nenc }
\end{aligned}
\end{aligned}
$$

