Year 12 Trial HSC Examination - Mathematics (2U) 2006

Question 1

(a) Find the value of $\log _{6} 12$ correct to two decimal places.
(b) The investment value of a stamp collection was originally $\$ 24800$. If the value of the collection compounds at a rate of 5.2% annually, find its estimated value at the end of 10 years. Give your answer correct to the nearest $\$ 100$.
(c) The volume V of a cylinder with a base radius r and height h is given by the formula
$2 \sqrt{6} \mathrm{~cm}$

Diagram not to scale

Question 2 (Start a new page)

The coordinates of the points E, F and G are $(0,3),(6,0)$ and $(7,-4)$ respectively.
(a) Draw a neat sketch, clearly showing the above information and show that the line k which is parallel to $E F$ and passes through point G, has the equation $x+2 y+1=0$.
(b) Find the coordinates of the point H where line k meets the x-axis. Clearly mark point H and the position line k on your diagram.
(c) Find the exact length of $E F$.
(d) Find perpendicular distance from point F to line $G H$.
(e) Find the exact area of quadrilateral $E F G H$.

Question 3 (Start a new page)

(a) Differentiate with respect to x :
(i) $\frac{4 x^{3} \sqrt{x}+5}{x^{2}}$,
(ii) $(8-3 x)^{5}$.
(b) Find the equation of the tangent to $y=x e^{-x}$ at the point where $x=2$. Write your answer in general form.
(c) Differentiate $y=\frac{\cos x}{1+\sin x}$,
and hence show that $\frac{d y}{d x}=\frac{-1}{1+\sin x}$.

Question 4 (Start a new page)

(a) Evaluate
(i) $\int_{0}^{4} \frac{d x}{3 x+2}$,
(ii) $\int_{-1}^{2} \cos \left(\frac{\pi}{2} x\right) d x$. determine their nature.
(ii) Draw a neat half page sketch of $y=(x+1)\left(x^{2}-8\right)$ in the domain $-4 \leq x \leq 4$.

On your diagram clearly indicate the coordinates and the positions of the intercepts with the coordinate axes and the stationary points.

Question 5 (Start a new page)

(a) Town A is 4 km from town P and its bearing from town P is $030^{\circ} T$. Town B is due south of town A and 6 km from town P.
(i) Draw a neat sketch that clearly illustrates the above information.
(ii) Find the distance between towns A and B. Give your answer correct to the nearest kilometre.
(b) (i) Find the intersection points of the line $y=2 x$ and the parabola $y=6 x-x^{2}$.
(ii) Find the area bounded by the line $y=2 x$ and the parabola $y=6 x-x^{2}$.

Marks

(a) A particle is moving along a straight line. The particle is initially at the origin O and at time t minutes its velocity, $v \mathrm{~m} / \mathrm{min}$, is given by $v=1+2 \sin \left(\frac{\pi}{4} t\right)$.
(i) Sketch the graph of v against t for $0 \leq t \leq 8$.
(ii) Find the position of the particle when it first reaches its maximum speed.
(b) The gradient function of a curve is given by $\frac{d y}{d x}=3+\frac{10}{\sqrt{x}}$. Find the equation of the curve if it passes through the point $P(4,9)$.
(c) (i) Write down the discriminant (Δ) of the quadratic equation $x^{2}+m x+m=0$.
(ii) Hence, or otherwise, find the values of k for which the line $y=x+k$ and the curve $y=\frac{x}{x+1}$ do not intersect.

Question 7 (Start a new page)

(a) $\triangle A B C$ and $\triangle B P Q$ are right-angled triangles and $A B=A P$.

(i) Copy the diagram onto your answer sheet and prove that $\angle C B P=\angle C P Q$.
(Hint: Let $\angle C B P=\alpha^{\circ}$)
(ii) Hence prove that $P C^{2}=B C \times Q C$
(iii) Find the initial rate at which the wire is being removed from the winch.
(a) John starts work on an annual salary of $\$ 38500$. On the last day of each year for the first 10 years of employment, he will receive an annual salary increase of $\$ 1200$. For his remaining years of employment he will receive an annual increase of \$1650.
(i) What will John's annual salary be during his $6^{\text {th }}$ year of employment?
(ii) What will John's annual salary be during his $15^{\text {th }}$ year of employment?
(iii) How much will John's total earnings amount to at the end of his $25^{\text {th }}$ year of employment?
(b) A wire framework enclosing an area of $144 \mathrm{~m}^{2}$ is to be made in the shape of a sector of a circle (see diagram). The length of wire required is L metres where the circle has radius r metres and the sector angle is θ radians.

(i) Show that $L=2 r+\frac{288}{r}$.
(ii) Find the minimum length of wire needed to make the framework.

Question 9 (Start a new page)

(a) Point T is 6 cm from the centre O of a circle with radius 3 cm . Tangents drawn from point T touch the circle at points M and N and the tangents are perpendicular to the radii at these points of contact.
(i) Find the exact size of $\angle M O T$.

2
3

5 revolution about the \boldsymbol{y}-axis.

Question 10 (Start a new page)

(a) In order to enter a university each student is required to sit for a theory examination. If a student passes the theory examination they are then required to sit for a practical examination. It is estimated that the probability for a student to pass the theory examination is 0.8 and to pass the practical examination is 0.75 .
(i) Find the probability that a student chosen at random will gain entry to the university.
(ii) Find the probability that if two students chosen at random only one will gain entry to the university.
(b) At 6am a population was observed to be undergoing exponential growth and after time t hours the number of individuals N_{G} was given by $N_{G}=100 e^{0.3 t}$. When the population reached 500, a virus attacked the population and from that time the population underwent exponential decay so that t hours after the entry of the virus, the number of individuals N_{D} present was given by $N_{D}=500 e^{k t}$ for some constant $k<0$. When the population fell to its original value it was decreasing at a rate of 15 individuals per hour.
(i) At what time of the day did the population reach 500 ? Give your answer correct to the nearest minute.
(ii) Find the value of the constant k.
(iii) At what time of the day did the population return to its original value?
(ii) Find the exact area of the minor sector MON.

This is the END of the examination paper

Question 1

(a) Find the value of $\log _{6} 12$ correct to two decimal places.

$$
\begin{aligned}
\log _{6} 12 & =\frac{\log 12}{\log 6} \\
& =1.39(\text { to } 2 \mathrm{~d} . \mathrm{p})
\end{aligned}
$$

(b) The investment value of a stamp collection was originally $\$ 24800$. If the value of the collection compounds at a rate of 5.2% annually, find its estimated value at the end of 10 years. Give your answer correct to the nearest $\$ 100$.

$$
\begin{aligned}
\text { Value } & =\$ 24800\left(1+\frac{5.2}{100}\right)^{10} \\
& =\$ 41200(\text { to the nearest } \$ 100)
\end{aligned}
$$

(c) The volume V of a cylinder with a base radius r and height h is given by the formula $V=\pi r^{2} h$. Find the height of a cylinder when the volume is $480 \mathrm{~cm}^{3}$ and base radius is 9.5 cm . Give your answer correct to the nearest millimetre.

$$
\begin{aligned}
& V=\pi r^{2} h \\
& h=\frac{V}{\pi r^{2}} \\
&=\frac{480}{\pi \times 9.5^{2}} \\
& \text { height }=1.7 \mathrm{~cm} \text { (to nearest } \mathrm{mm} \text {) }
\end{aligned}
$$

(d) Solve the equation $3(2 x+1)-2(3-x)=53$.

$$
\begin{aligned}
3(2 x+1)-2(3-x) & =53 \\
6 x+3-6+2 x & =53 \\
8 x-3 & =53 \\
8 x & =56 \\
x & =7
\end{aligned}
$$

(e) Find the exact length of the longer diagonal in parallelogram $A B C D$.

$$
\begin{aligned}
A C^{2} & =(2 \sqrt{6})^{2}+(4 \sqrt{2})^{2}-2(2 \sqrt{6})(4 \sqrt{2}) \cos 150^{\circ} \\
& =24+32-16 \sqrt{12} \times\left(-\frac{\sqrt{3}}{2}\right) \\
& =56+8 \sqrt{36} \\
& =104
\end{aligned} \text { length } A C=\sqrt{104} \mathrm{~cm}(=2 \sqrt{26} \mathrm{~cm}) .
$$

Question 2 (Start a new page)

The coordinates of the points E, F and G are $(0,3),(6,0)$ and $(7,-4)$ respectively.
(a) Draw a neat sketch, clearly showing the above information and show that the line k
(d) Find perpendicular distance from point F to line $G H$.

$$
\begin{aligned}
\perp \text { dist. } & =\frac{|6+0+1|}{\sqrt{1^{2}+2^{2}}} \text { units } \\
& =\frac{7}{\sqrt{5}} \text { units } \\
& =\frac{7 \sqrt{5}}{5} \text { units }
\end{aligned}
$$

(e) Find the exact area of quadrilateral $E F G H$.

$$
\begin{aligned}
G H & =\sqrt{8^{2}+(-4)^{2}} \\
& =\sqrt{80}
\end{aligned}
$$

length $G H=4 \sqrt{5}$ units

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}\left(\frac{7}{\sqrt{5}}\right)(3 \sqrt{5}+4 \sqrt{5}) \mathrm{u}^{2} \\
& =24.5 \mathrm{u}^{2}
\end{aligned}
$$

Question 3 (Start a new page)

(a) Differentiate with respect to x :
(i) $\frac{4 x^{3} \sqrt{x}+5}{x^{2}}$,

$$
\begin{aligned}
f(x) & =4 x^{1.5}+5 x^{-2} \\
f^{\prime}(x) & =6 x^{1.5}-10 x^{-3} \\
& =6 \sqrt{x}-\frac{10}{x^{3}}
\end{aligned}
$$

(ii) $(8-3 x)^{5}$.

$$
\begin{aligned}
& f(x)=(8-3 x)^{5} \\
& \begin{aligned}
f^{\prime}(x) & =5(8-3 x)^{4} \times-3 \\
& =-15(8-3 x)^{4}
\end{aligned}
\end{aligned}
$$

(b) Find the equation of the tangent to $y=x e^{-x}$ at the point where $x=2$. Write your

Marks
(c) Differentiate $y=\frac{\cos x}{1+\sin x}$, hence show that $\frac{d y}{d x}=\frac{-1}{1+\sin x}$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{(1+\sin x)(-\sin x)-(\cos x)(\cos x)}{(1+\sin x)^{2}} \\
&=\frac{-\sin x-\sin ^{2} x-\cos ^{2} x}{(1+\sin x)^{2}} \\
&=\frac{-\sin x-\left(\sin ^{2} x+\cos ^{2} x\right)}{(1+\sin x)^{2}} \\
&=\frac{-\sin x-1}{(1+\sin x)^{2}} \\
&=\frac{-(\sin x+1)}{(1+\sin x)^{2}} \\
& \therefore \frac{d y}{d x}=\frac{-1}{1+\sin x}
\end{aligned}
$$

Question 4 (Start a new page)

(a) Evaluate
(i) $\quad \int_{0}^{4} \frac{d x}{3 x+2}=\frac{1}{3}[\ln (3 x+2)]_{0}^{4}$

$$
\begin{aligned}
& =\frac{1}{3}(\ln 14-\ln 2) \\
& =\frac{\ln 7}{3}
\end{aligned}
$$

(ii) $\int_{-1}^{2} \cos \left(\frac{\pi}{2} x\right) d x=\frac{2}{\pi}\left[\sin \left(\frac{\pi}{2}\right) x\right]_{-1}^{2}$

$$
\begin{aligned}
& =\frac{2}{\pi}\left\{\sin \pi-\sin \left(-\frac{\pi}{2}\right)\right\} . \\
& =\frac{2}{\pi}\{0+1\} \\
& =\frac{2}{\pi}
\end{aligned}
$$

(b) (i) Find the coordinates of the stationary points on the curve $y=(x+1)\left(x^{2}-8\right)$ and determine their nature.

$$
\begin{aligned}
y & =(x+1)\left(x^{2}-8\right) \\
& =x^{3}+x^{2}-8 x-8 \\
y^{\prime} & =3 x^{2}+2 x-8 \\
& =(3 x-4)(x+2)
\end{aligned}
$$

for stat .point $y^{\prime}=0$
$\therefore(3 x-4)(x+2)=0$
$x=\frac{4}{3}$ or -2
if $x=\frac{4}{3}, y=\left(\frac{4}{3}\right)^{3}+\left(\frac{4}{3}\right)^{2}-8\left(\frac{4}{3}\right)-8$

$$
=-14 \frac{14}{27}
$$

if $x=-2, y=(-2)^{3}+(-2)^{2}-8(-2)-8$

$$
=4
$$

test nature of stat. points
$y^{\prime \prime}=6 x+2$
when $x=-2, \quad y^{\prime \prime}=6(-2)+2$

$$
=-10<0
$$

\therefore concave down, \therefore local max. t.p. at $(-2,4)$
when $x=\frac{4}{3}, \quad y^{\prime \prime}=6\left(\frac{4}{3}\right)+2$

$$
=10>0
$$

\therefore concave up, \therefore local min. t.p. at $\left(\frac{4}{3},-14 \frac{14}{27}\right)$
(ii) Draw a neat half page sketch of $y=(x+1)\left(x^{2}-8\right)$ in the domain $-4 \leq x \leq 4$. On your diagram clearly indicate the coordinates and the positions of the intercepts with the coordinate axes and the stationary points.
when $x=-4, y=(-4)^{3}+(-4)^{2}-8(-4)-8$

$$
=-24
$$

when $x=4, y=(4)^{3}+(4)^{2}-8(4)-8$

$$
=40
$$

Question 5 (Start a new page)

(a) Town A is 4 km from town P and its bearing from town P is $030^{\circ} T$. Town B is due south of town A and 6 km from town P.
(i) Draw a neat sketch that clearly illustrates the above information.

(ii) Find the distance between towns A and B. Give your answer correct to the nearest kilometre.

$$
\begin{aligned}
& \text { Let } A B=x \mathrm{~km} \\
& 6^{2}=4^{2}+x^{2}-2(4)(x) \cos 30^{\circ} \\
& 36=16+x^{2}-8\left(\frac{\sqrt{3}}{2}\right) x \\
& 36=16+x^{2}-4 \sqrt{3} x \\
& x^{2}-4 \sqrt{3} x-20=0 \\
& x=\frac{4 \sqrt{3} \pm \sqrt{(4 \sqrt{3})^{2}-4(1)(-20)}}{2} \\
& x=\frac{4 \sqrt{3} \pm \sqrt{48+80}}{2} \\
& x=\frac{4 \sqrt{3} \pm \sqrt{128}}{2} \\
& x=\frac{4 \sqrt{3} \pm 8 \sqrt{2}}{2} \\
& x=2 \sqrt{3} \pm 4 \sqrt{2} \\
& \text { distance }=(2 \sqrt{3}+4 \sqrt{2}) \mathrm{km} \mathrm{since} \\
& \text { distance dist. }=90 \mathrm{~km} \text { (to nearest km) }
\end{aligned}
$$

OR
Let perpendicular distance from P to $A B$ be $y \mathrm{~km}$ and let the perpendicular from P meet $A B$ at C.
$\frac{A C}{4}=\cos 30^{\circ}$
$A C=4 \cos 30^{\circ}$

$$
=2 \sqrt{3}
$$

$$
\frac{P C}{4}=\sin 30^{\circ}
$$

$$
P C=4 \sin 30^{\circ}
$$

$$
=2
$$

$$
P C^{2}+B C^{2}=P B^{2}
$$

$$
B C^{2}=6^{2}-2^{2}
$$

$$
=32
$$

$$
P C=4 \sqrt{2}
$$

$$
A B=A C+B C
$$

$$
=2 \sqrt{3}+4 \sqrt{2}
$$

\therefore distance $=(2 \sqrt{3}+4 \sqrt{2}) \mathrm{km}$

Marks
(b) (i) Find the intersection points of the line $y=2 x$ and the parabola $y=6 x-x^{2}$.

$$
\begin{aligned}
& 6 x-x^{2}=2 x \\
& x^{2}-4 x=0 \\
& x(x-4)=0 \\
& x=0 \text { or } 4 \\
& x=0, y=0 \Rightarrow(0,0) \\
& x=4, y=8 \Rightarrow(4,8)
\end{aligned}
$$

(ii) Find the area bounded by the line $y=2 x$ and the parabola $y=6 x-x^{2}$.

$$
\begin{aligned}
A & =\int_{0}^{4}\left[\left(6 x-x^{2}\right)-2 x\right] d x \text { or } A=\int_{0}^{4}\left(6 x-x^{2}\right) d x-\frac{1}{2} \times 4 \times 8 \\
& =\int_{0}^{4}\left(4 x-x^{2}\right) d x \\
& =\left[2 x^{2}-\frac{1}{3} x^{3}\right]_{0}^{4} \\
& =\left(2 \times 4^{2}-\frac{1}{3} \times 4^{3}\right)-0 \\
& =10 \frac{2}{3} \\
\text { Area } & =10 \frac{2}{3} \mathrm{u}^{2}
\end{aligned}
$$

Question 6 (Start a new page)

(a) A particle is moving along a straight line. The particle is initially at the origin O and at time t minutes its velocity, $v \mathrm{~m} / \mathrm{min}$, is given by $v=1+2 \sin \left(\frac{\pi}{4} t\right)$.
(i) Sketch the graph of v against t for $0 \leq t \leq 8$.

(ii) Find the position of the particle when it first reaches its maximum speed.

Max. speed when $t=2$ (from turning point of v - t graph)
$x=t-\frac{8}{\pi} \cos \left(\frac{\pi t}{4}\right)+c$
when $t=0, x=0$
$\therefore 0=0-\frac{8}{\pi} \cos (0)+c$
$c=\frac{8}{\pi}$
$\therefore x=t-\frac{8}{\pi} \cos \left(\frac{\pi t}{4}\right)+\frac{8}{\pi}$
when $t=2$

$$
\begin{aligned}
x & =2-\frac{8}{\pi} \cos \left(\frac{2 \pi}{4}\right)+\frac{8}{\pi} \\
& =2+\frac{8}{\pi}
\end{aligned}
$$

disp. $=\left(2+\frac{8}{\pi}\right) \mathrm{cm}$
(b) The gradient function of a curve is given by $\frac{d y}{d x}=3+\frac{10}{\sqrt{x}}$.

Find the equation of the curve if it passes through the point $P(4,9)$.
$\frac{d y}{d x}=3+10 x^{-\frac{1}{2}}$
$y=3 x+20 \sqrt{x}+c$
at $P(4,9)$
$9=3 \times 4+20 \sqrt{4}+c$
$c=-43$
$y=3 x+20 \sqrt{x}-43$
(c) (i) Show that the discriminant Δ for $x^{2}+m x+m$ is given by $\Delta=m^{2}-4 m$.

$$
\begin{aligned}
\Delta & =m^{2}-4(1)(m) \\
& =m^{2}-4 m
\end{aligned}
$$

(ii) Hence, or otherwise, find the values of k for which the line $y=x+k$ and the curve $y=\frac{x}{x+1}$ do not intersect.

Curves intersect when

$$
\begin{aligned}
& \frac{x}{x+1}=x+k \\
& x=(x+1)(x+k) \\
& x=x^{2}+k x+x+k \\
& x^{2}+k x+k=0
\end{aligned}
$$

for no points of intersection the above equation must have no real roots i.e. $\Delta<0$

Now $\Delta=k^{2}-4 k$
$\therefore k^{2}-4 k<0$
$k(k-4)<0$
$\therefore 0<k<4$

Question 7 (Start a new page)

(a) $\triangle A B C$ and $\triangle B P Q$ are right-angled triangles and $A B$ $=A P$.

(i) Copy the diagram onto your answer sheet and prove that $\angle C B P=\angle C P Q$.
(Hint: Let $\angle C B P=\alpha^{\circ}$)
Let $\angle C B P=\alpha^{\circ}$
$\angle A B P+\alpha^{\circ}=90^{\circ}$ (angle sum of right angle $A B C=90^{\circ}$)
$\angle A B P=90^{\circ}-\alpha^{\circ}$
$\angle A P B=90^{\circ}-\alpha^{\circ}$ (equal angles are opposite equal sides in $\triangle A B P$)
$\angle C P Q+90^{\circ}+\left(90^{\circ}-\alpha^{\circ}\right)=180^{\circ}\left(\right.$ angle sum of straight angle $\left.A P C=180^{\circ}\right)$
$\angle C P Q=\alpha^{\circ}$
$\therefore \angle C B P=\angle C P Q\left(\right.$ both $\left.=\alpha^{\circ}\right)$
(ii) Hence prove that $P C^{2}=B C \times Q C$

In $\triangle B P C$ and $\triangle P Q C$
$\angle C B P=\angle C P Q($ from $(i))$
$\angle B C P=\angle P C Q$ (common)
$\therefore \triangle B P C\|\| P Q C$ (equiangular)
$\frac{P C}{Q C}=\frac{B C}{P C}$ (ratios of corresponding sides of similar triangles are equal $)$
$\therefore P C^{2}=B C \times Q C$

* Also possible to prove that a circle passes through points B, P and Q and that $A P C$ is also a tangent to the circle, then use theorems about tangents and secants (3 unit theorem)
(b) A mass of wire cable is wound around a winch. The mass, $M \mathrm{~kg}$, of wire on the winch, at time t minutes, is given by the formula $M=400-25 \sqrt{t+100}$.
(i) Find the initial mass of wire on the winch.
when $t=0, M=400-25 \sqrt{100}$

$$
=150
$$

Initial mass $=150 \mathrm{Kg}$
(ii) Find the time needed to remove all the wire from the winch.
when $M=0$,
$0=400-25 \sqrt{t+100}$
$25 \sqrt{t+100}=400$
$\sqrt{t+100}=16$
$t+100=256$
$t=156$
time $=156$ minutes $(=2 \mathrm{hrs} 36 \mathrm{~min})$
(iii) Find the initial rate at which the wire is being removed from the winch.

$$
\begin{aligned}
\frac{d M}{d t} & =-25 \times \frac{1}{2}(t+100)^{-\frac{1}{2}} \\
& =\frac{-25}{2 \sqrt{t+100}}
\end{aligned}
$$

when $t=0$
$\frac{d M}{d t}=\frac{-25}{2 \sqrt{100}}$

$$
=-1.25
$$

rate $=1.25 \mathrm{~kg} / \mathrm{min}$

Question 8 (Start a new page)

(a) John starts work on an annual salary of $\$ 38500$. On the last day of each year for the first 10 years of employment, he will receive an annual salary increase of $\$ 1200$. For his remaining years of employment he will receive an annual increase of \$1 650 .
(i) What will John's annual salary be during his $6^{\text {th }}$ year of employment?

Years 1 to 10
$\{38500,38500+1 \times 1200,38500+2 \times 1200,38500+3 \times 1200, \ldots \ldots \ldots$.

$$
\begin{aligned}
A_{6} & =38500+5 \times 1200 \\
& =44500
\end{aligned}
$$

\therefore Salary $=\$ 44500$
(ii) What will John's annual salary be during his $15^{\text {th }}$ year of employment?

$$
\begin{aligned}
& \text { Years } 1 \text { to } 10 \\
& \{38500,38500+1 \times 1200,38500+2 \times 1200, \ldots \ldots ., 38500+9 \times 1200(=49300)\}
\end{aligned}
$$

Years 11 to 25

$$
\{49300+1 \times 1650,49300+2 \times 1650,49300+3 \times 1650,49300+4 \times 1650, \ldots \ldots . .\}
$$

$$
A_{10}=38500+9 \times 1200
$$

$$
=49300
$$

$$
A_{15}=49300+5 \times 1650
$$

$$
=57550
$$

\therefore Salary $=\$ 57550$
(iii) How much will John's total earnings amount to at the end of his $25^{\text {th }}$ year of
(b) A wire framework enclosing an area of $144 \mathrm{~m}^{2}$ is to be made in the shape of a sector of a circle (see diagram). The length of wire required is L metres where the circle has radius r metres and the sector angle is θ radians.

(i) Show that $L=2 r+\frac{288}{r}$.
$L=2 r+r \theta$
but $\frac{1}{2} r^{2} \theta=144$
$\therefore \theta=\frac{288}{r^{2}}$
$L=2 r+r \times \frac{288}{r^{2}}$
$L=2 r+\frac{288}{r}$
(ii) Find the minimum length of wire needed to make the framework.

$$
\begin{aligned}
L & =2 r+\frac{288}{r} \\
& =2 r+288 r^{-1} \\
\frac{d L}{d r} & =2-288 r^{-2} \\
& =2-\frac{288}{r^{2}}
\end{aligned}
$$

for stat. point $\frac{d L}{d r}=0$
$\frac{288}{r^{2}}=2$
$2 r^{2}=288$
$r^{2}=144$
$r=12($ radius $>0)$
test nature of stat. point
$\frac{\mathrm{d}^{2} \mathrm{~L}}{\mathrm{dr}^{2}}=\frac{576}{r^{3}}$
when $r=12$
$\frac{\mathrm{d}^{2} \mathrm{~L}}{\mathrm{dr}^{2}}=\frac{576}{12^{3}}>0$
\therefore concave up, \therefore local min. t.p.
Since the curve is continuous for $r>0$ and there is only one turning point then the local minimum is the absolute minimum
when $\mathrm{r}=12, \mathrm{~L}=2(12)+\frac{288}{12}$

$$
=48
$$

\therefore Minimum length $=48 \mathrm{~m}$

Question 9 (Start a new page)

(a) Point T is 6 cm from the centre O of a circle with radius 3 cm . Tangents drawn from point T touch the circle at points M and N and the tangents are perpendicular to the radii at these points of contact.
(i) Find the exact size of $\angle M O T$.

2

3
(b) (i) Sketch the curve $y=2+\sqrt{x}$ and clearly shade the area bounded by the curve, the coordinate axes and the line $x=9$.
(ii) Find the exact volume of the solid formed when the above area is rotated one revolution about the \boldsymbol{y}-axis.

Question 10 (Start a new page)

(a) In order to enter a university each student is required to sit for a theory examination. If a student passes the theory examination they are then required to sit for a practical examination. It is estimated that the probability for a student to pass the theory examination is 0.8 and to pass the practical examination is 0.75 .
(i) Find the probability that a student chosen at random will gain entry to the university.
(ii) Find the probability that if two students chosen at random only one will gain entry to the university.
(b) At 6am a population was observed to be undergoing exponential growth and after time t hours the number of individuals N_{G} was given by $N_{G}=100 e^{0.3 t}$. When the population reached 500, a virus attacked the population and from that time the population underwent exponential decay so that t hours after the entry of the virus, the number of individuals N_{D} present was given by $N_{D}=500 e^{k t}$ for some constant $k<0$. When the population fell to its original value it was decreasing at a rate of 15 individuals per hour.
(i) At what time of the day did the population reach 500? Give your answer correct to the nearest minute.
(ii) Find the value of the constant k.
(iii) At what time of the day did the population return to its original value?

Marks

This is the END of the examination paper

