<u>Question 1</u> (12 Marks) Begin a SEPARATE sheet of paper

		Marks
(a)	Evaluate $\frac{e+1}{\pi}$, correct to three decimal places.	2
(b)	Find θ , to the nearest degree, if $\sin \theta = \frac{4 \sin 57^{\overline{2}}}{6.7}$	2
(c)	What is the centre and radius of a circle with equation $(x + 2)^2 + (y - 3)^2 = 2 \cdot 25$.	2
(d)	The mean of 3, 5, 7, x is 6.75. What is the value of x?	1
(e)	If $x = 2.35$, evaluate the expression $ -3-4x $	1
(f)	Factorise $3x^2 - 5x - 2$.	1
(g)	Express 2.32 radians as an angle in degrees, correct to the nearest minute.	1
(h)	Write down the domain and range for $y = \sqrt{x^{\overline{0}} - 9}$.	2

<u>Question 2</u> (12 Marks) Begin a SEPARATE sheet of paper

			Marks
(a)	Diffe	erentiate the following:	
	(i)	e ^{0·5} .	1
	(ii)	$\log_{\rm e}(x^2-3x).$	1
	(iii)	$\frac{2x-1}{\cos x}$	1
(b)	Integ	rate: $\int \sin \frac{x}{2} dx$	2

(c) Evaluate:
$$\int_{\overline{g}}^{\overline{g}} \frac{5}{6} e^{\overline{g}} dx$$
 (Leave your answer in exact form). 2

(d) Given
$$\log_{m} p = 1.75$$
 and $\log_{m} q = 2.25$

Find the following:

(i)
$$\log_{m} pq$$
 1
(ii) $\log_{m} \frac{q}{p}$ 1

(iii)
$$\sqrt[n]{pq^{1}}$$
 in terms of *m*. 3

MATHEMATICS

Question 3 (12 Marks) Begin a SEPARATE sheet of paper

y х Find the coordinates of the midpoint *M*, of the interval *OP*. 1 (a) Show that the point *M* lies on the line *n*. 2 (b) (c) Find the gradient of the line *OP*. 1 Show that the line *n* is the perpendicular bisector of the interval *OP*. 3 (d) 1 Line *n* meets the *x*-axis at *Q*. Find the co-ordinates of *Q*. (e) (f) A line is drawn through *O* parallel to *PQ* and it meets line *n* in *R*. Find the co-ordinates of *R*. 2 What sort of quadrilateral is *PQOR*? Give reasons for your answer. 2 (g)

Marks

MATHEMATICS

<u>Question 4</u> (12 Marks) Begin a SEPARATE sheet of paper

			Marks
(a)	Let <i>i</i>	<i>n</i> and <i>n</i> be positive whole numbers where $m > n$.	
	(i)	Show that a triangle with sides $m^2 + n^2$, $m^2 - n^2$, $2mn$ obeys Pythagoras' Theorem.	2
	(ii)	Which Pythagorean Triad is generated when $m = 3$ and $n = 2$?	1

(b) Consider the function $f(x) = x - 2 \log_e x$, for x > 0.

(i)	Find the first and second derivative of $f(x)$.	2
(ii)	Find the co-ordinates of the turning point(s) and determine their nature.	2
(iii)	Show that there are no points of inflexion.	2
(iv)	What is the maximum value of $x - 2 \log_e x$ in the domain $1 \le x \le 5$?	1
(v)	Sketch the curve $y = x - 2 \log_e x$, for $0 < x \le 5$.	2

Question 5 (12 Marks) Begin a SEPARATE sheet of paper

(a) y = sinx $-\frac{\pi}{2}$ π 2 -1

The diagram above shows the graph of $y = \sin x$ for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$.

- (i) Copy the diagram onto your exam paper. On the same set of axes, graph $y = \cos 2x$ for $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$.
- 1 Show that the two graphs intersect where $x = \frac{\pi}{6}$. (ii)
- (iii) Calculate the exact area enclosed between the two curves.

(b) Show that
$$\frac{\sec\theta - \sec\theta\cos^4\theta}{1 + \cos^2\theta} = \sin\theta\tan\theta$$
. 3

(c) (i) Find the value(s) of k for which
$$x^2 + (2 - k)x + 2.25 = 0$$
 has equal roots . 2
(ii) Find the value(s) of k for which $y = kx + 1$ is a tangent to $y = x^2 + 2x + 3.25$ 1

(ii) Find the value(s) of k for which
$$y = kx + 1$$
 is a tangent to $y = x^2 + 2x + 3.25$.

JRAHS_2U_MATHAMATICS TRIAL_2007

Marks

2

<u>Question 6</u> (12 Marks) Begin a SEPARATE sheet of paper

		Marks
Boat A Boat A	A is 15km from point P on a bearing of 055^{0} T. B is 25km from point P on a bearing of 135^{0} T.	
(i)	Draw a diagram showing the information above and find the angle APB.	2
(ii)	Calculate, to one decimal place, the distance that the two boats are apart.	2
	Boat Z Boat Z (i) (ii)	 Boat <i>A</i> is 15km from point <i>P</i> on a bearing of 055⁰T. Boat <i>B</i> is 25km from point <i>P</i> on a bearing of 135⁰T. (i) Draw a diagram showing the information above and find the angle <i>APB</i>. (ii) Calculate, to one decimal place, the distance that the two boats are apart.

(b) Evaluate
$$\sum_{r=3}^{7} 2^r - 3r$$
. 2

(c) Water enters an empty container where the rate of filling is $R = 6(e^t + e^{-t})$ where $R = \frac{dV}{dt}$ in litres per minute. The volume (V) of water in the vessel is in litres and time (*t*) is in minutes.

(iii) Show that, when the container holds 5 litres, then
$$6e^{2t} - 5e^{t} - 6 = 0.$$
 1

Marks

2

1

Question 7 (12 Marks) Begin a SEPARATE sheet of paper

(a) Find y if
$$\frac{dy}{dx} = \frac{3\sec^2 x}{\tan x}$$
 and $y = 4$ when $x = \frac{\pi}{4}$. 3

- (b) *Twinkle Finance* offers its investors the opportunity to have interest credited to their investment "as often as you wish". Naturally, many investors decide for the "EVERY MINUTE" plan in which *Twinkle* offers 12% pa, compounded each minute.
 - (i) Tanya invests \$1000 for a year with *Twinkle* on the "EVERY MINUTE" plan. Theoretically, *Twinkle's* computers multiply Tanya's balance by approximately
 1.000 000 228 every minute. Show why this is so.
 - (ii) How much, to the nearest dollar, is Tanya's investment worth after 1 year?

(c)

In the diagram above, an equilateral triangle *PQR* is inscribed in a circle C_1 , with centre *O*, and radius 5 units. $\angle POQ = \angle QOR = \angle POR$.

An arc of another circle C_2 , with centre P, and radius $5\sqrt{3}$ units, intersects C_1 at the points Q and R, as shown in the diagram.

(i) Show
$$\angle QPO = \frac{\pi}{6}$$
, giving reasons. 1
(ii) Find the area of the sector *QPR*, of the circle C_2 . 1

(iii) Find the area of the sector
$$QOR$$
, of the circle C_1 .

(iv) Hence, or otherwise, show that the area of the shaded region is $25\left(\frac{\sqrt{3}}{2} - \frac{\pi}{6}\right)$ units². **3**

JRAHS_2U_MATHAMATICS TRIAL_2007

MATHEMATICS

Question 8 (12 Marks) Begin a SEPARATE sheet of paper

(a) Let A be the point (-2, 0) and B be the point (6, 0). At P (x, y), PA meets PB at right angles.

(i) Show that the gradient of *PA* is
$$\frac{y}{x+2}$$
. 1

- (ii) Find the equation of the locus of *P* and give a geometric description of the locus. 3
- (b) The velocity of an object is given by the equation $v = 6t 8 t^2$, where time (*t*) is in seconds and velocity (*v*) is in metres/second. Initially, the object is 5 metres to the right of the origin.

(i)	Find an equation for the displacement of the object.	2
(ii)	Find when the object is momentarily at rest.	1
(iii)	Find the distance travelled by the object in the first four seconds.	2

(c) Two dice are biased so that, the probability of throwing a six face up is $\frac{3}{8}$ and the probability of throwing any other number is $\frac{1}{8}$.

Find the probability of:

(i)	Rolling a double six face up.	1
(ii)	Rolling the dice so that neither is a six face up.	1
(iii)	Only one six appearing face up when the two dice are rolled.	1

JRAHS_2U_MATHAMATICS TRIAL_2007

<u>Question 9</u> (12 Marks) Begin a SEPARATE sheet of paper

			Marks
(a)	(i)	Write $x^2 - 6x + 8 = 2y$ in the form $(x - h)^2 = 4a (y - k)$.	2
	(ii)	Hence, state the co-ordinates of focus for the parabola.	1

The graph of y = f'(x) is shown above. The zeros of f'(x) are x = -2, 0.5, and 3. Point *C* has *x* co-ordinate of -0.9 and point *B* has *x* co-ordinate of 1.9.

(i)	For what range of values of x is $f(x)$ increasing?	1
(ii)	Point <i>C</i> is the local maximum of $f'(x)$. What type of point occurs on $y = f(x)$ when $x = -0.9$. Justify your answer.	2
(iii)	For what range of values of x is $f(x)$ concave down?	1

Question 9(c) continued on next page

The graphs of $y = \sin \frac{\pi}{2} x$ and $y = x^2$ are shown above.

The region bounded by these curves and the *x*-axis is shaded.

(i)	Show that the two curves meet where $x = 1$.	1
(;;)	Write the definite integral(a) which will give the volume of the colid of revolution	1
(11)	when this region is rotated about the <i>x</i> -axis. DO NOT EVALUATE THESE INTEGRAL S	
		3

(iii) Use Simpson's Rule with five function values to approximate this volume, leaving your answer in terms of π .

Question 10 (12 Marks) Begin a SEPARATE sheet of paper

Marks

(a)	The p After Using	ercentage of Carbon14 in an organism falls exponentially after the death of the organism. 1845 years 80% of the original concentration of Carbon14 remains. the equation $C = C_0 e^{-kt}$ to represent the exponential fall of Carbon14:	
	(i)	Find the exact value of <i>k</i> .	2
	(ii)	An artefact containing this organism has 65% of the original concentration of Carbon14. How long has this organism been dead? Give answer to the nearest year.	2
	(iii)	A sea sponge containing this organism has been dead for 12 000 years. What percentage (to 1 decimal place) of the original Carbon14 concentration does it have?	2
(b)	Two s distan	ailors are paid to bring a motor launch back to Sydney from Gilligan's Island, a total ce of 1 200 km. They are each paid \$25 per hour for the time spent at sea.	
	The la	sunch uses fuel at a rate of $20 + \frac{v^2}{10}$ litres per hour where the speed of the launch is v km	
	per ho	our. Diesel fuel costs \$1.25 per litre.	

(i) Show that, to bring the launch back from Gilligan's Island, the total cost (\$*C*) to the owners is **3**

$$C = \frac{90\ 000}{v} + 150v.$$

(ii) Find the speed that minimises the cost and determine this cost, giving your answer to the nearest dollar. 3

END OF EXAMINATION

Question 4 (12 marks) a) (i) Required to prove (m2-n2) + (2mn)2 = (m2+n2)2 LHS: (m2-n2) + (2mn)2 $= m^4 - 2mn^2 + n^4 + 4mn^2$ $= m^{4} + 2m^{2}n^{2} + n^{4}$ $= (m^2 + n^2)^2$ = R+5. 12) : LHS = R#5 11) (ii) If m=3, n=2: triad is 13, 5, 12 b) (i) f(x) = x - 2 loge x , x>0 f'(1) = 1 - 2 or 1 - 21 f"(12) = 2 72 or 2 2 (ii) For t.p. (f'(x) = 0): 1 - 2/32 = 0 2-2=0 26= 2 = 0.6 · Possible tp. is (2, 2-2ln2) To determine its nature use either 1stor 2nd derivative s(1) -1 0 Using 1st derivative : · · local minimum at x=2 1 Using 2nd derivative: at x=2 f"(2) = 2x 2 >0 .: concave up .: 1 ocal minimum at 21=2 (1) possible 121 (iii) For points of inflexion, f"(n)=0 $\frac{2}{\chi^2} = 0$ 1 but 2 = = O 111 ... there are no points of inflexion.

(4)

(5)

L

$$\begin{array}{c} \underline{Q} \text{ veshin6} \left(12 \text{ marks} \right) \\ (i) & n^{N} \\ p & \overbrace{25}^{\circ} \frac{15}{15} \frac{1}{6} \\ (i) & A8^{\frac{1}{2}} + 15^{\frac{1}{2}} + 2.5^{\frac{1}{2}} - 2.15, 25, \text{ on } 80^{\circ} \\ z & 719, 76 \\ \underline{A8} = & 26 \cdot 8 \text{ lam} \\ \hline 1 & 1 & -\frac{1}{2} \text{ if not} \\ \frac{1}{15} \frac{1}{15} \frac{1}{15} \frac{1}{15} \frac{1}{15} \\ \frac{1}{15} \frac{$$

Question
$$\overline{f}$$
 (12 marks)
a) $\frac{dy}{dx} = \frac{3}{3} \frac{\sec^2 x}{\tan x}$
 $y = 3 \ln(\tan x) + c$
when $x = \overline{f}$, $y = + \Longrightarrow + = 3 \ln(\tan \overline{f}) + c$
 $\therefore c = +$
 $\therefore y = \frac{3\ln(\tan x) + 4}{121}$
b) (i) 1 year = $365 \times 24 \times 60$ minutes
 $= 525600$ minutes
 $= \frac{0.12}{525600}$ for minute
 $\frac{\pm 0.00002283}{525600}$ per minute
 $\frac{\pm 0.00002283}{100002283}$ per minute
 $\frac{1}{525600}$ per minute
(ii) 1000 (1.00002283) 525600
 $= \frac{\pm 1127}{2}$ (wearest dollar)
(iii) $400P = \frac{2\pi}{3}$ (angle sum about a)
 $\pm 6P0 = \frac{2\pi - 2\pi}{2} = \frac{\pi}{5}$ (angle sum about a)
 $\frac{12}{2}$
(iii) $A_{state 00R} = \frac{1}{2} \times 513 \times 513 \times \frac{\pi}{3} = 25\pi$ units² (1)
(iv) There are several wrays to do this which may
involve areas of segments/triangles/sectors.
PTD.

Question 8 (continued) $b) \quad V = 6t - 8 - t^2 = \frac{dx}{dt}$ (i) $c = 3t^2 - 8t - \frac{t^3}{3} + c$ When t=0, x=+5 =7 5= C : 21= 3t2-8t -t3 +5 12 (ii) at rest, v=0 => 0=6t-8-t2 0 = (t - 4)(t - 2).: at rest when t= 2 and t= t 111 (iii) x(0) = 5.: In first 2 sees it travels 5+13 = 63m x(2) = -1 = $\chi(4) = \chi = -\frac{1}{2}$.: from t=2 to t=4 it travels 13 units. ... distance travelled = 5+1=+1= = 8 units 121 c) (i) $P(6,6) = \frac{3}{8} \times \frac{3}{8} = \frac{9}{60}$ 111 1) (ii) $P(6, 6) = 5 \times 5 = 25$ $\begin{array}{c} (11) & P(6,6) + P(6,6) = \frac{3}{3} \times \frac{5}{3} \times 2 = \frac{30}{64} = \frac{15}{32} \end{array}$ []] 1 Question 9 (12 marks) a) (i) x2-6x+8 = 24 $x^2 - 6x + 9 - 1 = 2y$ $(1 - 3)^2 = 2y + 1$ $= 2(y + \frac{1}{2})$ $(n-3)^{2}=4(\frac{1}{2})(y-(-\frac{1}{2}))$ 121 (3,-2) (ii) Verlex = $(3, -\frac{1}{2})$ $a = \frac{1}{2}$ IT 1 Focus = (3,0)

Question 9 (continued) b) (1) For increasing function, f'(12) > 0 -1 if either しえ:-2<x<27, {x: 273} 11 (ii) f'(-0.9) is a maximum , so f"(-0.9) = 0 . C is a possible paint of inflexion. for x < -0.9 , F (x) >0 for 21 > -0.9, f'(x)>0 ... In the neighbourhood of -0.9, gradients >0 . C is a point of inflexion . 121 (III) For concave down, f'(2) is decreasing. 11 ·: {x: -0.9 < x < 1.9} c) (i) at x=1, sin T=x1 = sin T= =1 :. 5 in 1/2 x = x2 at x=1 (11 (ii) $V = \pi \int_{-\infty}^{1} (x^2)^2 dx - \pi \int_{-\infty}^{2} (\sin \pi x)^2 dx$ $V = TT \int_{0}^{1} x^{4} dx - T \int_{0}^{2} \sin^{2} \frac{T}{2} x dx$ (1) (iii) x Weight f(n) 0 ち 1/16 4 1 2 sin 2 31 = 1 4 七 sin 2 TT = 0 1 012 $V = \pi \frac{2-0}{12} \left[0 + 0 + 4 \left(\frac{1}{10} + \frac{1}{2} \right) + 2(1) \right]$ 2 = = - + + + = 17TT UL 131

$$\frac{Question 10 (continued)}{Question 10 (continued)}$$

$$\begin{aligned} \vec{H} & C &= \frac{90000}{V} + 150 \text{ v} \\ dC &= 150 - 90000 \text{ v}^{-2} \\ Fr min. cost (dC &= 0) : \\ 150 \text{ v}^{-} = \frac{90000}{V} = 0 \\ 150 \text{ v}^{+} = \frac{90000}{V} = 0 \\ v &= \sqrt{600} (v > 0) \\ \vdots v &= 10\sqrt{6} \end{aligned}$$

$$\begin{aligned} Check C (10 \text{ fb}) \text{ is a minimum :} \\ dC &= 180000 \text{ v}^{-3} \\ dv &= 180000 \text{ v}^{-3} \\ at v &= 10 \text{ fb}, \quad dC &= \frac{180000}{(10 \text{ fb})^3} > 0 \\ &= concave vp \\ \therefore 10 \text{ cal min at } v &= 1006 \\ (may use 11 \text{ th derivative b test nature of stationary point.}) \end{aligned}$$

$$\begin{aligned} \vec{END} &= \frac{90000}{V_{000}} + 150 \times \sqrt{600} \\ &= \frac{17348} \end{aligned}$$