Question 1 (12 Marks) Begin a SEPARATE sheet of paper

Marks
(a) Evaluate $\frac{e+1}{\pi}$, correct to three decimal places.
(b) Find θ, to the nearest degree, if $\sin \theta=\frac{4 \sin 57^{\bar{\Phi}}}{6.7}$
(c) What is the centre and radius of a circle with equation $(x+2)^{2}+(y-3)^{2}=2 \cdot 25$.
(d) The mean of $3,5,7, x$ is $6 \cdot 75$. What is the value of x ?
(e) If $x=2 \cdot 35$, evaluate the expression $|-3-4 x|$
(f) Factorise $3 x^{2}-5 x-2$. $\mathbf{1}$
(g) Express $2 \cdot 32$ radians as an angle in degrees, correct to the nearest minute. $\mathbf{1}$
(h) Write down the domain and range for $y=\sqrt{x^{\overline{0}}-9}$.

Question 2 (12 Marks) Begin a SEPARATE sheet of paper

Marks

(a) Differentiate the following:
(i) $\mathrm{e}^{0.5}$. 1
(ii) $\quad \log _{e}\left(x^{2}-3 x\right) . \quad 1$
(iii) $\frac{2 x-1}{\cos x}$
(b) Integrate: $\int \sin \frac{x}{2} d x$
(c) Evaluate: $\quad \int_{\bar{\Phi}}^{\square} \frac{5}{6} e^{\text {ब® }} d x \quad$ (Leave your answer in exact form).
(d) Given $\log _{\mathrm{m}} p=1.75$ and $\log _{\mathrm{m}} q=2.25$.

Find the following:
(i) $\quad \log _{\mathrm{m}} p q \quad 1$
(ii) $\log _{\bar{i}} \frac{q}{p} \longrightarrow 1$
(iii) $\sqrt[3]{p q^{\text {® }}}$ in terms of m.

Question 3 (12 Marks) Begin a SEPARATE sheet of paper

Marks

The number plane shows the line n with equation $x+2 y=5$.
The point P is $(2,4)$ and O is the origin.

(a) Find the coordinates of the midpoint M, of the interval $O P$. $\mathbf{1}$
(b) Show that the point M lies on the line n.
(c) Find the gradient of the line $O P$.
(d) Show that the line n is the perpendicular bisector of the interval $O P$.
(e) Line n meets the x-axis at Q. Find the co-ordinates of Q.
(f) A line is drawn through O parallel to $P Q$ and it meets line n in R. Find the co-ordinates of R.
(g) What sort of quadrilateral is $P Q O R$? Give reasons for your answer.

Question 4 (12 Marks) Begin a SEPARATE sheet of paper

Marks
(a) Let m and n be positive whole numbers where $m>n$.
(i) Show that a triangle with sides $m^{2}+n^{2}, m^{2}-n^{2}, 2 m n$ obeys Pythagoras’ Theorem.
(ii) Which Pythagorean Triad is generated when $m=3$ and $n=2$?
(b) Consider the function $f(x)=x-2 \log _{\mathrm{e}} x$, for $x>0$.
(i) Find the first and second derivative of $f(x)$.
(ii) Find the co-ordinates of the turning point(s) and determine their nature.
(iii) Show that there are no points of inflexion.
(iv) What is the maximum value of $x-2 \log _{\mathrm{e}} x$ in the domain $1 \leq x \leq 5$?
(v) Sketch the curve $y=x-2 \log _{e} x$, for $0<x \leq 5$.

Question 5 (12 Marks) Begin a SEPARATE sheet of paper

Marks

(a)

The diagram above shows the graph of $y=\sin x$ for $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.
(i) Copy the diagram onto your exam paper.

On the same set of axes, graph $y=\cos 2 x$ for $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.
(ii) Show that the two graphs intersect where $x=\frac{\pi}{6}$.
(iii) Calculate the exact area enclosed between the two curves.
(b) Show that $\frac{\sec \theta-\sec \theta \cos ^{4} \theta}{1+\cos ^{2} \theta}=\sin \theta \tan \theta$.
(c) (i) Find the value(s) of k for which $x^{2}+(2-k) x+2 \cdot 25=0$ has equal roots .
(ii) Find the value(s) of k for which $y=k x+1$ is a tangent to $y=x^{2}+2 x+3 \cdot 25$.

Question 6 (12 Marks) Begin a SEPARATE sheet of paper

Marks

(a) Boat A is 15 km from point P on a bearing of $055^{\circ} \mathrm{T}$.

Boat B is 25 km from point P on a bearing of $135^{\circ} \mathrm{T}$.
(i) Draw a diagram showing the information above and find the angle $A P B$.
(ii) Calculate, to one decimal place, the distance that the two boats are apart.
(b) Evaluate $\sum_{r=3}^{7} 2^{r}-3 r$.
(c) Water enters an empty container where the rate of filling is $R=6\left(e^{\mathrm{t}}+e^{-\mathrm{t}}\right)$ where $R=\frac{d V}{d t}$ in litres per minute. The volume (V) of water in the vessel is in litres and time (t) is in minutes.
(i) What is the initial rate of filling? $\mathbf{1}$
(ii) Find V in terms of t. 2
(iii) Show that, when the container holds 5 litres, then $6 e^{2 t}-5 e^{t}-6=0$.
(iv) Hence, find to the nearest second, the time taken for the volume to reach 5 litres.

Question 7 (12 Marks) Begin a SEPARATE sheet of paper

Marks

(a) Find y if $\frac{d y}{d x}=\frac{3 \sec ^{2} x}{\tan x}$ and $y=4$ when $x=\frac{\pi}{4}$.
(b) Twinkle Finance offers its investors the opportunity to have interest credited to their investment "as often as you wish". Naturally, many investors decide for the "EVERY MINUTE" plan in which Twinkle offers 12% pa, compounded each minute.
(i) Tanya invests $\$ 1000$ for a year with Twinkle on the "EVERY MINUTE" plan.

Theoretically, Twinkle's computers multiply Tanya's balance by approximately 1.000000228 every minute. Show why this is so.
(ii) How much, to the nearest dollar, is Tanya's investment worth after 1 year?
(c)

In the diagram above, an equilateral triangle $P Q R$ is inscribed in a circle C_{1}, with centre O, and radius 5 units. $\angle P O Q=\angle Q O R=\angle P O R$.

An arc of another circle C_{2}, with centre P, and radius $5 \sqrt{3}$ units, intersects C_{1} at the points Q and R, as shown in the diagram.
(i) Show $\angle Q P O=\frac{\pi}{6}$, giving reasons.
(ii) Find the area of the sector $Q P R$, of the circle C_{2}.
(iii) Find the area of the sector $Q O R$, of the circle C_{1}.
(iv) Hence, or otherwise, show that the area of the shaded region is $25\left(\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)$ units 2.

Question 8 (12 Marks) Begin a SEPARATE sheet of paper

Marks

(a) Let A be the point $(-2,0)$ and B be the point $(6,0)$.

At $P(x, y), P A$ meets $P B$ at right angles.
(i) Show that the gradient of $P A$ is $\frac{y}{x+2}$.

1
(ii) Find the equation of the locus of P and give a geometric description of the locus.
(b) The velocity of an object is given by the equation $v=6 t-8-t^{2}$, where time (t) is in seconds and velocity (v) is in metres/second. Initially, the object is 5 metres to the right of the origin.
(i) Find an equation for the displacement of the object.
(ii) Find when the object is momentarily at rest.
(iii) Find the distance travelled by the object in the first four seconds.
(c) Two dice are biased so that, the probability of throwing a six face up is $\frac{3}{8}$ and the probability of throwing any other number is $\frac{1}{8}$.

Find the probability of:
(i) Rolling a double six face up.
(ii) Rolling the dice so that neither is a six face up.
(iii) Only one six appearing face up when the two dice are rolled.

Question 9 (12 Marks) Begin a SEPARATE sheet of paper

Marks

(a) (i) Write $x^{2}-6 x+8=2 y$ in the form $(x-h)^{2}=4 a(y-k)$.
(ii) Hence, state the co-ordinates of focus for the parabola.
(b)

The graph of $y=f^{\prime}(x)$ is shown above. The zeros of $f^{\prime}(x)$ are $x=-2,0 \cdot 5$, and 3 .
Point C has x co-ordinate of -0.9 and point B has x co-ordinate of 1.9.
(i) For what range of values of x is $f(x)$ increasing?
(ii) Point C is the local maximum of $f^{\prime}(x)$.

What type of point occurs on $y=f(x)$ when $x=-0 \cdot 9$. Justify your answer.
(iii) For what range of values of x is $f(x)$ concave down?

Question 9(c) continued on next page

9(c)

The graphs of $y=\sin \frac{\pi}{2} x$ and $y=x^{2}$ are shown above.
The region bounded by these curves and the x-axis is shaded.
(i) Show that the two curves meet where $x=1$.
(ii) Write the definite integral(s) which will give the volume of the solid of revolution when this region is rotated about the x-axis. DO NOT EVALUATE THESE INTEGRAL S
(iii) Use Simpson's Rule with five function values to approximate this volume, leaving your answer in terms of π.

Question 10 (12 Marks) Begin a SEPARATE sheet of paper

Marks

(a) The percentage of Carbon14 in an organism falls exponentially after the death of the organism. After 1845 years 80% of the original concentration of Carbon14 remains.
Using the equation $C=C_{0} \mathrm{e}^{-k t}$ to represent the exponential fall of Carbon14:
(i) Find the exact value of k.
(ii) An artefact containing this organism has 65% of the original concentration of Carbon14. How long has this organism been dead? Give answer to the nearest year.
(iii) A sea sponge containing this organism has been dead for 12000 years. What percentage (to 1 decimal place) of the original Carbon14 concentration does it have?
(b) Two sailors are paid to bring a motor launch back to Sydney from Gilligan's Island, a total distance of 1200 km . They are each paid $\$ 25$ per hour for the time spent at sea.

The launch uses fuel at a rate of $20+\frac{v^{2}}{10}$ litres per hour where the speed of the launch is $v \mathrm{~km}$ per hour. Diesel fuel costs $\$ 1 \cdot 25$ per litre.
(i) Show that, to bring the launch back from Gilligan's Island, the total cost (\$C) to the owners is

$$
C=\frac{90000}{v}+150 v .
$$

(ii) Find the speed that minimises the cost and determine this cost, giving your answer to the nearest dollar.

END OF EXAMINATION

Question 1 (12 marks)
a) $\frac{e+1}{\pi}=1.183565 \ldots$

$$
=1.184 \quad\left(3 \alpha_{p}\right)
$$

b) $\sin \theta=0.5006988+6$

$$
\theta=30^{\circ} 3^{\prime}
$$

$$
\theta=30^{\circ} \text { (nearest degree) }
$$

c) Centre $(-2,3)$

$$
\text { radius }=\sqrt{2.25}=1.5
$$

d)

$$
\begin{aligned}
\frac{3+5+7+x}{4} 15+x & =6.75 \\
x & =12
\end{aligned}
$$

e) $|-3-4 \times 2.35|=|-12.4|=12.4$
f) $3 x^{2}-5 x-2=(3 x+1)(x-2)$
g) $2.32 \mathrm{rads}=2.32 \times \frac{180^{\circ}}{\pi}=132^{\circ} 56^{\prime}$
h) $x^{2}-9 \geqslant 0$

D: $x \leqslant-3$ or $x \geqslant 3$
R: $y \geqslant 0$
Question 2 (12 marks)
a) (i) 0
(ii) $\frac{2 x-3}{x^{2}-3 x}$
(iii) $\frac{2 \cos x+(2 x-1) \sin x}{\cos ^{2} x}$
b) $-2 \cos \frac{x}{2}+c$
c) $\int_{0}^{1} \frac{5}{6} e^{3 x} d x=\frac{5}{6}\left[\frac{1}{3} e^{3 x}\right]_{0}^{1}$

$$
=\frac{5}{18}\left(e^{3}-1\right)
$$

d) (i) $\log p q=\log p+\log q=1.75+2.25=4$
(ii) $\log \frac{q}{p}=\log q-\log p=2.25-1.75=0.5$
(iii) Let $\sqrt[5]{p q^{2}}=y \Longrightarrow \log _{m} \sqrt[5]{p q^{2}}=\log _{m} y$ $\left.\begin{array}{r}\frac{1}{5}\left(\log _{1 / 5}\left(1.75+2 \times 2 \log _{2.25} q\right)=\right. \\ 1.25\end{array}\right)=$
$2 \times 2.25)=\log _{1.25}\left(1.25=1.25^{2}=u\right.$

\|2]	1	$\begin{array}{cc} -1 & \text { if not } \\ \text { to } & \text { ndp } \end{array}$
\|2]	2	-1 if not to nearest degree.
121	1	
111	1	
117	1	
111	1	
111	1	
$\underline{21}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
11	1	
11	1	
11	1	
[2]	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{gathered} \text { for }-2 \\ \text { for } \cos \frac{x}{2} \\ -\frac{1}{2} \text { for } \underline{n} 2 \end{gathered}$
\|21	1	
(1]	1	
(1)	1	
内	1	

Question 3 (12 marks)

a) M is $(1,2)$
b) Sub. $M(1,2)$ into $x+2 y=5$:

LHS $=1+2 \times 2=5$
RHS $=5$
\therefore LHS $=$ RHS
$\therefore M(1,2)$ liss on $x+2 y=5$
c) $m_{O P}=\frac{4}{2}=2$
d) $m_{\text {linen }}=-\frac{2^{1 / 2}}{5}=-\frac{1}{2}$
$m_{\text {op }} \times m_{\text {linen }}=2 \times-\frac{1}{2}=-1$
$\therefore O P \perp$ line n
also $(1,2)$ is the midpoint of OP \therefore bisector
\therefore line n is the perpendicular bisector of OP.
e) $Q(5,0)$
f) $m_{P Q}=-\frac{4}{3}$
$m_{O R}^{P Q}=m_{P Q}=-\frac{4}{3} \quad(P Q \| O R)$
By congment triangles, and using diagram above,
$\frac{R \text { is }(-3,4)}{O Q \| P R(\text { gradients } 0)}$
$P Q \| O R$ (from (f))
\therefore Diagsnals meet at 90°. 2 pars of oppssite sides

Question 4 (12 maris)
a) (i) Required to prove $\left(m^{2}-n^{2}\right)^{2}+(2 m n)^{2}=\left(m^{2}+n^{2}\right)^{2}$ LIES: $\left(m^{2}-n^{2}\right)^{2}+(2 m n)^{2}$
$=m^{4}-2 m^{2} n^{2}+n^{4}+4 m^{2} n^{2}$
$=m^{4}+2 m^{2} n^{2}+n^{4}$
$=\left(m^{2}+n^{2}\right)^{2}$
$\begin{aligned}= & R \# 5 \\ & =R+5\end{aligned}$
(ii) If $n=3, n=2$: triad is $13,5,12$
b) (i) $f(x)=x-2 \log _{e} x, x>0$ $f^{\prime}(x)=1-\frac{2}{x}$ or $1-2 x^{-1}$ $f^{\prime \prime}(x)=2 x^{-2}$ or $\frac{2}{x^{2}}$
(ii) For t.p. $\left(f^{\prime}(x)=0\right): 1-\frac{2}{x}=0$

$$
x-2=0
$$

$x=2$

$$
\therefore \text { Possible top. is }\left(2,2 \doteq \begin{array}{c}
\doteqdot 0.6 \\
-2 \ln 2
\end{array}\right)
$$

To determine ifs nature use either Astor and derivative

Using lIst derivative:

$$
\begin{array}{c|c|c|c}
x & 1 & 2 & 3 \\
\hline f^{\prime}(x) & -1 & 0 & 1 / 3
\end{array}
$$

$$
\begin{aligned}
& \therefore \text { local minimum at } x=2 \\
& \text { Using Ind derivative: at } x=2 \\
& f^{\prime \prime}(2)=2 \times 2^{-2}>0 \\
& \therefore \text { concave up } \\
& \therefore \text { local minimumat } x=\frac{2}{21} \\
& \text { (iii) For possible points of inflexion, } f^{\prime \prime}(x)=0 \\
& \therefore \quad \frac{2}{x^{2}}=0 \\
& \operatorname{cut}^{2} \neq 0
\end{aligned}
$$

\therefore Here are no points of inflexion
(iv) at $x=1, f(1)=1-2 \ln 1=1$
at $x=5, f(5)=5-2 \ln 5 \doteqdot 1.78$
\therefore Maximum value is $5-2 \ln 5$
(v) $y=x-2 \ln x, 0<x \leqslant 5$

Question 5 (12 marks)
a) (i)

(ii) at $x=\frac{\pi}{6}, \sin \frac{\pi}{6}=\frac{1}{2}$

$$
\cos 2 \times \frac{\pi}{6}=\cos \frac{\pi}{3}=\frac{1}{2}
$$

(iii) $A=\int_{-\frac{\pi}{2}}^{\frac{\pi}{6}}(\cos 2 x-\sin x) d x$

$$
=\left[\frac{1}{2} \sin 2 x+\cos x\right]_{-\pi / 2}^{\pi / 6}
$$

$$
=\left(\frac{1}{2} \sin \frac{\pi}{3}+\cos \frac{\pi}{6}\right)-\left(\frac{1}{2} \sin (-\pi)+\cos \left(-\frac{\pi}{2}\right)\right)
$$

$$
=\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{2}=\frac{3 \sqrt{3}}{4} \text { units }^{2}
$$

Queston 5 continued
b) LHS $=\frac{\sec \theta-\sec \theta \cos ^{4} \theta}{1+\cos ^{2} \theta}$

$$
\begin{aligned}
& =\frac{\sec \theta\left(1-\cos ^{4} \theta\right)}{1+\cos ^{2} \theta} \\
& =\frac{\sec \theta\left(1+\cos ^{2} \theta\right)\left(1-\cos ^{2} \theta\right)}{1+\cos ^{2} \theta} \\
& =\frac{1}{\cos \theta} \cdot \sin ^{2} \theta \\
& =\frac{\sin \theta}{\cos \theta} \cdot \sin \theta \\
& =\tan \theta \cdot \sin \theta \\
& =\text { RHS }
\end{aligned}
$$

c) (i) $\Delta=(2-R)^{2}-4 \cdot 1 \cdot(2 \cdot 25)$

$$
=(2-k)^{2}-9
$$

for equal roots, $\Delta=0$

$$
\text { ae } \begin{aligned}
(2-k)^{2} & -9=0 \\
(2-k)^{2} & =9 \\
2-k & = \pm 3 \\
k & =5 \text { or }-1
\end{aligned}
$$

(ii) $y=k x+1$

$$
y=x^{2}+2 x+3.25
$$

Solve: $\quad x^{2}+2 x+3 \cdot 25=k x+1$

$$
x^{2}+(2-k) x+2 \cdot 25=0
$$

For line to be a tungent, $\Delta=0$, then from (i) $k=5$ or -1 .

Questing (12 marks)

a)

(ii) $A B^{2}=15^{2}+25^{2}-2.15 .25 . \cos 80^{\circ}$
$=719.76$
$A B=26.8 \mathrm{~km}$
b) $\sum_{r=3}^{7} 2^{r}-3 r=2^{3}-3 \times 3+2^{4}-3 \times 4+2^{5}-3 \times 5$

$$
+2^{6}-3 \times 6+2^{7}-3 \times 7
$$

$=\left(2^{3}+2^{4}+2^{5}+2^{6}+2^{7}\right)$
$-3(3+4+5+6+7)$
$=248-75=173$
c) (i) When $t=0, \quad R=6\left(e^{0}+e^{0}\right)=12 \mathrm{~L} / \mathrm{min}$
(ii) $\begin{aligned} v & =\int 6\left(e^{t}+e^{-t}\right) d t \\ v & =6\left(e^{t}-e^{-t}\right)\end{aligned}$

$$
v=6\left(e^{t}-e^{-t}\right)+c
$$

when $t=0, V=0 \Longrightarrow 0=6\left(e^{0}-e^{0}\right)+c$
(iii) $\begin{aligned} V & =6\left(e^{t}-e^{-t}\right) \\ 5 & =6\left(e^{t}-\frac{1}{e^{t}}\right) \\ 5 e^{t} & =6 e^{2 t}-6\end{aligned}$

$$
\begin{aligned}
& \text { (iv) } \begin{array}{l}
\begin{array}{r}
\left(2 e^{t}-3\right)\left(3 e^{2 t}-5 e^{t}-6=0\right. \\
e^{t}=3 / 2 \quad \text { or } e^{t}=0 \\
\\
\quad \text { Unt } e^{t} \neq \frac{2}{3} \\
-\frac{2}{3} \quad \therefore \text { no sol } .
\end{array} \\
\therefore \quad t=\ln 3 / 2 \div 24 \text { seconds }
\end{array}
\end{aligned}
$$

Question 7 (12 marks)

a) $\frac{d y}{d x}=\frac{3 \sec ^{2} x}{\tan x}$
$y=3 \ln (\tan x)+c$
when $x=\frac{\pi}{4}, y=4 \Longrightarrow 4=3 \ln \left(\tan \frac{\pi}{4}\right)+c$
$\therefore y=3 \ln (\tan x)+4$
b) (i) 1 year $=365 \times 24 \times 60$ minutes

$$
=525600 \text { minutes }
$$

\therefore Incremental rate of interest $=\frac{12}{525600} \%$ perminute $=\frac{0.12}{525600}$ perminule
$\doteqdot 0.00002283$ perming.
Since interest is added onto the amount invested
then interest is multiplied by approximately
1.00002283 every minute
(ii) $1000(1.00002283)^{525600}$ $=\$ 1127$ (nearest dollar)
c) (i) $\angle Q O P=\frac{2 \pi}{3}$

$$
\angle Q P O=\frac{2 \pi-\frac{2 \pi}{3}}{2}=\frac{\pi}{6}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
\text { angle sum about a } \\
\text { point is } 3600
\end{array}\right. \\
& \left(\begin{array}{l}
\text { angle } 5 \text { um of triangle } \\
\text { is } 3600 \text {; angles opposite } \\
\text { equal sides are equal }
\end{array}\right)
\end{aligned}
$$

(ii) $A_{\text {Sector QPR }}=\frac{1}{2} \times 5 \sqrt{3} \times 5 \sqrt{3} \times \frac{\pi}{3}=\frac{25 \pi}{2}$ unit ${ }^{2}$
(iii) $A_{\text {sector } Q Q R}=\frac{1}{2} \times 5 \times 5 \times \frac{2 \pi}{3}=\frac{25 \pi}{3}$ units 2
(iv) There are several ways to do this which may involve areas of segments/triangles/sectors.

Question 7 (continued)

$$
\text { (iv) } \begin{aligned}
& \frac{\text { Method I }}{A_{\text {segment }}} Q C_{1} R=\frac{1}{2} \times(5 \sqrt{3})^{2}\left(\frac{\pi}{3}-\sin \frac{\pi}{3}\right) \\
&=25 \times \frac{3}{2}\left(\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right) \\
&=25\left(\frac{\pi}{2}-\frac{3 \sqrt{3}}{4}\right) \\
& A_{\text {segment }} Q C_{2} R=\frac{1}{2} \times 5^{2}\left(\frac{2 \pi}{3}-\sin \frac{2 \pi}{3}\right) \\
&=25 \times \frac{1}{2}\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right) \\
&=25\left(\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right) \\
&=25\left(\frac{\pi}{3}-\frac{\sqrt{3}}{4}\right)-25\left(\frac{\pi}{2}-\frac{3 \sqrt{3}}{4}\right) \\
&\left.A_{\text {shaded }}\right) \\
&=25\left(\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right) \text { units }
\end{aligned}
$$

AIH. Method 2
shaded area $=$ (iii) $-($ ii $)+2 \Delta_{\text {'s }}^{\prime}$

$$
\begin{aligned}
& =\frac{25 \pi}{3}-\frac{25 \pi}{2}+2 \times \frac{25 \sqrt{3}}{4} \\
& =25\left(\frac{\sqrt{3}}{2}-\frac{\pi}{6}\right)
\end{aligned}
$$

Question 8 (12 marks)
a)

$$
\text { (i) } \overbrace{}^{y} s^{P(x, y)} \quad m_{P_{A}}=\frac{y-0}{x-(-2)}=\frac{y}{x+2}
$$

$$
\text { (ii) } \begin{aligned}
m_{P A} \times m_{P B} & =-1 \\
\frac{y}{x+2} \times \frac{y}{x-6} & =-1 \\
y^{2} & =-(x+2)(x-6) \\
& =-x^{2}+4 x+12 \\
x^{2}-4 x+4 & +y^{2}=12+4 \\
(x-2)^{2} & +y^{2}=16
\end{aligned}
$$

\therefore Lows is a circle, centre $(2,0)$, radius 4 units. ra $\left\lvert\, \begin{aligned} & 1 \\ & 1\end{aligned}\right.$

Question 9 (continued)

b) (i) For increasing function, $f^{\prime}(x)>0$
ie $\left\{x:-2<x<\frac{1}{2}\right\},\{x: x>3\}$
(ii) $f^{\prime}(-0.9)$ is a maximum, $50 f^{\prime \prime}(-0.9)=0$
$\therefore C$ is a possible point of inflexion.
for $x<-0.9, f^{\prime}(x)>0$
for $x>-0.9, f^{\prime}(x)>0$
\therefore In the neighbourhood of -0.9 , gradients >0
$\therefore C$ is a point of inflexion.
(iii) For concave down, $f^{\prime}(x)$ is decreasing.

$$
\therefore\{x:-0.9<x<1.9\}
$$

c) (i) at $x=1, \quad \sin \frac{\pi}{2} \times 1=\sin \frac{\pi}{2}=1$

$$
1^{2}=1
$$

(ii) $V=\pi \int_{0}^{1}\left(x^{2}\right)^{2} d x-\pi \int_{1}^{2}\left(\sin \frac{\pi}{2} x\right)^{2} d x$ or $V=\pi \int_{0}^{1} x^{4} d x-\pi \int_{1}^{2} \sin ^{2} \frac{\pi}{2} x d x$
(iii)

x	Weight	$f(x)^{2}$
0	1	0
$\frac{1}{2}$	4	$1 / 16$
1	2	1
$1 \frac{1}{2}$	4	$\sin ^{2} \frac{3 \pi}{4}=\frac{1}{2}$
2	1	$\sin ^{2} \pi=0$

$$
\begin{aligned}
V & =\pi \times \frac{2-0}{12}\left[0+0+4\left(\frac{1}{16}+\frac{1}{2}\right)+2(1)\right] \\
& =\frac{\pi}{6}\left[\frac{17}{4}\right] \\
& =\frac{17 \pi}{24} u^{3}
\end{aligned}
$$

Question 10 (12 Marks)
a) (i) When $t=0, A=A$ 。 when $t=1845, \quad A=0.8 .\left(A_{0}\right)$
$\therefore 0.8 A_{0}=A_{0} e_{-1845 \mathrm{~K}}^{-1845 \mathrm{k}}$
$0.8=e^{-18+5 k}$
$\ln 0.8=-1845 k$
$k=-\frac{\ln 0.8}{1845}$ or $\frac{\ln 1.25}{1845}$
(ii) $A=0.65 A_{0}$ when $t=T$
$\therefore 0.65 N_{0}=A_{0} e^{+\frac{\ln 0.8}{18+5} T}$
$\ln 0.65=\frac{\ln 0.8}{1845} T$

$$
T=\frac{1845 \times \ln 0.65}{\ln 0.8}
$$

(iii) When $t=12000$:

$$
\begin{aligned}
& \text { Ven } t=12000: \\
& A=A_{0} e^{+12000 \times \frac{\ln 0.8}{1845}} \\
& A \doteqdot 0.234 A_{0}
\end{aligned}
$$

$$
T=3562 \text { years }
$$

$$
A \div 23.4 \% \text { of original amount is left } 2
$$

b) $S=\frac{D}{T}$
(i) $T=\frac{D}{C}=\frac{1200}{v}$ hours cost of wages $=25 \times 2 \times \frac{1200}{v}=\frac{60000}{v}$ cost of fuel $=\left(20+\frac{v^{2}}{10}\right) \times \frac{1200}{v} \times 1.25$

$$
\begin{aligned}
& =\left(20+\frac{v^{2}}{10}\right) \times \frac{1500}{v} \\
& =\frac{30000}{v}+150 v
\end{aligned}
$$

Total cost, $C=\frac{60000}{2}+\frac{30000}{2}+150 \mathrm{~V}$

$$
C=\frac{90000}{r}+150 \mathrm{v}
$$

(ii) $C=\frac{90000}{v}+150 \sim$ $\frac{d c}{d v}=150-90000 v^{-2}$

For min. cost, $\left(\frac{d c}{d v}=0\right)$
$150-\frac{90000}{v^{2}}=0$

$$
150 \mathrm{v}^{2}-90^{22} 000=0
$$

$$
r^{2}-600=0
$$

$$
\begin{aligned}
& =0 \\
v & =\sqrt{600} \quad(v>0) \\
\therefore v & =10 \sqrt{6}
\end{aligned}
$$

Check $C(10 \sqrt{6})$ is a minimum
$\frac{d^{2} c}{d v^{2}}=180000 v^{-3}$
at $v=10 \sqrt{6}, \quad \frac{d^{2} c}{d v^{2}}=\frac{180000}{(10 \sqrt{6})^{3}}>0$

$$
\Longrightarrow \text { concave up }
$$

$$
\therefore 10 \mathrm{cal} \text { min at } v=10 \sqrt{6}
$$

$$
\begin{aligned}
& \text { (may use list derivative to ter nature of } \\
& \text { statonang point.) }
\end{aligned}
$$

\therefore Minimum wat $=\frac{90000}{\sqrt{600}}+150 \times \sqrt{600}$

$$
=\$ 7348
$$

