(a) Evaluate $\frac{e^{3}-2 \cdot 1^{2}}{\sqrt{3 \cdot 14+2 \cdot 1}}$ correct to 2 significant figures.
(b) Given that $\tan \theta=\frac{7}{8}$ and $\cos \theta<0$, find the exact value of $\operatorname{cosec} \theta$.
(c) Solve for $x: \quad|4 x-15| \leq 3$.
(d) State the period and the amplitude for the graph of $3 y=\sin \left(2 x-\frac{\pi}{4}\right)$.
(e) Paint at the local hardware store is sold at a profit of 30% on the cost price. If a can of paint is sold for $\$ 67 \cdot 60$, find the cost price.
(f) Solve for α : $\tan \alpha=-0 \cdot 5$, where $0<\alpha<\pi$, correct to 2 decimal places.
(g) Two fair dice are rolled at random. Find the probability that the two numbers are the two digits of a perfect square?

Question 2.

 [START A NEW PAGE]

The lines $A B$ and $C B$ have equations: $x-2 y+9=0$ and $4 x-y-20=0$ respectively.
(a) Show that the equation of the line $A C$ is $9 x+10 y-45=0$.
(b) Calculate the exact distance $A C$.
(c) Find the coordinates for point B.
(d) Find the angle of inclination of the line through A and B (to nearest degree).
(e) Calculate the shortest distance from point B to the line $A C$ Hence find the area of triangle $A B C$.
(f) Determine the inequalities that define the area bounded by $\triangle A B C$.
(a) Find $\frac{d y}{d x}$ for
(i) $y=(1+\ln x)^{2}$.
(ii) $y=\frac{\sin x}{e^{3 x}+1}$.
(b) (i) Find $\int(5 x-1)^{3} d x$.
(ii) Find the value: $\int_{0}^{\pi} \sec ^{2} \frac{x}{4} d x$.

2
(c) Given that α and β are the roots of the equation $2 x^{2}-6 x-7=0$,
(i) Find $\alpha+\beta$.

1
(ii) Find $\alpha^{2}+\beta^{2}$.

2
(iii) Find $\alpha^{2}-3 \alpha$.

1

Question 4.

[START A NEW PAGE]
(a) The good ship Lollypop sails from port $A 60$ nautical miles due west to port B. It then sails a distance of 50 nautical miles on a bearing of $210^{\circ} \mathrm{T}$ to port C
(i) Draw a diagram to illustrate this information.
(ii) Calculate the distance of C from A (to nearest nautical mile).
(iii) Calculate the bearing of port C from port A.
(b) Evaluate: $\operatorname{Lim}_{x \rightarrow 16} \frac{x-16}{\sqrt{x}-4}$.
(c) Find the equation of the normal to the curve $y=1+\ln 2 x$ at the point $\left(\frac{e}{2}, 2\right)$.
(d) Find the radius and the centre of the circle whose equation is:

$$
4 x^{2}-4 x+4 y^{2}+24 y+21=0
$$

(a) 1000 tickets are sold in a raffle. First prize is $\$ 1000$, second prize is $\$ 500$ and third prize of $\$ 200$.
The prize winning tickets are drawn consecutively without replacement where the first ticket wins first prize.
(i) Find the probability that a person buying one ticket in the raffle wins:
(α) First prize.
(β) at least $\$ 500$.
(γ) No prizes.
(ii) A person buying two tickets in the raffle wins at least $\$ 500$.
(b) A number of linked rings, each 1 cm thick, are hung from a nail on a wall. The top ring has an outside diameter of 20 cm as shown in the diagram. The outside diameter of each of the other rings is 1 cm less than that of the ring above it. The bottom (last) ring has an outside diameter of 3 cm .

Not to scale
(i) Copy the diagram and explain why the top of the second ring is $17 \mathrm{~cm} \quad \mathbf{1}$ above the top of the third ring.
(ii) Hence calculate the distance from the top of the top ring to the bottom of the bottom ring
(c)

Given $\triangle A B C$ is an isosceles triangle with $A B=A C$.
P lies on $A C$ such that $\angle A B P=3 \angle P B C$ and $B P=B C$.

Copy the diagram into your writing booklet and by letting $\angle C B P=x$, or otherwise, find angle $\angle C B P$ expressing it in radians.
Not to scale
(a) Show that $\frac{1+\tan ^{2} A}{\operatorname{cosec}^{2} A}=\tan ^{2} A$.
(b) Given the function $y=f(x)$ for $1 \leq x \leq 2 \cdot 5$, where

x	1	$1 \cdot 25$	$1 \cdot 5$	$1 \cdot 75$	2	$2 \cdot 25$	$2 \cdot 5$
$f(x)$	3.4	2.2	0.4	$1 \cdot 9$	-2.7	$1 \cdot 3$	2

Use Simpsons' rule to evaluate $\int_{1}^{2.5} f(x) d x$, correct to 1 decimal place, using the 7 function values in the table.
(c) A function is defined by $y=g(x)$, where $g(x)=x^{3}-6 x^{2}+5=(x-1)\left(x^{2}-5 x-5\right)$.
(i) Determine the coordinates of the stationary points and determine their nature.
(ii) State at what point does the curve change its concavity? 1
(iii) Hence sketch the graph of $y=g(x)$, showing all essential details.
(iv) Find the minimum value of $x^{3}-6 x^{2}+5$ when $-3 \leq x \leq 5$.
(a) The parabola $y=(x-3)^{2}-1$ and the line $y=13-2 x$ intersect at points A and B.

(i) Find the x-coordinate for points A and B.
(ii) Hence, or otherwise find the area bounded by the parabola and the line.

Not to scale

$A B C D$ is a trapezium where $A B \| D C$.
Also $B D \perp B C$ and $A E \perp B D$ at X.
(i) Copy the diagram into your writing booklet and find $A X$, given $A D=41 \mathrm{~cm}, D X=9 \mathrm{~cm}$.
(ii) What type of quadrilateral is $A B C E$? Give reasons.
(iii) Show that $\triangle D X E\|\| \triangle D B C$.
(iv) Hence show that $B X . X E=360$.
(a) A function is defined by the following properties:
$y=0$ when $x=1 ; \quad \frac{d y}{d x}=0$ when $x=-3,1$ and $5 ;$
and $\frac{d^{2} y}{d x^{2}}>0$ for $x<-1$ and $1<x<3$.
Sketch a possible graph of the function.
(b) Larsen begins his retirement with $\$ 500000$ at the beginning of 2009.

The annual interest rate is 8% p.a. Interest is calculated annually on the balance at the beginning of the year and is added to the remaining balance. Larsen plans to withdraw $\$ 56000$ annually, with the first withdrawal at the end of 2009.
By letting A_{n} be the remaining balance after the nth withdrawal,
(i) Show that: $A_{2}=5 \times 10^{5} R^{2}-5 \cdot 6 \times 10^{4}[1+R]$, where $R=1 \cdot 08$.
(ii) Hence deduce that: $A_{n}=10^{5}\left[7-2 R^{n}\right]$.
(iii) Calculate during which year will Larsen's fund reach zero?
(c)

Not to scale

The area bounded by the curves $y=\frac{2}{\sqrt{2 x+1}}, y=x$, the lines $x=0$ and $x=\frac{1}{2}$
is rotated about the x-axis.
Find the volume of the solid of revolution formed.
(a) Solve for $x: \quad x^{2}-2|x|-15=0$.

2
(c) The rate at which carbon dioxide $\left(\mathrm{CO}_{2}\right)$ will be produced when conducting an experiment is given by $\frac{d V}{d t}=0 \cdot 01\left(30 t-t^{2}\right)$, where $V \mathrm{~cm}^{3}$ is the volume of the gas at t minutes.
(i) At what rate is the gas being produced 15 minutes after the experiment begins?
(ii) How much carbon dioxide has been produced during this time?
(d) The mass S grams of a substance decays at an instantaneous rate proportional to its mass present at time t years.
(i) Explain why the rate equation is given by: $\frac{d S}{d t}=-k S$, where $k(>0)$ is the decay rate constant of proportionality.
(ii) Verify that $S=S_{0} e^{-k t}$ is the general solution to the rate equation, where S_{0} is the initial mass of the substance.
(iii) Show that the half-life for the substance is given by $\frac{\ln 2}{k}$ years
(iv) If the mass present at time t_{1} is S_{1} and the mass at time t_{2} is S_{2}, show that

$$
k=\frac{1}{t_{2}-t_{1}} \ln \left(\frac{S_{1}}{S_{2}}\right), \text { assuming } t_{2}>t_{1} .
$$

Question 10.
(a)

A particle is moving along a straight line according to the sketch of displacement x metres against time t seconds above.
(i) When is the particle at rest?
(ii) At what time does the particle have greatest speed (approximately)?
(iii) Describe what happens to the particle as $t \rightarrow \infty$.
(iv) Calculate the distance that the particle has eventually travelled.
(b)

Not to scale

An isosceles triangle $A B C$ with $A B=A C$ is inscribed in a circle centre O and of radius R units.

Given that $O M=x$ units, $O M \perp B C$ and M is the midpoint of $B C$,
(i) Show that the area of $\triangle A B C, S$ square units, is given by:

$$
S=(R+x) \sqrt{R^{2}-x^{2}} .
$$

(ii) Hence show that the triangle with maximum area is an equilateral triangle.

2 U MATHEMATICS TRIAL, 2009.
MARKING SCHEME
MATHEMATICS: Question....

MATHEMATICS: Question 2
b) $A C^{2}=5^{2}+4 \frac{1}{2}^{2} \quad(P y+h$ Thim $)$

$$
A C^{2}=\frac{1 B 1}{4}
$$

$$
\therefore A-C=\frac{\sqrt{181}}{2} \text {-acs }
$$

$$
\begin{aligned}
& \text { (c) } \quad x-2 y+9=0-(1): A-B \\
& \therefore \quad 8 x-20=0-(2): C B-40=0 \quad(2 c) \\
& \therefore 7 x-44=0
\end{aligned}
$$

$$
\therefore x=7
$$

$\leq-\square \leq i n(z) \quad 2 \mathbb{B}-y-z 0=0$

$$
\therefore B=(7,8)
$$

(d) $M A B=\frac{1}{2} \quad \ddot{\gamma}$ from $x-2 y+c=0$

$$
\tan \theta=\frac{1}{2} \quad \angle 0=20^{\circ} 34^{\prime}=27^{\circ}
$$

$(2) \quad 4<\quad \rightarrow x+10 y-45=0$

$$
\beta=(7,8)
$$

$\perp \frac{4 \times 7+10 \times B-45 \mid}{\sqrt{a^{2}+10^{2}}}=\frac{4 B}{\sqrt{18)}}$
$=-A R E A-\triangle A B K=\frac{1}{2} \times C \times \frac{1}{2}$

$$
=\frac{1}{2} \times \frac{\sqrt{181}}{2} \times \frac{98}{\sqrt{181}}=\frac{24^{\frac{1}{2}} u^{2}}{}
$$

(4)
$A C$:

$$
9 x+10 y-45 \geqslant 0
$$

BC:
$4 x-y-20 \leqslant 0$
$x-2 y+9 \geqslant 0$
A A: $\quad x-2 y+9 \geqslant 0$
\qquad
\qquad

$$
\begin{aligned}
& \text { Suggested Solutions }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Equs of } A C: y=m x+b \\
& y=-\frac{4}{10} x+4 \frac{1}{2} \\
& \log =-4 x+45 \\
& \therefore 4 x+10 y-45=0 \quad q e d
\end{aligned}
$$

MATHEMATICS: Question 3

(b)
(i) The top of the 1^{3+} ring is $20<4$ cebove its bottom! !

 so it is $44 \mathrm{~cm}-7 \mathrm{~cm}=17 \mathrm{~cm} /$ cebove the bottou of $3^{n D}$ ring.
(ii)

$$
\begin{aligned}
\text { Torse Bist } & =20+17+14+\ldots+2+1 \\
& =20+\frac{17 \times}{2}(1+17)=20+17 \times 4
\end{aligned}
$$

$$
=173 \mathrm{~cm}
$$

as: $\angle A B P=3 x$
(. $L A C B=4 x$ (equal cargles oppostae rquices sides)

$$
B P=B C
$$

3. $\therefore 4 x+4 x+2=\pi=$ (Angie sonk of $\triangle B P C$ is π)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& \text { (a) } \\
& \text {-20.19 - }+4+3 \text { - } 34 \\
& =20+19+\ldots+2+1-3-341 \\
& =\frac{20 \times 21}{2}-37=173 \times m \\
& \text { siem of dicemeterf } \\
& \text { - 2em overtenps of } 17
\end{aligned}
$$

MATHEMATICS: Question. 6
$26(a) \quad$ Suggested Solutions
Approach I:

$$
\begin{aligned}
& =\frac{1}{\cos ^{2} A} \div \frac{1}{\sin ^{2} A} \\
& =\frac{\sin ^{2} A}{\cos ^{2} A} \\
& =\tan A
\end{aligned}
$$

(b)

x	1	1.25	1.5	1.75	2	2.25	2.5
$f(x)$	3.4	2.2	0.4	1.9	-2.7	1.3	2
	Y_{1}	\boldsymbol{Y}_{2}	\boldsymbol{Y}_{3}	\boldsymbol{Y}_{4}	\boldsymbol{Y}_{5}	\boldsymbol{Y}_{4}	\boldsymbol{Y}_{7}

$$
u=\frac{25-5}{6}=\frac{1.5}{6}=\frac{1}{6}=0-25
$$

$$
\int_{1}^{2.5} f(x) d x \doteq A_{3}=\frac{x}{3}\left[y_{1}+y_{7}+4 x\left(-y_{1}+y_{4}+y_{6}\right)+z\left(y_{3}+y_{5}\right)\right]
$$

$$
=\frac{0.25}{3}[5.4+4 \times(7-2+1.4+1-3)+2(\phi-4+-2.7)]
$$

$$
=\frac{0.75}{3}[5.4+4 \times 5.4+2 \times(-2.3)]
$$

$$
=\frac{0.25}{3}[5.4+21.6-4.6]=0 \frac{.25}{2} \times 22.4
$$

$$
=1-86
$$

$$
=1-9 \quad(1 d p)
$$

(c) $g(x)=x^{3}-6 x^{2}+5=(x-1)\left(x^{2}-5 x-5\right)$
(i)

$$
\begin{aligned}
& y^{\prime}(x)=3 x^{2}-12 x=3 x(x-4) \\
& y^{\prime \prime}(x)=6 x-12=6(x-2)
\end{aligned}
$$

For sis to ecu $g^{\prime}(x)=0$

$$
\begin{gathered}
\text { se } 3 x(x-4)=0 \\
x-g(0)=5 \text { or } 4 \\
\therefore-27
\end{gathered}
$$

$\therefore s P \Delta \cos \left(0_{1} 5\right) \operatorname{cod}(4,-27)$
TEST:
(ii) change in comeruisy conn be cot os ${ }^{4}(x)=0$ P.O.I.

$$
\text { so et } \frac{x}{x \| 1} 12, \frac{2}{3} \quad \because(2,-1 t)
$$

$$
\begin{array}{|l|l|l|l|}
\hline x & 1 & 2 & 3 \\
\hline g^{\prime \prime}(x) & -6 & 0 & 6 \\
\hline
\end{array}
$$

(iii) $\stackrel{y(0,5) \quad y=9(x)}{4}$

$$
\begin{gathered}
\text { (iv) }-3=x \leq 5 \\
g(-3)=-76 \\
g(5)=-20
\end{gathered}
$$

\therefore From sketch $y=g(x)$
Absolute min is -76 cess $x=-3$
\therefore concceve downwards
\therefore Rel max TP at $(0,5)$ Nev main TP at $(4,-27)$

MATHEMATICS: Question 7.

Suggested Solutions	Marks	Marker's Comments

$07(a)$

$$
y=(x-3)^{2}-1
$$

$$
y=13-2 x
$$

(1) DoMNTS $D \theta$ (NTERSECTEOO

$$
\begin{aligned}
& (x-3)^{2}-1-12-2 x \\
& x^{2}-6 x+4-1-13-2 x \\
& x^{2}-4 x-5=0 \\
& (x+1)(x-57=0 \\
& -x=-1-5
\end{aligned}
$$

$$
x-1=x
$$

\qquad
(ii)

$$
\text { Area }=36 \text { sq.uncts }
$$

(i)

$$
\begin{aligned}
& 4 i^{2}=a^{2}+A x^{2}(P y+k . \text { Thm. }) \\
& A x=40 \mathrm{~cm}
\end{aligned}
$$

2. $\angle D X E=\angle D B C=A O \quad(d \cot)$

(iv) $A E=40+\times E$

מes $B C=A E$ (OPP sceses of llogreem cerel manal)
$\therefore \frac{B C}{X E}=\frac{D R}{D X} \quad$ (Corempondeng sides in simileat to
the $\frac{40+X E}{\times E}=\frac{9+\times B}{9}$
(c)

$$
\begin{aligned}
\frac{x E}{B C} & =\frac{D x}{D 8} \\
\frac{x E}{40+x E} & =\frac{9}{9+3 x}
\end{aligned}
$$

\square

$$
\begin{aligned}
& \text { Arece }=\int_{-1}^{5}\left(x_{0}-x_{L}\right) d x \\
& =\int_{-1}^{5} 13-2 x-\left\{(x-3)^{2}-1\right\} d x \\
& =\int_{-1}^{-1} 14-2 x-(x-3)^{2} d x \quad=\int_{-1}^{5}+4 x-x^{2} d x \\
& =\left[14 k-x^{2}-\frac{1}{3}(x-3)^{3}\right]_{-1}^{5}=\left[5 x+2 x^{2}-\frac{1}{3} x^{3}\right]_{-1}^{5} \\
& \left.=\left[70-25-\frac{8}{3}\right)-\left(-14-1+\frac{64}{3}\right)\right]=78-42 \\
& =42 \frac{1}{3}-6 \frac{1}{3} \\
& =36
\end{aligned}
$$

MATHEMATICS: Question के
QB(a)
(b)

$$
t=8 \%=0.08
$$

(i)

$$
\therefore R-1+\frac{r}{100}=1-08 \text { given }
$$

B-gin zoLo $A_{1}=50000 \times R-56000$
Bagim 2011

$$
\begin{aligned}
A_{2} & =A_{1}-56000 \\
& =\left(5 \times 10^{5} R-5.6 \times 10^{4}\right) R-5.6 \times 10^{4} \\
& =5 \times 60^{5} R^{2}-5.6 \times 10^{4}(1+R)
\end{aligned}
$$

(ii) so Beti in 20 L2

$$
A_{3}=5 \times 10 R^{3}-5.6 \times 10^{4}\left[2+R+R^{2}\right]
$$

\therefore nfter in yecors
(iii) when $A_{m}=0$

$$
\begin{aligned}
\therefore \quad 7-2 R^{x} & =0 \\
1.08^{x} & =\frac{7}{2}=3.5 \\
x & =\frac{\ln 3.5}{\ln 1.00}=16.27788 \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) } v_{01}=\pi \int_{0}^{\frac{1}{2}} y_{0}^{2} d x-\pi \int_{0}^{\frac{1}{2}} y_{2}^{2} d x \\
& =0 \int_{0}^{0}\left(\frac{4}{2 x+1}-0 x^{2}\right) d x \\
& =\pi\left[2 \ln (2 x-1)-\frac{1}{3} x^{\frac{3}{2}}\right]_{0}^{\frac{1}{2}} \\
& =\pi C_{2} 2-2-14
\end{aligned}
$$

$$
\begin{aligned}
& =5 \times 10^{5} R^{2}-5.6 \times 10^{4}\left[\frac{\left.R^{x}-1\right]}{R-1}\right.
\end{aligned}
$$

MATHEMATICS: Question

(b) $\log _{\log }\left(x_{y}^{3}\right)=1 \Rightarrow \log x+3 \log y_{a}=1$ (a)
G

$$
\therefore \log _{0}(x y)=\log x+\log y
$$

$$
\begin{aligned}
x y^{3} & =a-(1) \\
x^{2} y & =a-(2) \\
y^{2} & =1 \\
\frac{y}{x} & =y^{2}-(3) \\
(1) \Rightarrow y^{5} & =a \\
y & =a^{\frac{1}{3}} \\
\therefore x & =a^{\frac{2}{5}}
\end{aligned}
$$

$$
=\frac{2}{5}+\frac{1}{5}
$$

$\cdots \log _{t_{6}(x y)}=\frac{3}{5}$
(c)

$$
\frac{d v}{d t}=0.01\left(30 t-t^{2}\right)
$$

(i) when $t=15$

$$
\text { Rate }=0-01\left(30 k 15-15^{2}\right)
$$

Rate $=2.25 \mathrm{~cm}^{3} / \mathrm{min}$
(ii)

$$
v=\int 0.0 i\left(30 t-t^{2}\right) d t
$$

$$
V=0-01\left(15 t^{2}-\frac{1}{2} t^{3}\right)+C
$$

L-t $v=0$ at $t=0$ gives $c=0$
so $t=15 \quad v=0-01\left(15^{3}-\frac{1}{2} \cdot 15^{3}\right)=22.5$

$$
\text { vohone prodnece is } 22.5 \mathrm{~cm}^{3}
$$

(d) $9 T 0$
: Question 9 conT.
Suggested Solutions

Q9(d) (i) Rote of decoy is
(ii)
when $s=\frac{1}{2}$ so $\quad \cos \quad t=0 \quad \leq=5$

MATHEMATICS: Question.......

(ii) At greatest speed $\quad \frac{d v}{d t}=0$ and $\frac{d x}{d t}=\tan \theta$
\therefore cat cepporx 7 seconds $\quad(t=7)$
(iii) The partide approaches's 0 from $x \geq 0$

(b)
(i) Area of $\triangle A B C=\frac{1}{2} B C \times h=\frac{1}{2} \times B C \times A M$.
(ii)

$$
\begin{aligned}
\frac{d s}{d x} & =1 \cdot \sqrt{R^{2}-x^{2}}+(R+x) \frac{1}{2}\left(R^{2}-x^{2}\right)^{\frac{1}{2} x}-2 x \\
& =\sqrt{R^{2}-x^{2}}-x(R+x) \\
& =\frac{R^{2}-x^{2}-R x-x^{2}}{\sqrt{R^{2}-x^{2}}} \\
d s & =\frac{R^{2}-R x-2 x^{2}}{\sqrt{R^{2}-x^{2}}}
\end{aligned}
$$

For possible nect/men values of $S \Leftrightarrow D<c u$ so

$$
\begin{gathered}
R^{2}-R x-2 x^{2}=0 \\
2 x^{2}+R x-R^{2}=0 \\
(2 x-R)(x+R)=0 \\
x=-R=\frac{1}{2} R
\end{gathered}
$$

$$
-\cdots l y
$$

$$
\frac{d s}{d x}=0
$$

$$
\text { so } x=\frac{1}{2} R \quad<\cos x>0 \text { as } 0 \leq x \leq R
$$

$$
\therefore S=\frac{3}{2} R \sqrt{R^{2}-\frac{R^{2}}{4}}=\frac{3 \sqrt{2} R^{2}}{4}
$$

continued

$$
\begin{aligned}
& R^{2}=x^{2}+B M^{2},(P y+h . \text { ohm }) \\
& B M^{2}=R^{2}-x^{2} \\
& B M=\sqrt{R^{2}-X^{2}} \\
& \therefore B C=2 B M=2 \sqrt{R^{2}-X^{2}} \\
& \mu=A M=x+R \\
& \therefore S=\frac{1}{2} x R^{2}-x^{2} \times(R+x) \\
& \text { Le } S=(R+x) \sqrt{R^{2}-x^{2}} \quad 0 \leqslant k \leqslant R \text {. }
\end{aligned}
$$

MATHEMATICS: Question. 10 CONT.
Suggested Solutions
TEST nature $a+x=\frac{1}{2} R$

$\therefore A A-R \max T P \rightarrow \quad x=\frac{1}{2} R$
METHOD 2: $\quad x=0 \quad S=R^{2}$

$$
x=\frac{R}{2} \quad S=\frac{3}{4} \sqrt{2} R^{2}>R^{2}
$$

$$
x=R \quad S=0
$$

and since S is continuous for $0 \leqslant x \leqslant R$
so Rel max of is the absolute max of $x=\frac{1}{\#} R$

\qquad
so $\angle C=\angle B=60^{\circ} \quad$ (armeecurghes opposite
\qquad

