James Ruse Agricultural High School 2010 Year 12 Mathematics Trial Exam

Question 1.

(a) Evaluate to 2 significant figures :
$$\frac{3.72 \times 1.96 + \sqrt{4.3 + 2.7^2}}{3.6 \times 1.8 + 3.1^3}$$

(b) Rationalise the denominator and write in the form $a + b\sqrt{2}$: $\frac{3\sqrt{2}+4}{2\sqrt{2}-3}$ where a, b are real.

- (c) Find the acute angle (to the nearest minute) that the line 4x 11y + 9 = 0 2 makes with the *x* axis.
- (d) Graph y = 2sin3x in the domain $-\pi \le x \le \pi$. 2

(e) Find
$$\lim_{h \to 0} \left(\frac{4^{h} - 1}{2^{h} - 1} \right)$$
 2

(f) Solve:
$$|x - 3| = 4x + 2$$
 3

Question 2.

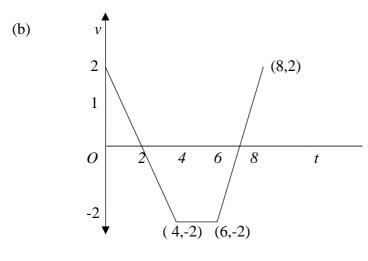
Three points *A*,*B* and *C* lie on the *x*-*y* plane. The lines *l* and *k* represent the lines *AB* and *AC* respectively. The equations of lines *l* and *k* are respectively:

3x - 4y - 100 = 0 and 16x - 63y + 175 = 0 respectively.

(a)	Show that $B(8, -19)$ lies on the line <i>l</i> .	1
(b)	Find the co-ordinates A of the intersection of lines l and k .	3
(c)	Find in general form the equation of the line m perpendicular to line l passing through B .	2
(d)	Show that line m intersects line k at the point $C(-7, 1)$.	2
(e)	Find the exact perpendicular distance of <i>B</i> from <i>AC</i> .	2
(f)	Find the area of triangle <i>ABC</i> .	2

Marks

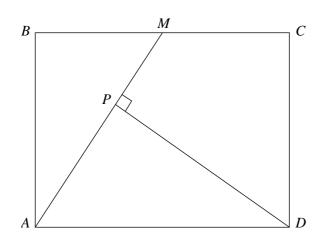
2


Question 3.	Marks
(a) Differentiate : (i) $\frac{3}{\sqrt{1-2x}}$	2
(ii) $\frac{sinx}{x}$	2
(iii) e^{tanx}	2
(b) Find (i) $\int \sqrt{e^{2x}} dx$	1
(ii) $\int (\cot x - \csc^2 x) dx$	2
(c) Find in simplest terms : $\frac{d}{dx} \{x^2(2 \ln x - 1)\}$, hence evaluate $\int_1^e x \ln x dx$	lx. 3
Question 4.	
(a) Given the equation $x^2 = 16(y+4)$	1
(i) State the co-ordinates of the vertex.(ii) Find the focal length	1
(iii) State the co-ordinates of the focus	1
(iv) Find in general form the equation of the tangent at (-12, 5) (v) Find the equation of the point where the tangent meets the	e 1
(v) Find the co-ordinates of the point where the tangent meets the directrix.	t 1
 (b) A jar has 15 red discs and 9 black discs, while another jar has 20 red discs, 15 black discs and 10 white discs. A disc is drawn from each jar. 	2
Find the probability of drawing discs of the same colour ?	
(c) A car tyre of diameter 60cm is in contact with the road at the point P . After the car has travelled 1000km how high (to the nearest millimetre) the point P from the ground.	4) is
Question 5. (a) Given $N = x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \dots + x^{n-2} + y^{n-1}$	
(i) Simplify N in terms of x and y .	2
(ii) Hence prove $11^{21} - 5^{21}$ is divisible by 3. (b) Use Simpson's Rule with 3 function values to evaluate to 2 decimal place $\int_{0}^{2} \frac{4 dx}{2sinx + 1}$	2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(c) Solve to 2 decimal places : $3^{2x+1} - 3^x = 10$	3
(d) If the quadratic equation : $(k^2 + l^2)x^2 + 2l(k + m)x + l^2 + m^2 = 0$ lequal roots then show $l^2 = km$.	has 2

Question 6.

Marks

(a) The region bounded by the curve y = x (6 - x) and y = 8 is rotated around 4 the x axis.


Find the exact value of the Volume of revolution.

A particle of mass 2 kg moves in a straight line with velocity v m/s and displacement x m at time t seconds.

	(i) Graph acceleration $\ddot{x} m/s^2$ versus time <i>t</i> seconds.	2
	(ii) Find the total distance travelled during the motion.	1
(c)	Find in general form the equation of the inflexional tangent on the curve : $y = 15 + 12x + 6x^2 - 2x^3$	5
Ques	stion 7.	
(a)	 (i) On the same axes graph: (α) the line y = 1 - 2x showing x and y intercepts. (β) the curve y = 5 - 2x - x², showing the co-ordinates of the vertex and y intercept only. 	4
	(ii) Find the <i>x</i> values of the points <i>A</i> and <i>B</i> of the intersection of the line $y = 1 - 2x$ and the curve $y = 5 - 2x - x^2$.	2
	(iii) Evaluate the enclosed area between the line $y = 1 - 2x$ and the curve $y = 5 - 2x - x^2$.	3
(b)	The rate of decay $\frac{dM}{dt}$ of a radioactive substance is proportional to the mass <i>M</i> present. If it takes 51 minutes to decay to $\frac{1}{10}$ of it's original mass find the half-life of the substance (nearest minute).	3

Question 8. (a)

ABCD is a rectangle in which AB=40cm and AD=60 cm. *M* is the midpoint of *BC* and *DP* is perpendicular to *AM*.

Draw a neat sketch of the above diagram.

(i)	Prove that triangles <i>ABM</i> and <i>APD</i> are similar.	2
(ii)	Calculate the length of <i>PD</i> .	2
(iii)	Show that the length of AP is 36 cm. Give reasons.	2
(iv)	Find the area of the quadrilateral <i>PMCD</i> .	3
	e flies from town <i>O</i> to town <i>A</i> , 275 km on a bearing of $032^{0}T$, own <i>B</i> 572 km on a bearing of <i>S</i> $26^{0}E$.	3
(i)	Draw a diagram to show the above information.	

(ii) Find the final distance (nearest km), and bearing (nearest degree)

from O.

Question 9.

(b)

(a) A particle of mass m kg moves in a straight line with velocity v m/s and displacement x metres at time t seconds.

The velocity of the particle is given by : $v = 3\sqrt{1+9t}$.

- Find (i) the acceleration \ddot{x} in terms of time *t*.
 - (ii) the displacement of the particle as a function of time t if the particle 2 is initially 1 metre to the **left** of the origin.

Marks

1

(b)		ys a house and land for \$500 000. 0% deposit, and takes a loan for the remainder.	Marks
	(i)	Find the value of the deposit.	1
	(ii)	If the loan is for 20 years, and the interest rate is 8% p.a. monthly reducible show that the amount owing after the first monthly repayment <i>R</i> is : $ \begin{cases} (400\ 000(\frac{151}{150}) - R) \end{cases} $	1
	(iii)	Find the amount owing after <i>n</i> months.	2
	(iv)	Find the monthly repayment.	2
	(v)	Find the amount owing after the 144 th payment.	1
	(vi)	The value of the land was originally valued at \$270 000 . If the value of the land was compounded yearly at 6% p.a. find the value of the land after the 144^{th} payment.	1
	(vii)	After the 144 th payment an earthquake destroys the house. The insurance policy does not cover earthquakes. Could the man sell the land to pay the remainder of the loan? Give reasons.	1

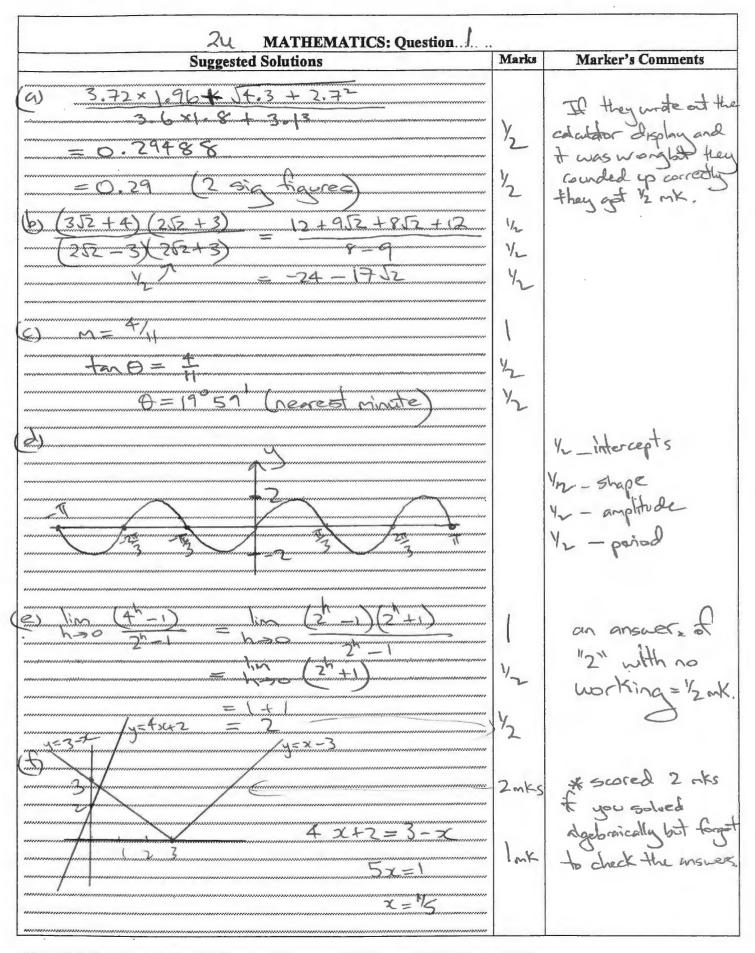
Question 10.

A series *S* is given by :

$$S = x + \frac{2x^2}{x+1} + \frac{4x^3}{(x+1)^2} + \frac{8x^4}{(x+1)^3} + \dots$$

(a) Sketch the curve $y = \frac{2x}{x+1}$, showing all asymptotes and intercepts with the 2 axes. 2

Find the values of x for the sum to infinity to exist. (b)


(c) Show that the sum to infinity is given by : 2

$$S_{\infty} = \frac{x^2 + x}{1 - x}$$

(d) Show that
$$\frac{dS_{\infty}}{dx} = \frac{-x^2 + 2x + 1}{(1-x)^2}$$
 2

Find the minimum value of the sum to infinity. (e) 4 Justify your answer.

End of Exam

\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc

2010 TRIAL 20 MATHEMATICS: Question	Marks	Marker's Comments
2 (a) Show B(8,-19) lies on 3x-4y-100=0 LHS = 3×8-4×-19-100 = 24+76-100 LHS = RHS, hence B(8,-19) lies on 2.	١	0=0 without saying hits=RHS lost 2 mark
(b) $l: 3x - 4y - 100 = 0 \dots (1)$ $k: 16x - 63y + 175 = 0 \dots (2)$ (1) x 16 and (2) x 3 $48x - 64y = 1600 \dots (3)$ $48x - 189y = -525 \dots (4)$ (3) - (4)	١	I mærk deducted For each error
125y = 2125 y = 17 Subst. into (1)	ł	
3x - 68 = 100 3x = 168 x = 56 $\therefore R(56, 17)$	1	
(c) $m_{\ell} = \frac{3}{4}$ Gradient of a line perpendiculation of ℓ is $-\frac{4}{3}$ as $m_{1} \times m_{2} = -1$ for perpilines Eqn is: $y+19 = -\frac{4}{3}(x-8)$ 3y+57 = -4x+32 :. Eqn. of the line in general form is: 4x+3y+25=0	1	Not in general form, max of Imark only
(d) For C $4x+3y=-25(1)$ 16x-63y=-175(2) (1)x+1 16x+12y=-100(3)	1	
(3) - (2) = 75 75y = 75 $y = 1 - \cdots (4)$ 500 (4) in (1) 4xc + 3 = -25 4xc = -28 4xc = -78 x = -7 x = -7		

GIO TRIAL ZU MATHEMATICS: Question	Marks	Marker's Comments
(e) $D = \left \frac{a_{xy} + b_{y_1} + c}{\sqrt{a^2 + b^2}} \right $ = $\frac{16x8 - 63x - 19 + 175}{\sqrt{16^2 + 63^2}}$	١	No Penalty for units missing
$= \frac{1500}{65} = \frac{300}{13}$ D = 23 = vnits	1	
$\frac{c}{(-7,1)} = 63^{-1}(-7,1)$ $\frac{c}{B(8,-19)}$ $\frac{c}{B(8,-19)}$ $\frac{c}{B(8,-19)}$ $\frac{c}{B(8,-19)}$	i	
$\therefore Area \ AABC = \frac{1}{2} \times 65 \times 23\frac{1}{3}$ $A = 750 \text{ Units}^2$	1	
	-	

Hethematics - 2 unit

$$\frac{(2 - 2 + 1)^{2}}{(2 - 2 + 1)^{2}} = 3 + 1 - 2(1 - 2 + 1)^{2},$$

$$= 3(1 - 2 + 1)^{2},$$

$$= 3(1 - 2 + 1)^{2},$$

$$= 3(1 - 2 + 1)^{2},$$

$$= 3(1 - 2 + 1)^{2},$$

$$= 3(1 - 2 + 1)^{2},$$

$$= 3(1 - 2 + 1)^{2},$$

$$= 3(1 - 2 + 1)^{2},$$

$$= 3(1 - 2 + 1)^{2},$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

$$= 2 + 1,$$

ł

$$x = \frac{180 - 171(72)}{2}$$

$$x = \frac{30}{2}$$

$$x = \frac$$

P

$$d = 0 - \frac{\pi}{2}$$

$$= 1.426283015$$

$$x = \frac{30}{30}$$

$$x = \frac{30}{30} \text{ Sind} = \frac{\pi}{30}$$

$$x = \frac{30}{30} \text{ Sind} = \frac{\pi}{30}$$

$$x = \frac{30}{30} \text{ Sind} = \frac{\pi}{30}$$

$$x = \frac{30}{5} \text{ Sind}$$

$$= 59.56560 \text{ B}$$

$$= 59.7 \text{ mm}$$

$$\boxed{0R}$$

$$B = \pi - 0$$

$$= 59.7 \text{ mm}$$

$$\boxed{0R}$$

$$= 29.6872835$$

$$= 29.6872835$$

$$\frac{1}{30}$$

$$x = 30 \text{ Cos } 8.28$$

$$= 29.6872835$$

$$\frac{1}{30}$$

$$x = 59.7 \text{ mm}$$

$$\begin{aligned} & 2n \quad medt. \quad \text{Trial} \quad 2n^{n} \\ & 2n^{n} \quad medt. \quad \text{Trial} \quad 2n^{n} \\ & 2n^{n} \\ & 3n^{n} \\ & n \\ &$$

24 MATHEMATICS: Question. 6. **Suggested Solutions** Marks **Marker's** Comments If they had the wrong limits, I mark all intersection points? 2(6-2)=8 Q) 6x + 8 = 0(x-4)(x-2)=0* 12mk of f they fogue to square the frs. $x^{2}(6-x) dx$ Val TT * 12 mK off f the firs $x^{(26-12x+x^{2})}dx - \pi$ 64 dx * V2 nK of f squared re one big function * 12 mk of brevery calculator error (365t - 12x + x - 64)dΠ 4 5 3×+==−64× ĨĨ = * Ink & Fifthery forget The State. $\frac{4}{2}$ + 12(4) - 3(4) - (4(4) - T [12×8-3(4)+ $\frac{72}{204^{5}5 - 768 + 768 - 256} - \pi(96 - 48)$ +1245-128 19895-176 1/2 121 or 22.4Tu 774511 2 MB * 1/2 NK & for no open cindes 2 MB * 1/2 MK of if lines joined up * O for curves! 4 X Total distance 2×2 + ix2 * 1/2 mK of they got 8 metres. 2×2 + 2x2+ LLL 2+2+4+1+ 10 metres $\mu = 15 + 12x + 6x - 2x$ (\subset) Y2 $= 12 + 12x - 6x^{2}$

\\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc

MATHEMATICS: Question ... Continued Marks **Suggested Solutions Marker's Comments** 42 ₩ = 12-12× Hy T lexion いん possible paints -1206= =0 12-1/2 u=15+12+6-2 when sc=1 1/2 3 when $\gamma (=)$ 12+12 1/2 = 18 m=18 Test for change in Con * 1/2 m/ de f thuy didn't use numbers or f thuy didn't state theres a change in concavity 0.9 3 1.1 ange 0 -1.2 1.2 encon υρ dowr 31 int exione equi 5 42 31 ん 18 2

\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc

.

$$\begin{array}{c} Q T \\ Q T \\$$

MATHEMATICS: Question 24 Suggested Solutions Marks Marker's Comments 12 ()TO DE ABM APP ABM = APD both 90° ん PÁD RMA = Y_ atternate andles are equa AQ. Y2 DABM DAAD 1 equiana -15 if ratio is PD riespondine 12 11 A0 written incorrectly AM AB 90 42 60 42 40 AB+ OM=AM 6x40 = 09 30+ 402 AM=50 42 PD = 48cm 1/2 $AP^2 + PP^2 = AO^2$ (11)ra (or could have AP + 48 = 602 done it using ratio of correspond Y2 AP = 1296 sides in similar triangle AP = 360 (12 of for each error). = A APCD N) AreaPMCD ABM APD 48×36 40×30 160×40 936 unts PM=AM-PA = 50-36 $= |\mathbf{A}|$ Area DCM 1/2 x30x40 = 600Area Pmo ×14×4 = 33 Area Area Area 1/2 Pmp + 336 600

^{\\}CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc

24. MATHEMATICS: Question. 8. Marks **Marker's** Comments **Suggested Solutions** (b)(1) A If all of the 42 information is 572 correct ? OB = 275 + 572 - 2(275)(572) Cos 58° Y2 ll 402809 - 314600cms58 402809-166712.6005 = 236 096. 3995 -06=485-8975195 3 00 = 486 Km (nearest Km * If they used AGB) 572 = 275 + 485.89 -2 (275) (485.89) Co the sive rule and 275 + 485,89 - 572 -: Cos AOB = didn't find the 2(275)(485.80 obtuse angle then lose 12 mK + AOB = 13 9 lose 12 mK from 00 Bearing 15 92 + 32 bearingies +1 off the total. Y2

\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc

$$\begin{array}{c} (D, extrem 9, \\ (Q, e), (Q, Q, Q), (Q, Q, Q), (Q, Q, Q), (Q, Q)$$

$$N = Find transformed represent
A = 0 and n = 20 × 12 = 240
0 = 400000 $(\frac{151}{150})^{240} = f(\frac{11}{150})^{12} + \dots + (\frac{151}{150})^{123}$
R = 400000 $(\frac{151}{150})^{240} = 1$
= 423 + 5.76
N) Awy = 400000 $(\frac{151}{150})^{144} = 3345.71 [\frac{151}{150})^{144} = 1$
= 423 + 57.76
N) Awy = 400000 $(\frac{151}{150})^{144} = 3345.71 [\frac{151}{150})^{144} = 1$
= 423 + 57.76
N) Awy = 543245.72 [162]
= 423 + 57.76
N) Value of Land
 $x = 9543243.055$ Y [1 hard]
= 9543243.05 Y [1 hard]
V) Nalue = 210000 (1.06)¹²
= 9543243.05 Y [1 hard]
V [1 hard]
V [1 hard]$$

2010 TRIAL 20 MATHEMATICS: Question 10.	•	
Suggested Solutions	Marks	Marker's Comments
$\frac{10(a)}{12} + \frac{1}{2} +$	2	Shape ± mark y intercept labelled gamed ± mark except when these were more than 2 mistakes on the graph.
$\binom{b}{1+\infty} \frac{2x}{1+\infty} < 1$		
$\frac{2x}{1+x} = 1 \text{or} \frac{2x}{1+x} = -1$ $3x = -1$ $3x = -3$ $\therefore \text{ For sum to infinity}$ $(\frac{1}{2}) = -\frac{1}{3} < x < 1 \qquad [n.B. x = 0]$ $S = 0]$	2.	
(c) $S_{00} = \frac{Q}{1-r}$ where e_{1-x} $= \frac{2c}{1-\frac{2}{2}c}$ $\frac{1-\frac{2}{2}c}{1+x}$ = x(1+x) 1+x-2x)	
$\therefore S_{00} = \frac{3c^2 + 3c}{1 - 3c}$	1	
(d) $S = \frac{32^2 + 32}{1 - 32}$ $\frac{dS}{ds} = \frac{(1 - 32)(23 + 1) - (32^2 + 32) \times (-1)}{(1 - 32)^2}$ $= \frac{23 + 1 - 232^2 - 32 + 32^2 + 32}{(1 - 32)^2}$ $\frac{dS}{ds} = -\frac{32^2 + 232 + 1}{(1 - 32)^2}$	1	
$(1-x^2)^2$		

$\frac{2010 \text{ TRIAL } 20}{\text{Suggested Solutions}} \qquad \text{Marthe MATHEMATICS: Question. I.Q.}$ $\frac{100 \text{ TRIAL } 20}{\text{ Suggested Solutions}} \qquad \text{Marker's Comments}$ $\frac{100 \text{ TRIAL } 20}{\text{ Suggested Solutions}} \qquad \text{Marker's Comments}$ $\frac{100 \text{ TRIAL } 20}{\text{ Suggested Solutions}} \qquad \text{Marker's Comments}$ $\frac{100 \text{ TRIAL } 20}{\text{ Suggested Solutions}} \qquad \text{Marker's Comments}$ $\frac{110 \text{ TRIAL } 20}{\text{ Suggested Solutions}} \qquad \text{Marker's Comments}$ $\frac{110 \text{ TRIAL } 20}{\text{ Suggested Solutions}} \qquad \text{Marker's Comments}$ $\frac{110 \text{ TRIAL } 20}{\text{ Suggested Solutions}} \qquad \text{Marker's Comments}$ $\frac{110 \text{ TRIAL } 20}{\text{ Summary } 20} \qquad \text{Marker's Comments}$ $\frac{110 \text{ TRIAL } 20}{\text{ Summary } 20} \qquad \text{Marker's Comments}$ $\frac{110 \text{ TRIAL } 20}{\text{ Marker's Comments}} \qquad \text{Marker's Comments}$ $\frac{110 \text{ TRIAL } 20}{\text{ Marker's Comments}} \qquad \text{Marker's Comments}$ $\frac{110 \text{ TRIAL } 20}{\text{ Marker's Comments}} \qquad \text{Marker's Comments}$ $\frac{110 \text{ Summary } 20}{\text{ Marker's Comments}} \qquad \text{Marker's Comments}$ $\frac{110 \text{ TRIAL } 20}{\text{ Marker's Comments}} \qquad \text{Marker's Comments}$ $\frac{110 \text{ Summary } 20}{\text{ Marker's Comments}} \qquad \text{TRIAL } 20 \text{ Marker's Comments}$ $\frac{110 \text{ Summary } 20}{\text{ Summary } 20 \text{ Summary } 20} \qquad \text{Trial } 20 \text{ Marker's Comments}$ $\frac{110 \text{ Summary } 20 \text{ Summary } 20 \text{ Marker's Comments}$ $\frac{110 \text{ Summary } 20 \text{ Summary } 20 \text{ Marker's Comments}$ $\frac{110 \text{ Summary } 20 \text{ Summary } 20 \text{ Marker's Comments}$ $\frac{110 \text{ Marker's Comments}}{10 \text{ Marker's Comments}}$ $110 \text{ Marker's Comments$
For minimum $dS = 0$ $\therefore z^2 - 2z - 1 = 0$ $z = z \pm \sqrt{4 \pm 44}$ $= 1 \pm \sqrt{2}$ But $-\frac{1}{3} < z < 1$ from (b) But $-\frac{1}{3} < z < 1$ from (b) But $1 - \sqrt{2} < -\frac{1}{3}$ and $1 \pm \sqrt{2} > 1$ then Since S_{∞} is continuous for $-\frac{1}{3} < z < 1$ then the minimum occurs of the endpoints. Test end pts. Minimum $= 1$ int $S = (-\frac{1}{3})^{-\frac{1}{3}}$ and $\lim S \to \infty$ $z > -\frac{1}{4}$ $= \frac{1-3}{4+3}$ $= -\frac{1}{4}$ $= -\frac{1}{4}$ $= -\frac{1}{4}$ $= -\frac{1}{4}$ $= -\frac{1}{4}$ $= \frac{1-3}{4+3}$ $= -\frac{1}{4}$ $= \frac{1-3}{4+3}$ $= -\frac{1}{4}$ $= \frac{1-3}{4+3}$ $= -\frac{1}{4}$ $= \frac{1-3}{4+3}$ $= -\frac{1}{4}$ $= \frac{1-3}{4+3}$ $= -\frac{1}{4}$ $= -\frac$
$= \frac{1-2\sqrt{2}+2+1-\sqrt{2}}{\sqrt{2}}$ $= \frac{1-3\sqrt{2}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$ $= \frac{1+\sqrt{2}-6}{2}$ $= 2\sqrt{2}-3$