Question 1.

(a) Evaluate to 2 significant figures $: \frac{3.72 \times 1.96+\sqrt{4.3+2.7^{2}}}{3.6 \times 1.8+3.1^{3}}$
(b) Rationalise the denominator and write in the form $a+b \sqrt{2}: \frac{3 \sqrt{2}+4}{2 \sqrt{2}-3}$ where a, b are real.
(c) Find the acute angle (to the nearest minute) that the line $4 x-11 y+9=0$ makes with the x axis.
(d) Graph $y=2 \sin 3 x$ in the domain $-\pi \leq x \leq \pi$.
(e) Find $\lim _{h \rightarrow 0}\left(\frac{4^{h}-1}{2^{h}-1}\right)$
(f) Solve : $|x-3|=4 x+2$

Question 2.

Three points A, B and C lie on the $x-y$ plane.
The lines l and k represent the lines $A B$ and $A C$ respectively.
The equations of lines l and k are respectively:
$3 x-4 y-100=0$ and $16 x-63 y+175=0$ respectively.
(a) Show that $B(8,-19)$ lies on the line l. 1
(b) Find the co-ordinates A of the intersection of lines l and k. 3
(c) Find in general form the equation of the line m perpendicular to line l passing through B.
(d) Show that line m intersects line k at the point $C(-7,1)$.2
(e) Find the exact perpendicular distance of B from $A C$. 2
(f) Find the area of triangle $A B C$. 2

Question 3.

(a) Differentiate : (i) $\frac{3}{\sqrt{1-2 x}}$

$$
\text { (ii) } \frac{\sin x}{x}
$$

(iii) $e^{\tan x}$
(b) Find (i) $\int \sqrt{e^{2 x}} d x$
(ii) $\int\left(\cot x-\operatorname{cosec}^{2} x\right) d x$
(c) Find in simplest terms : $\frac{d}{d x}\left\{x^{2}(2 \ln x-1)\right\}$, hence evaluate $\int_{1}^{e} x \ln x d x$.

Question 4.

(a) Given the equation $x^{2}=16(y+4)$
(i) State the co-ordinates of the vertex. 1
(ii) Find the focal length 1
(iii) State the co-ordinates of the focus 1
(iv) Find in general form the equation of the tangent at ($-12,5$) 2
(v) Find the co-ordinates of the point where the tangent meets the 1 directrix.
(b) A jar has 15 red discs and 9 black discs, while another jar has

20 red discs, 15 black discs and 10 white discs.
A disc is drawn from each jar.
Find the probability of drawing discs of the same colour?
(c) A car tyre of diameter 60 cm is in contact with the road at the point P.

After the car has travelled 1000 km how high (to the nearest millimetre) is the point P from the ground.

Question 5.

(a) Given $N=x^{n-1}+x^{n-2} y+x^{n-3} y^{2}+\ldots \ldots \ldots \ldots . . x y^{n-2}+y^{n-1}$
(i) \quad Simplify N in terms of x and y. 2
(ii) Hence prove $11^{21}-5^{21}$ is divisible by 3 . 2
(b) Use Simpson's Rule with 3 function values to evaluate to 2 decimal places : 3

$$
\int_{0}^{2} \frac{4 d x}{2 \sin x+1}
$$

(c) Solve to 2 decimal places : $3^{2 x+1}-3^{x}=10$
(d) If the quadratic equation: $\left(k^{2}+l^{2}\right) x^{2}+2 l(k+m) x+l^{2}+m^{2}=0$ has
equal roots then show $l^{2}=k m$.

Question 6.

(a) The region bounded by the curve $y=x(6-x)$ and $y=8$ is rotated around the x axis.
Find the exact value of the Volume of revolution.
(b)

A particle of mass 2 kg moves in a straight line with velocity $v \mathrm{~m} / \mathrm{s}$ and displacement $x m$ at time t seconds.
(i) Graph acceleration $\ddot{x} \mathrm{~m} / \mathrm{s}^{2}$ versus time t seconds. 2
(ii) Find the total distance travelled during the motion.
(c) Find in general form the equation of the inflexional tangent on the curve :

$$
y=15+12 x+6 x^{2}-2 x^{3}
$$

Question 7.

(a) (i) On the same axes graph :
(α) the line $y=1-2 x$ showing x and y intercepts.
(β) the curve $y=5-2 x-x^{2}$,
showing the co-ordinates of the vertex and y intercept only.
(ii) Find the x values of the points A and B of the intersection of the line $y=1-2 x$ and the curve $y=5-2 x-x^{2}$.
(iii) Evaluate the enclosed area between the line $y=1-2 x$ and the curve $y=5-2 x-x^{2}$.
(b) The rate of decay $\frac{d M}{d t}$ of a radioactive substance is proportional to the mass M present.
If it takes 51 minutes to decay to $\frac{1}{10}$ of it's original mass find the half-life of the substance (nearest minute).

Question 8.

(a)

$A B C D$ is a rectangle in which $A B=40 \mathrm{~cm}$ and $A D=60 \mathrm{~cm}$. M is the midpoint of $B C$ and $D P$ is perpendicular to $A M$.

Draw a neat sketch of the above diagram.
(i) Prove that triangles $A B M$ and $A P D$ are similar. 2
(ii) Calculate the length of $P D$. 2
(iii) Show that the length of $A P$ is 36 cm . Give reasons. 2
(iv) Find the area of the quadrilateral $P M C D$. 3
(b) A plane flies from town O to town $A, 275 \mathrm{~km}$ on a bearing of $032^{\circ} T$, 3 then to town $B 572 \mathrm{~km}$ on a bearing of $S 26^{\circ} E$.
(i) Draw a diagram to show the above information.
(ii) Find the final distance (nearest km), and bearing (nearest degree) from O.

Question 9.

(a) A particle of mass $m \mathrm{~kg}$ moves in a straight line with velocity $v \mathrm{~m} / \mathrm{s}$ and displacement x metres at time t seconds.

The velocity of the particle is given by $: v=3 \sqrt{1+9 t}$.
Find (i) the acceleration \ddot{x} in terms of time t.
(ii) the displacement of the particle as a function of time t if the particle is initially 1 metre to the left of the origin.
(b) A man buys a house and land for $\$ 500000$.

He pays 20% deposit, and takes a loan for the remainder.
(i) Find the value of the deposit.
(ii) If the loan is for 20 years, and the interest rate is 8% p.a. monthly reducible show that the amount owing after the first monthly repayment R is :

$$
\$\left(400000\left(\frac{151}{150}\right)-R\right)
$$

(iii) Find the amount owing after n months.
(iv) Find the monthly repayment.
(v) Find the amount owing after the $144^{\text {th }}$ payment.
(vi) The value of the land was originally valued at $\$ 270000$. If the value of the land was compounded yearly at 6% p.a. find the value of the land after the $144^{\text {th }}$ payment.
(vii) After the $144^{\text {th }}$ payment an earthquake destroys the house.

The insurance policy does not cover earthquakes.
Could the man sell the land to pay the remainder of the loan? Give reasons.

Question 10.

A series S is given by :

$$
S=x+\frac{2 x^{2}}{x+1}+\frac{4 x^{3}}{(x+1)^{2}}+\frac{8 x^{4}}{(x+1)^{3}}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots
$$

(a) Sketch the curve $y=\frac{2 x}{x+1}$, showing all asymptotes and intercepts with the axes.
(b) Find the values of x for the sum to infinity to exist.
(c) Show that the sum to infinity is given by :

$$
S_{\infty}=\frac{x^{2}+x}{1-x}
$$

(d) Show that $\frac{d S_{\infty}}{d x}=\frac{-x^{2}+2 x+1}{(1-x)^{2}}$
(e) Find the minimum value of the sum to infinity.

IICALLISTOIStaffHomeSIWOHURAH M Fac Admin\Assessment infolSuggested Mk solns template_V4.doc

\therefore Eqn. of the line in general form is:

Mathematics - 2 unit
Question 3
a) Differentiate
i)

$$
\begin{aligned}
\begin{aligned}
\frac{3}{\sqrt{1-2 x}}=\frac{d}{d x} 3(1-2 x)^{-\frac{1}{2}} & =3 \times \frac{-1}{2} \cdot-2(1 \\
& =\frac{3(1-2 x)^{-}}{\text {OR }} \\
& \frac{3}{(1-2 x)^{3 / 2}}
\end{aligned}
\end{aligned}
$$

or 3

$$
\frac{3}{(1-2 x)(\sqrt{1-2 x})}
$$

2 warless
ii)

$$
\frac{d}{d x} \frac{\sin x}{x}=\frac{x \cos x-\sin x}{x^{2}}
$$

(11/2) nark if

$$
\frac{\sin x-x \cos x}{x^{2}}
$$

2 harks

$$
\text { (lii) } \frac{d}{d x} e^{\operatorname{Tan} x}=\sec ^{2} x e^{\operatorname{Tan} x}
$$

b (1) $\int \sqrt{e^{2 x}} d x=\int e^{x} d x$

$$
=e^{x}+c
$$

$$
r
$$

1 rank
$\frac{-1}{2} \cdot f$ Note cannot apply chain rule for J.
(ii)

$$
\begin{aligned}
\text { (ii) } \int\left(\cot x-\operatorname{cosec}{ }^{2} x\right) d x & =\int\left(\frac{\cos x}{\sin x}-\operatorname{cosec}^{2} x\right) d \\
\int \frac{\cos x}{\sin x} d x & =\ln \sin x+c
\end{aligned}
$$

Using Quotient Rule $\frac{\sin x(-\sin x)-\cos ^{2} x}{\sin ^{2} x}$

$$
\begin{aligned}
& =\frac{-1}{\sin ^{2} x} \\
& =-\operatorname{cosec}^{2} x \\
& x+c
\end{aligned}
$$

c)

$$
\therefore \quad \therefore-\operatorname{cosec}^{2} x \cdot d x=\cot x+c
$$

2 marks

$$
\begin{aligned}
\frac{d}{d x} x^{2}(2 \ln x-1) & =x^{2} \cdot \frac{2}{x}+(2 \ln x-1) 2 x \\
& =4 x \ln x \\
\int_{1}^{e} x \ln x d x & =\left\{\frac{1}{4} x^{2}[2 \ln x-1]\right\}_{1}^{2} \\
& =\frac{1}{4}\left[e^{2}(2-1)-1 \cdot(-1)\right. \\
& =\frac{e^{2}+1}{4}
\end{aligned}
$$

Question 4 .

v) Directrix $y=-8$

$$
\begin{gathered}
3 x+2(-8)+26=0 \\
3 x=-10 \\
x=-3^{\frac{1}{3}} \\
\therefore \text { point is }\left(-3^{\frac{1}{3}},-8\right)
\end{gathered}
$$

b) $P(R, R)+p(B B)=\frac{15}{24} \times \frac{20}{45}+\frac{9}{24} \times \frac{15}{45}$

$$
\begin{aligned}
& =\frac{5}{8} \times \frac{4}{9}+\frac{3}{8} \times \frac{3}{9} \\
& =\frac{29}{72}
\end{aligned}
$$

c)

$$
\begin{aligned}
& \text { Circoinference of Tyre }=60 \pi \\
& \text { Distance travelled }=1000 \mathrm{~km}=1000000 \mathrm{~m} \\
& =100000000 \mathrm{~cm} \\
& =1000000000 \mathrm{~mm}
\end{aligned}
$$

Number

$$
\begin{aligned}
\text { of revolutions } & =\frac{\text { Distance travelled }}{\text { circumference tyre }} \\
& =\frac{100000000 \mathrm{~cm}}{60 \pi} \mathrm{~cm} \\
& =530516.477 \text { rev. }
\end{aligned}
$$

There is 530,516 complete revolutions with 0.477 of a revolution left over

Hence 0.477 of circumference ($60 \pi \mathrm{~cm}$) is left over

$$
\begin{aligned}
\text { ie } \quad & 0.477 \times 60 \pi \\
= & 89.91238175 \mathrm{~cm} .
\end{aligned}
$$

Calculate θ

$$
\begin{aligned}
& l=r \theta \\
& 89.91238175=30 \theta \\
& \theta=2.997079392^{\circ} \text { or } 0.954 \pi \\
& \text { or } 171.72^{\circ}
\end{aligned}
$$

few did not
simplify

$$
\frac{-12}{8}=-\frac{3}{2}
$$

12 marks

11 mark

2 naves

* few $r=60 \mathrm{~cm}$ instead of 30 cm .
- Did not change both distance and radium into same unit

4 marks

$$
\begin{aligned}
\alpha & =\theta-\frac{\pi}{2} \\
& =1.426283065
\end{aligned}
$$

 $\simeq 29.8$

$$
=30+29.6865804
$$

$$
=590^{\circ} .69655014
$$

$$
=597 \mathrm{~mm}
$$

$O R$

$$
\begin{aligned}
\beta & =\pi-\theta \\
& =\pi-171.72 \\
& =4.28^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\cos 8.28 & =\frac{x}{30} \\
x & =30 \cos 8.28^{\circ} \\
& =29.68728356
\end{aligned}
$$

\therefore height 29.68728356

$$
\begin{aligned}
& =\frac{30}{59.68728356} \\
\text { height } & =597 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
\alpha & =\frac{180-171.72}{2} \\
& =4.14^{\circ}
\end{aligned}
$$

Sine Rule

$$
\begin{aligned}
& \frac{x}{\sin 171.72^{\circ}}=\frac{30}{\sin 4.14^{\circ}} \\
& \begin{aligned}
x & =\frac{30 \sin 171.72^{\circ}}{\sin 4.14^{\circ}} \\
& =59.843 \mathrm{~cm} \\
& =598 \mathrm{~mm}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\beta & =90-4.14^{\circ} \\
& =85.86
\end{aligned}
$$

$$
\begin{aligned}
& \sin \beta=\frac{h}{598} \\
& h=598 \sin 85.86 \\
& h=596.4395939 \\
& h=596 \text { mum. }
\end{aligned}
$$

cosine rule

$$
\begin{aligned}
x^{2} & =30^{2}+30^{2}-2(30)(30) \cos 0.954 \pi \\
& =3581.237013
\end{aligned}
$$

$x=39.843$
$=598 \mathrm{~mm}$
Similarly
as in
previous example

In meth Trial 2010
Q5
a)
b)

x	0	1	2
$\frac{4}{25-x+1}$	4	14909	1419

$$
\begin{aligned}
& \int_{0}^{2} \frac{4 d x}{2 \sin x+1}=\frac{2-0}{6}\left[4+4\left[\frac{4}{2 \sin 1+1}\right]+\frac{4}{2 \sin 2+1}\right] \\
&=3.79425 \\
&=3.79(2 d p) \\
&
\end{aligned}
$$

c) $3 \cdot 3^{2 x}-3^{x}-10=0$

Put $u=3^{x}$

$$
\begin{aligned}
& 3 u^{2}-u-10=0 \\
& (3 u+5)(u-2)=0 \\
& u=2 \text { or } u=-5 / 3
\end{aligned}
$$

lat $3^{x}>0 \quad \therefore \quad 3^{x}=2$ andy

$$
\begin{aligned}
& x=\frac{\ln 2}{\ln 3}=0.6309 \\
& x=0.63(2 a p)
\end{aligned}
$$

$1 m$

$$
\begin{aligned}
& N=\frac{x^{n-1}\left[\left(\frac{y}{x}\right)^{n}-1\right]}{\frac{y}{x}-1} \quad 1 \mathrm{~m} \\
& N=\frac{x^{n}-y^{n}}{x-y} \quad 1 \mathrm{~m} \\
& x^{n}-y^{n}=(x-y) N \\
& 11^{21}-5^{21}=(11-5)\left[11^{20}+11^{19}-5+\cdots+5^{20}\right] \mathrm{lm} \\
& =6 \times\left(11^{20}+11^{19}-5+\cdots+5^{20}\right) \\
& =3 \times 2 \times\left(11^{20}+11^{19} \cdot 5+\cdots+5^{20}\right) \\
& \therefore 11^{21}-5^{21} \text { is dirisble by integer } 1 \mathrm{~m}
\end{aligned}
$$

comments
many students did not simplify completely fo lowest term.
mary students did not justify

$$
11^{20}+11^{14} 1+\cdots+5^{20}
$$

is as integer ard simply say N in ar integer gat 1 in $\mathrm{anll}_{\text {g }}$.

In math trial to lo
Fd) $\Delta=0$ for equal roots

$$
[2 l(k+m)]^{2}-4\left[k^{2}+l^{2}\right]\left[l^{2}+m^{2}\right]=0 \quad \text { in }
$$

$$
4 l^{2}\left[k^{\prime}+2 k m+\eta^{\prime}\right]-4\left[k l^{2} l^{2}+k^{2} m^{2}+l^{4}+l l^{2} m^{2}\right]=0
$$

$$
4 l^{2} \cdot 2 k m-4 k^{2} m^{2}-4 l^{4}=0
$$

$$
l^{4}+k^{2} m^{2}-2 k m l^{2}=0
$$

$$
\left(l^{2}-k m\right)^{2}=0 \quad 1 m
$$

$$
l^{2}=k m
$$

many students
made inistikes \checkmark carnot complete square box 1 m

Suggested Solutions
(a) Intersection points

$$
x(6-x)=8
$$

$$
x^{2}-6 x+8=0
$$

$$
\begin{aligned}
& (x-4)(x-2)=0 \\
& x=4
\end{aligned}
$$

$$
x=4 \text { or } x=2
$$

$$
v_{0}\left(\sim m \Omega=\int_{1}^{x} x(b-x) d x=\int_{2}^{4} d x\right.
$$

$$
=\pi \int^{2} x^{2}\left(26-12 x+x^{2}\right) d x=-\pi / 64 d x
$$

$$
=\pi((36 x-12 x+x-64) d x
$$

$$
=\pi\left[12 x-3 x^{4}+\frac{5}{5}-64 x\right]^{4}
$$

$$
=\pi\left[\frac{x^{5}}{5}+12(4)^{3}-3(4)-64(4)\right]-\pi 12 \times 8-3(4)
$$

$$
\left.=\pi(2045-768+768-256)-\frac{5(96-48}{\pi} \right\rvert\,
$$

$$
\begin{aligned}
& =\pi(198 / 5-176) \\
& =22^{2 / 5 \pi} 0 r \frac{12 \pi}{5} \quad+5022 \pi n
\end{aligned}
$$

\qquad
(ii) Told distance $=\frac{2 \times 2}{2}+\frac{2 \times 2}{2}+2 \times 2+\frac{1 \times 2}{2}+\frac{1 \times 2}{2}$

$$
=2+2+4+1+1
$$

\qquad

$$
\text { = } 10 \text { metres }
$$

(c)

$$
\begin{aligned}
& y=15+12 x+6 x-2 x \\
& d x=12+12 x-6 x^{2}
\end{aligned}
$$

If they had the wrong limits, 1 mark off

* $1 \frac{1}{2 m k}$ ff f they fogy to square the fins.
* $1 / 2$ mk off the fins are around the wrong way fin squared * $1 / 2$ mk on in function * $1 / 2 \mathrm{mk}$ one forever calaltor error
* Ink if they forgot $\pi \int_{2}^{+} 8^{2} d x$.
* 1/2 ak fifo for no open cirdes
*1/2mk of if lines joined op * O for curves!
* $1 / 2 \sim k$ of they git 8 metres.

IICALLISTO\StaffHome\$lWOHURAH M Fac Admin\Assessment infolSuggested Mk solos template_V4.doc

MATHEMATICS: Question..6.. continued

IICALLISTOUStaffHomesIWOHURAH M Fac Admin\Assessment infolSuggested Mk solns template_V4.doc

ii) intersect at $x= \pm-2 \quad 2 \mathrm{~m}$
(ii) Ara $=\int_{-2}^{2}\left(5-2 x-x^{2}\right)-(1-2 x) d x$ in

$$
=\left[4 x-\frac{x^{3}}{3}\right]_{-2}^{2} \quad 1 \mathrm{~m}
$$

$$
=10 \frac{2}{3} \text { unit }^{2} \mathrm{~lm}
$$

b)

$$
\begin{aligned}
M & =A e^{-k t} \\
k & =\frac{\ln 10}{51} \\
\frac{A}{2} & =A e^{-t \frac{\ln 10}{51}} 1 \mathrm{~m} \\
t & =15,35 \\
& =15 \text { minutes (nesurt mi-) } \frac{1}{2} m
\end{aligned}
$$

comments
intercepts $\frac{1}{2} \mathrm{~m}$ each

$$
\left.\begin{aligned}
& \text { intercepts } \\
& (0,1),\left(\frac{1}{2}, 0\right),(0.5) \\
& \text { vertox }(-1,6)
\end{aligned} \right\rvert\, \begin{aligned}
& \text { gamely }
\end{aligned}
$$

$$
\text { parabola } 1 \mathrm{~m}
$$ well done.

$$
\text { straight line } \frac{1}{2} m
$$

generally, well done

A few students wrote

$$
k=\frac{-\ln \frac{9}{10}}{51}
$$

and

$$
t=336 \mathrm{~min}
$$

got 2 m

2u. MATHEMATICS: Question. 8 .

Suggested Solutions
(V) Ta
$\triangle \Delta B M, A \rho D$
$A B M=A P O$
BMA = PÁD (atternate artea are equal
 $\therefore \triangle A B M H \mid \triangle A P D$ (equiangular) $\quad Y_{2}$

(iii)

(N) $A_{\text {reafM }} \subset D=A_{\text {ASCD }}=A_{A_{M}}=A_{A \rho D}$

$$
=(60 \times 40)-\left(\frac{40 \times 30}{2}\right)=\left(\frac{48 \times 36}{2}\right)
$$

0

$$
\begin{aligned}
P M & =A M=P A \\
& =50=36 \\
& =11
\end{aligned}
$$

$-1 / 2$ written incorrectly.
(or could have done" $\frac{1}{1}$ using ratio f corresponding sides in similac triangless
(H_{2} fl for ench error).

$$
=936 \text { vonts }
$$

IICALLISTOUStaffHome\$1WOHURAH M Fac Admin\Assessment infolSuggested Mk solns template_V4.doc

IICALLISTOIStaffHomeSIWOHURAH M Fac Admin\Assessment infolSuggested Mk solns template_V4.doc

Question 9.
a(1)

$$
\begin{aligned}
\ddot{x} & =\frac{d v}{d t} \\
& =\frac{d}{d t} 3[1+9 t]^{1 / 2} \\
& =\frac{3}{2} \cdot 9(1+9 t)^{-1 / 2} \\
\ddot{x} & =\frac{27}{2 \sqrt{1+9 t}}
\end{aligned}
$$

ii) $x=\int 3(1+a t)^{1 / 2} d t$

$$
x=\frac{2}{a}(1+a t)^{3 / 2}+c
$$

when

$$
\begin{aligned}
-1 & =\frac{2}{9}+c \\
c & =-\frac{11}{9}
\end{aligned}
$$

$$
\begin{gathered}
C=-\frac{11}{9} \\
\therefore \text { Displacement } x=\frac{2}{9}(1+9 t)^{\frac{3}{2}}-\frac{11}{\frac{11}{2}} r \text { arks }
\end{gathered}
$$

$$
\text { b(1) Deposit }=20 \% \text { of } \$ 500000
$$

$$
=\$ 100000 \quad 2 \sqrt{1 \text { mark }}
$$

ii) loan for $\$ 400000$

$$
\text { monthly interest }=\frac{8}{12} \%=\frac{8}{1200}=\frac{1}{150}
$$

Amount owing otter list month.

$$
\begin{aligned}
& \$ 400000 \times\left(1+\frac{8}{1200}\right)-R \\
& =400000\left(\frac{1+150}{150}\right)^{-R} \\
& =400000\left(\frac{151}{150}\right)-R
\end{aligned}
$$

ii)

$$
\begin{aligned}
A_{2} & =400000\left(\frac{151}{150}-R\right) \frac{151}{150}-R \\
& =400000\left(\frac{151}{150}\right)^{2}-R\left(1+\frac{151}{150}\right) \\
A_{3} & \left.=\left[400000\left(\frac{151}{150}\right)^{2}-R\left[1+\frac{151}{150}\right)\right]\right] \frac{151}{150}-R \\
& =\left[400000\left(\frac{151}{150}\right)^{3}-R\left[1+\frac{151}{150}+\left(\frac{151}{150}\right)^{2}\right]-R\right.
\end{aligned}
$$

Had to show $\frac{8}{12} \%$ to gain a mark.

To show the answer you need to get a pattern for at least 3 months.
\therefore Amount after $n^{\text {th }}$ month

$$
A_{n}=4000000\left(\frac{151}{150}\right)^{\text {th }}-R\left[1+\frac{151}{150}+\left(\frac{151}{150}\right)^{2}+\cdots\left(\frac{151}{150}\right)^{n-1}\right]
$$

Do not use decimals

$$
\frac{13.5}{\sqrt{1+9 t}}
$$

lark
iv Find monthly repayment
$A=0$ and $n=20 \times 12=240$

$$
\begin{aligned}
O & =\frac{400000\left(\frac{151}{150}\right)^{240}-R\left[1+\frac{151}{150}+\left(\frac{151}{150}\right)^{2}+\cdots\left(\frac{151}{150}\right)^{239}\right]}{\frac{\left(\frac{151}{150}\right)^{240}-1}{\frac{151}{150}-1}} \\
R & =\frac{400000\left(\frac{151}{150}\right)^{240}}{\left(\frac{151}{150}\right)^{240}-1} \\
& =\frac{10000\left(\frac{151}{150}\right)^{240} \cdot \frac{1}{150}}{} \\
& =\$ 3345.76
\end{aligned}
$$

Round off to 2 decimal place
v) $A_{144}=400000\left(\frac{151}{150}\right)^{144}-3345.76\left[\frac{\left(\frac{151}{150}\right)^{144}-1}{\left(\frac{.51}{150}-1\right)}\right]$

$$
=\$ 236672.36
$$

I mark
v) Value of land

$$
\begin{aligned}
\text { value } & =270000(1.06)^{12} \\
& =\$ 543293.05
\end{aligned}
$$

vi) Man can sell land as

$$
\$ 543293: 65>\$ 236672.36
$$

11 mark

lest end pts.

$$
\begin{aligned}
\text { Minimum }=\lim _{x \rightarrow-\frac{1}{3}} 5 & =\frac{\left(-\frac{1}{3}\right)^{2}-\frac{1}{3}}{1+\frac{1}{3}} \text { and } \lim _{x \rightarrow i} S \rightarrow \infty \\
& =\frac{1-3}{9+3} \\
& =-\frac{1}{6}
\end{aligned}
$$

