TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2011

MATHEMATICS

Time Allowed - 3 Hours
(Plus 5 minutes Reading Time)

- All questions may be attempted
- All questions are of equal value
- Department of Education approved calculators and templates are permitted
- In every question, show all necessary working
- Marks may not be awarded for careless or badly arranged work
- No grid paper is to be used unless provided with the examination paper

The answers to all questions are to be returned in separate stapled bundles clearly labeled Question 1, Question 2, etc. Each question must show your Candidate Number.

Question 1 - Start a new sheet of paper

a) Solve $x^{2}-3 x-18=0$
b) Convert $\frac{7 \pi}{9}$ radians to degrees 1
c) Write down a primitive of $\sec ^{2} 3 x$

1
d) \quad Solve $|2 x-1|=7$
e) Write $\frac{2}{\sqrt{17}-3}$ with a rational denominator
f) Given $f(x)=\frac{1}{3^{x}} \quad x<3$ $(x-3)^{2}+1 \quad x \geq 3 \quad$,
evaluate $2 f(4)-f(-1)$

2
g) Find the non-zero values of x for which the geometric series

$$
2-6 x+18 x^{2}-\ldots . . \quad \text { has a limiting sum }
$$

h) i) Write down the equation of the locus of a point P that is 3 units from the point $A(2,-4)$
ii) How many times does this locus cut the x axis ?

1

Question 2 - Start a new sheet of paper

Marks
a) Differentiate the following with respect to x :
i) $\quad \ln \sqrt{x^{2}+3}$
ii) $\quad\left(2 x^{2}+7\right)^{3}$
iii) $\quad x^{2} \cos x$

2
b) The equation of a parabola is given by $8 y=x^{2}+4 x+12$
i) Find the coordinates of the vertex
ii) Write down the focal length of the parabola
iii) Sketch the parabola, clearly showing the focus and directrix
c) Solve the equation $\sec ^{2} x=4$ for $0 \leq x \leq 2 \pi$

Question 3 - Start a new sheet of paper

a) Given that $\log _{k} 5=1.838$ and $\log _{k} 2=0.792$, find the values of
i) $\quad \log _{k} 50$
ii) $\quad \log _{k}(0 \cdot 4)$
iii) $\quad \log _{10} k$

4
b) An unbiased spinner, as shown, is equally likely to stop at any one of the letters $\boldsymbol{A}, \boldsymbol{E}, \boldsymbol{I}, \boldsymbol{O}$ or \boldsymbol{U}

i) If the spinner is spun twice, find the probability that it stops on the same letter both times.
ii) How many times must the spinner be spun for it to be 99\% certain that the spinner will have stopped on \boldsymbol{E} at least once?
c) i) Sketch the graph of $y=3 \sin 2 x$ for $0 \leq x \leq 2 \pi$ (Your diagram should take up at least one quarter of a page.)
ii) Draw the line $y=\frac{x}{2}$ on the same diagram, noting particularly the point on the line where $x=2 \pi$
iii) Hence determine the total number of solutions there are to the equation

$$
6 \sin 2 x-x=0 \quad \text { for all } x
$$

(NB You are not required to solve the equation but you should include a short explanation of your answer)

Question 4 - Start a new sheet of paper

a) The gradient of a curve is given by $\frac{d y}{d x}=3 x^{2}-4$
i) Find $\frac{d^{2} y}{d x^{2}}$

1
ii) Find those values of x for which the curve is both increasing and concave downwards. Show your reasoning.
iii) If the curve passes through the point ($1,-2$), find the equation of the curve.
b) The coordinates of A, B and C are ($4,-6$), ($-18,0$) and (0,6) respectively. D is the midpoint of $A B$.
i) Draw these points on a clear coordinate diagram and show that D has coordinates ($-7,-3$).
ii) Show that the equation of the line $A C$ is $3 x+y-6=0$
iii) Show that the line $B C$ is perpendicular to the line $A C$
iv) Therefore $A B$ is the diameter of a circle which passes through A, B and C.

Find the equation of this circle.
v) Find the circumference of the circle , accurate to 1 decimal place.

1

Question 5 - Start a new sheet of paper

a) A ship sails from O on a bearing of $130^{\circ} \mathrm{T}$ to the point P. P lies on a bearing of $030^{\circ} \mathrm{T}$ from M where M is 120 kms due south of O .
i) Show this information on a clear diagram and confirm that $\angle O P M=100^{\circ}$
ii) How far, to the nearest kilometre, is P from M ?
iii) A lighthouse is located at L which is 40 kms due south of O. What was the closest that the ship came to L as it made its way from O to P.
b) A substance decomposes such that the mass M (kgs) remaining at any time t (hrs) is given by $M=M_{0} e^{-k t}$. If $\frac{3}{4}$ of the substance has decomposed in 4 hours, find:
i) the exact value of k

2
ii) the value of M_{0}, correct to 2 decimal places, given that 4 kg of the substance remains after the first 90 minutes.
c) Simplify $\frac{1+\cot \theta}{\operatorname{cosec} \theta}-\frac{\sec \theta}{\tan \theta+\cot \theta}$

Question 6 - Start a new sheet of paper

a) i) Find $\int x \sin \left(x^{2}\right) d x$

1

2
b) The quadratic equation $5 x^{2}-(21+a) x+a=0$ has two roots, with one of the roots being the reciprocal of the other. Find the value of a and hence find the two roots.
c) A polygon has 60 sides. The lengths of the sides, starting with the smallest, form an arithmetic sequence. The perimeter of the polygon is 1770 cms and the length of the longest side is three times the length of the shortest side. Find the lengths of the two shortest sides.
d)

The diagram shows the region enclosed between the two curves $y=e^{x / 2}$ and $y=1-x^{2}$ and the line $x=1$. Find the area of this enclosed region.
a) $\quad P Q R S$ is a rhombus, angle P being acute. X is the point on $P S$ such that $Q X$ is perpendicular to $P S$. $Q X$ intersects the diagonal $P R$ at Y.
i) Show this information on a clear diagram and explain why $\angle S R P=\angle Q R P$
ii) Prove that triangle $S Y R$ is congruent to triangle $Q Y R$. 3
iii) Show that $\angle R Q Y$ is 90° and hence find the size of $\angle Y S R$
b) The velocity $v(\mathrm{kms} / \mathrm{min})$ of a train travelling from Epping to Eastwood, is given by $v=t^{2}(3-t) / 3$, where t is the time in minutes since leaving Epping.
i) If the first stop is at Eastwood, how long does the journey take?
ii) Find an expression for the distance ($x \mathrm{~km}$) travelled from Epping after time t (where $0 \leq t \leq 3$)
iii) Hence find the distance from Epping to Eastwood.
iv) Where and when, between the two stations, was the train travelling the fastest?

2

Question 8 - Start a new sheet of paper

Marks
a) Stella sets up a prize fund with a single investment of $\$ 1000$ to provide her school with an annual prize of $\$ 72$. The fund accrues interest at a rate of 6% per annum, compounded annually. The first prize is awarded one year after the investment is set up.
i) Calculate the balance in the fund at the beginning of the second year, after the first prize has been awarded.
ii) Let $\$ B_{n}$ be the balance in the fund at the end of n years (after the nth prize has been awarded and while funds are still available).
Show that $B_{n}=1200-200 \times(1.06)^{n}$
iii) At the end of the tenth year (after that prize has been awarded), it is decided that the prize will henceforward be increased to $\$ 90$. For how many more years can the fund be used to award the full prize?
b) i) Sketch the graph of $y=e^{x}$ for $0 \leq x \leq 2$
ii) The portion of the curve $y=e^{x}$ between $y=3$ and $y=5$ is rotated about the y-axis to give a solid. Show that the volume of the solid formed is given by $\pi \int_{3}^{5}(\ln y)^{2} d y \quad$ cubic units.
iii) Use Simpson's Rule and 5 function values to find an approximation to this volume (answer to 1 decimal place).
a) The diagram shows a 16 cm high wine glass that is being filled with water at a constant rate (by volume). Let $y=f(t)$ be the depth of the liquid in the glass as a function of time.

i) Write down the approximate depth y_{1} at which $\frac{d y}{d t}$ is a minimum.
ii) Write down the approximate depth y_{2} at which $\frac{d y}{d t}$ is a maximum.
iii) If the glass takes 8 seconds to fill, graph $y=f(t)$ and identify any points on your graph where the concavity changes.

2
b) In the diagram, $C D$ is an arc of a circle with radius 8 cm and centre O.
M is the midpoint of $O C$ and angle $C O D$ is $\frac{2 \pi}{3}$ radians.

Find the perimeter of the shaded area $C D M$ in exact form.
c) Find the exact value of k (where $k>2$) such that $\int_{2}^{k} \frac{2 t}{3 t^{2}-1} d t=\frac{1}{3} \log _{e} 13$
d) If a, b and c are consecutive positive terms of a geometric sequence, show that $\log a, \log b$ and $\log c$ are consecutive terms in an arithmetic sequence.
a) State the Domain and Range of the function $y=2 \sqrt{25-x^{2}}$
b) Evaluate $\sum_{r=1}^{63} \frac{1}{\sqrt{r+1}+\sqrt{r}}$
c)

The diagram shows a farmhouse F that is located 240 m from a straight section of road, at the end of which is the bus depot D. The front gate G of the farmhouse is 3000 m from the bus depot. The school bus leaves the depot at 8am and travels along the road at $15 \mathrm{~ms}^{-1}$. Peter lives in the farmhouse and can run across the open paddock at a speed of $4 \mathrm{~ms}^{-1}$. The bus will stop for Peter anywhere on the road but will not wait.

Assume that Peter catches the bus at the point P where $\angle G F P=\theta$.
i) Show that the time, in seconds, taken for the bus to go from D to P is given by

$$
200+16 \tan \theta
$$

ii) Find an expression, in terms of θ, for the time taken by Peter to run from F to P.
iii) If Peter leaves home T seconds after 8 am and he and the bus arrive at P at the same time, show that $\quad T=200+16 \tan \theta-60 \sec \theta$
iv) What is the latest time, to the nearest second, that Peter can leave home and still catch the bus?

ZSII TRIA2 HSC ZIMATHEMATICS: Question...l...

:ALLISTOLStaffifomesiWOHURAH M Fac Adminiassessment infolSuggested Mk solns template_V4.doc .

1

$$
\text { (a) (i) } \begin{aligned}
& y=\ln \sqrt{x^{2}+3} \\
& \therefore y=\frac{1}{2} \ln \left(x^{2}+3\right) \\
& d y \\
& \frac{d y}{d x}=\frac{1}{2} \cdot \frac{2 x}{x^{2}+3} \\
&=\frac{x}{x^{2}+3}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
y & =\left(2 x^{2}+7\right)^{3} \\
\frac{d y}{d x} & =3\left(2 x^{2}+7\right)^{2} \cdot 4 x \\
& =12 x\left(2 x^{2}+7\right)^{2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& y=x^{2} \cos x \\
& \frac{d y}{d x}=2 x \cos x-x^{2} \sin \\
& =x(2 \cos x-x \sin x \\
& i)^{8 y}=x^{2}+4 x+12 \\
& 8 y=x^{2}+4 x+4+8 \\
& 8 y=(x+2)^{2}+8 \\
& 8 y-8=(x+2)^{2} \\
& 8(y-1)=(x+2)^{2}
\end{aligned}
$$

\therefore verter is $(-2,1)$
(ii) $4 a=8$

(ii)

(c) $\sec ^{2} x=4$
$\cos ^{2} x=\frac{1}{4}$
nCALLISTOUStaftHomeSWOHNRAH M Fac AdminiAssessment infolSuggested Mk solns template_V2.doc

JKAHS: TRIALS MATHEMATICS $2 U N T T$ HUG 2011 g-
Question 3

JKAHS TKIALS: MATHEMATICS $2 u:$ Muy LOII
QuESTION 3

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{MATHEMATICS: Question 4} \\
\hline Suggested Solutions \& Marks \& Marker's Comments \\
\hline \begin{tabular}{l}
a) i) \(\frac{d^{2} y}{d x^{2}}=6 x\) \\
ii) For curve to be increasing, \(y^{\prime}>0\).
\[
\text { i.e. } \begin{aligned}
\& 3 x^{2}-4
\end{aligned}>0, ~ x^{2}>\frac{4}{3} 0 \text {. } \quad x>\frac{2}{\sqrt{3}} \text { or } x<\frac{-2}{\sqrt{3}}
\] \\
For curve to be concave down, \(y^{\prime \prime}<0\).
\[
\begin{aligned}
\text { i.e. } \quad \& 6 x \\
x \& <0 \\
x \& <0 \\
\therefore \quad \& x<\frac{-2}{\sqrt{3}} \text { only. }
\end{aligned}
\] \\
iii)
\[
\begin{aligned}
\& y=\int\left(3 x^{2}-4\right) d x \\
\& y=x^{3}-4 x+c
\end{aligned}
\] \\
Since curve passes through \((1,-2)\),
\[
\begin{aligned}
-2 \& =1-4+c \\
c \& =1 \\
\therefore \quad y \& =x^{3}-4 x+1
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
\(\frac{1}{2}\) \\
\(\frac{1}{2}\) \\
1 \\
1
\end{tabular} \& \begin{tabular}{l}
Correctly differentiates \\
Solves inequality for \(y^{\prime}\) \\
Solves inequality for \(y^{\prime \prime}\) \\
Takes intersection \\
Indefinite integral \\
Correctly evaluates constant
\end{tabular} \\
\hline b) i)
\[
D=\left(\frac{-18+4}{2}, \frac{0-6}{2}\right)
\]
\[
=(-7,-3)
\] \& \(\frac{1}{2}\)

$\frac{1}{2}$ \& | Accurate diagram |
| :--- |
| Calculate midpoint of $A B$ |

\hline
\end{tabular}

MATHEMATICS: Question 4

b) Continued.
ii) $m_{A c}=\frac{6-(-6)}{0-4}$

$$
\begin{aligned}
=\text { Equation of } A C \text { is } y-6 & =-3(x-0) \\
3 x+y-6 & =-3 x+6
\end{aligned}
$$

iii) $m_{A c}=-3$ (shown above)
$m_{B C}=\frac{6-0}{\theta-(-18)}$
$=\frac{1}{3}$

$$
\therefore m_{A C} \times m_{B C}=-3 \times \frac{1}{3}
$$

2 Correct use of point-gradient or two-point form

$$
\therefore \quad A C \perp B C=-1
$$

If $A B$ is diameter, $D(-7,-3)$ is centre.
Radius $A D=\sqrt{(-7-4)^{2}+(-3+6)^{2}}$
$=\sqrt{121+9}$
$=\sqrt{130 \text { units }}$
\therefore Circle equation: $(x+7)^{2}+(y+3)^{2}=130$.
v) Circumference
$=2 \pi r$
$=2 \pi \times \sqrt{130}$
$=71.639334 \ldots$
≈ 71.6 units (ldp)

Centre co-ardinates

Radius

Equation

Exact value
correctly approximates

- TRAMS TRIAL: MATHEMATICS $2 u$: AuG 2011.1 y

Q 5

Question 5

NCALLISTOIStaftHomesWOHURAH M Fac AdminlAssessment infolSuggested MK solns templata_V4.doc

(ii) In $\Delta S y S R, Y Q R$

$Q R=S R$ (sides of a rhombus
Y_{R} is common
$\triangle Y S R \equiv \triangle Y Q R$ (SAS)
QR\|PS (opposite sides of a inombons
\qquad
bat $\hat{Q_{P}}=90^{\circ}$ equal, $Q R \| P S$.

$$
\therefore \hat{R O Y}=90^{\circ}
$$

$$
\therefore \angle Y S R=R \hat{Q Y} \text { (corresponding angles }
$$

$$
\begin{aligned}
& =90^{\circ} \text { in congruet Friangles } \\
& \text { are equall. }
\end{aligned}
$$

2/2

WCALLISTOUStaffifomeSWOHURAH M Fac Admin\Assessment infolSuggested Mk solns template_V2,doc

MAXHEMATICS: Question 8

ii) $y=e^{x}$
$x=\ln y$
$x^{2}=(\ln y)^{2}$
$V=\pi \int_{a}^{b} x^{2} d y$ where $a=3, b=5$
$\therefore V=\pi \int_{3}^{5}(\ln y)^{2} d y$
iii)

y	3	3.5	4	4.5	5
x	1.099	1.253	1.386	1.504	1.609
x^{2}	1.207	1.569	1.922	2.262	2.590

$V=\pi \int_{3}^{5}(\ln y)^{2} d y$
$\approx \pi \times \frac{h}{3}\left(f_{0}+4 f_{1}+2 f_{2}+4 f_{3}+f_{4}\right)$
$\approx \frac{\pi}{6}\left[\begin{array}{r}1-207+4(1.569)+2(1.922) \\ +4(2.262)+2.590\end{array}\right]$
$\approx 12.02576 \ldots$
≈ 12.0 units 3 (1 dpp)
Marks

Marker's Comments
Accurate shape
Carrect domain

Make x the subject

Form integral

Function values

Correct use of Simpison's formula

Approximated answer

MATHEMATICS: Question 9

Suggested Solutions
|Marks
Marker's Comments
t) i) $\frac{d y}{d t}$ is mininuem when glass .is widest, i.e. $y_{1}=12, \cdots$
ii) $\frac{d y}{d t}$ is maximum when glass is thinnest, i.e. $y_{2}=4 \frac{1}{2}$.
iii) Concavity changes at y_{1} \& y_{2}.
) As M bisects $c 0, c m=4 \mathrm{~cm}$.
$\operatorname{Arc} C D=r \theta$

$$
=8 \times \frac{2 \pi}{3}
$$

$$
=\frac{16 \pi}{3} \text { or } 5 \frac{1}{3} \pi \mathrm{~cm} .
$$

In $\triangle D O M, m D^{2}=4^{2}+8^{2}-2(4 \times 8) \cos \left(\frac{2 \pi}{3}\right)$

$$
=16+64-(-32)
$$

$$
M D^{2}=112
$$

$M D=\sqrt{112} \quad$ (as $M D>0$)
$=4 \sqrt{7} \mathrm{~cm}$
\therefore Perimeter is $\left[4+4 \sqrt{7}+\frac{16 \pi}{3}\right] \mathrm{cm}$.

MATHEMATICS: Question 9		
Suggested Solutions	Marks	Marker's Comments
c) $\begin{aligned} \int_{2}^{k} \frac{2 t}{3 t^{2}-1} d t & =\frac{1}{3} \int_{2}^{k} \frac{6 t}{3 t^{2}-1} d t \\ & =\frac{1}{3}\left[\ln \left(3 t^{2}-1\right)\right]_{2}^{k} \\ \frac{1}{3} \ln 13 & =\frac{1}{3}\left[\ln \left(3 k^{2}-1\right)-\ln (12-1)\right] \\ \ln 13 & =\ln \left[\frac{3 k^{2}-1}{11}\right] \\ \frac{3 k^{2}-1}{11} & =13 \\ 3 k^{2}-1 & =143 \\ 3 k^{2} & =144 \\ k^{2} & =48 \\ k & = \pm 4 \sqrt{3} \text { but } k>2 \\ \therefore k & =4 \sqrt{3} \text { only. } \end{aligned}$	1 1 $\frac{1}{2}$ $\frac{1}{2}$	Integrate Eliminate log terms S'implify Consider restriction
d) Since a, b, c is a $G P, \quad \frac{c}{b}=\frac{b}{a}$. $\begin{aligned} \therefore \log \left(\frac{c}{b}\right) & =\log \left(\frac{b}{a}\right) \\ \log c-\log b & =\log b-\log a \end{aligned}$ $\therefore \log a, \log b, \log c$ is an AP. ALTERNATIVE METHOD Let r be the common ratio of the $G P$. $\begin{aligned} \therefore b & =a r \\ \log b & =\log (a r) \\ & =\log a+\log r \\ c & =a r^{2} \\ \log c & =\log \left(a r^{2}\right) \\ & =\log a+\log \left(r^{2}\right) \\ & =\log a+2 \log r \end{aligned}$ $\therefore \log a, \log b, \log c$ is an AP where the common difference is logr.	1 1 1	Take logs of both sides Maripulate with \log laws

CALLISTOUSLaffHomeSWOHNRAH M Fao Admin Assossment infolSuggested Mk solns template_V4.doc

HCALLISTOUSLaffiomesWOHURAH M Fsc AdminkAssessment infolSuggested Mk solns template_V4.doc

