Class:

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2011

MATHEMATICS

Time Allowed – 3 Hours (Plus 5 minutes Reading Time)

- All questions may be attempted
- All questions are of equal value
- Department of Education approved calculators and templates are permitted
- In every question, show all necessary working
- Marks may not be awarded for careless or badly arranged work
- No grid paper is to be used unless provided with the examination paper

The answers to all questions are to be returned in separate *stapled* bundles clearly labeled Question 1, Question 2, etc. Each question must show your Candidate Number.

Ques	tion 1	- Start a new sheet of paper	Marks
a)	Solve	$x^2 - 3x - 18 = 0$	1
b)	Conve	ert $\frac{7\pi}{9}$ radians to degrees	1
c)	Write	down a primitive of $\sec^2 3x$	1
d)		2x-1 = 7	2
e)	Write	$\frac{2}{\sqrt{17}-3}$ with a rational denominator	1
f)	Given	$f(x) = \frac{1}{3^x} \qquad x < 3$	
	evalua	$(x-3)^2 + 1$ $x \ge 3$, the $2f(4) - f(-1)$	2
g)	Find the	he non-zero values of x for which the geometric series	
		$2-6x+18x^2-\ldots$ has a limiting sum	2
h)	i)	Write down the equation of the locus of a point <i>P</i> that is 3 units from the point $A(2,-4)$	1
	ii)	How many times does this locus cut the <i>x</i> axis ?	1
Ques	tion 2	- Start a new sheet of paper	Marks
a)	Differ	entiate the following with respect to x :	
	i)	$\ln\sqrt{x^2+3}$	2
	ii)	$(2x^2+7)^3$	1
	iii)	$x^2 \cos x$	2
b)	The ec i)	quation of a parabola is given by $8y = x^2 + 4x + 12$ Find the coordinates of the vertex	2
	ii)	Write down the focal length of the parabola	1
	iii)	Sketch the parabola, clearly showing the focus and directrix	2
c)	Solve	the equation $\sec^2 x = 4$ for $0 \le x \le 2\pi$	2

Question 3 - Start a new sheet of paper

c)

- a) Given that $\log_k 5 = 1.838$ and $\log_k 2 = 0.792$, find the values of
 - i) $\log_k 50$ ii) $\log_k (0.4)$ iii) $\log_{10} k$ **4**
- b) An unbiased spinner, as shown, is equally likely to stop at any one of the letters *A*, *E*, *I*, *O* or *U*

i)	If the spinner is spun twice, find the probability that it stops on the same letter both times.	1
ii)	How many times must the spinner be spun for it to be 99% certain that the spinner will have stopped on E at least once?	2
i)	Sketch the graph of $y = 3\sin 2x$ for $0 \le x \le 2\pi$ (Your diagram should take up at least one quarter of a page.)	2
ii)	Draw the line $y = \frac{x}{2}$ on the same diagram, noting particularly the point on the line where $x = 2\pi$	1
iii)	Hence determine the total number of solutions there are to the equation	
	$6\sin 2x - x = 0 \qquad \text{for all } x$	2

(**NB** You are **not** required to solve the equation but you should include a short explanation of your answer)

Ques		- Start a new sheet of paper	Marks
a)	The gr	radient of a curve is given by $\frac{dy}{dx} = 3x^2 - 4$	
	i)	Find $\frac{d^2 y}{dx^2}$	1
	ii)	Find those values of x for which the curve is both increasing and concave downwards. Show your reasoning.	2
	iii)	If the curve passes through the point $(1, -2)$, find the equation of the curve.	2
b)		bordinates of A, B and C are $(4, -6)$, $(-18, 0)$ and $(0, 6)$ respectively. The midpoint of AB.	
	i)	Draw these points on a clear coordinate diagram and show that D has coordinates (-7, -3).	1
	ii)	Show that the equation of the line <i>AC</i> is $3x + y - 6 = 0$	2
	iii)	Show that the line BC is perpendicular to the line AC	1
	iv)	Therefore <i>AB</i> is the diameter of a circle which passes through <i>A</i> , <i>B</i> and <i>C</i> . Find the equation of this circle.	2
	v)	Find the circumference of the circle, accurate to 1 decimal place.	1
Ques	tion 5	- Start a new sheet of paper	Marks
a)	-	sails from <i>O</i> on a bearing of 130°T to the point <i>P</i> . <i>P</i> lies on a bearing $^{\circ}$ T from <i>M</i> where <i>M</i> is 120 kms due south of O.	
	i)	Show this information on a clear diagram and confirm that $\angle OPM = 100^{\circ}$	1
	ii)	How far, to the nearest kilometre, is P from M ?	2
	iii)	A lighthouse is located at L which is 40 kms due south of O . What was the closest that the ship came to L as it made its way from O to P .	2
b)		stance decomposes such that the mass M (kgs) remaining at any time t (hrs) is by $M = M_0 e^{-kt}$. If $\frac{3}{4}$ of the substance has decomposed in 4 hours, find:	
	i)	the exact value of k	2
	ii)	the value of M_0 , correct to 2 decimal places, given that 4kg of the substance remains after the first 90 minutes.	2
c)	Simpli	ify $\frac{1 + \cot \theta}{\csc \theta} - \frac{\sec \theta}{\tan \theta + \cot \theta}$	3

Question 6 - Start a new sheet of paper

a) i) Find
$$\int x \sin(x^2) dx$$

ii) Evaluate
$$\int_{1}^{10} \sqrt{x} dx$$

- b) The quadratic equation $5x^2 (21+a)x + a = 0$ has two roots, with one of the roots being the reciprocal of the other. Find the value of *a* and hence find the two roots.
- c) A polygon has 60 sides. The lengths of the sides, starting with the smallest, form an arithmetic sequence. The perimeter of the polygon is 1770 cms and the length of the longest side is three times the length of the shortest side. Find the lengths of the two shortest sides.

The diagram shows the region enclosed between the two curves $y = e^{x/2}$ and $y = 1 - x^2$ and the line x = 1. Find the area of this enclosed region.

- Question 7 Start a new sheet of paper
- a) PQRS is a rhombus, angle P being acute. X is the point on PS such that QX is perpendicular to PS. QX intersects the diagonal PR at Y.
 - i)Show this information on a clear diagram and explain why $\angle SRP = \angle QRP$ 1ii)Prove that triangle SYR is congruent to triangle QYR.3
 - iii) Show that $\angle RQY$ is 90° and hence find the size of $\angle YSR$

Question 7 is continued on the next page.....

Marks

2

Marks

1

2

2

4

Question 7 (continued)

b)

b)		elocity <i>v</i> (kms/min) of a train travelling from Epping to Eastwood, is given $= t^2(3-t)/3$, where <i>t</i> is the time in minutes since leaving Epping.	
	i)	If the first stop is at Eastwood, how long does the journey take?	1
	ii)	Find an expression for the distance (<i>x</i> km) travelled from Epping after time <i>t</i> (where $0 \le t \le 3$)	2
	iii)	Hence find the distance from Epping to Eastwood.	1
	iv)	Where and when, between the two stations, was the train travelling the fastes	t? 2
Ques	stion 8	- Start a new sheet of paper	Marks
a)	with a	sets up a prize fund with a single investment of \$1000 to provide her school n annual prize of \$72. The fund accrues interest at a rate of 6% per annum, punded annually. The first prize is awarded one year after the investment is	

i)	Calculate the balance in the fund at the beginning of the second year, after the first prize has been awarded.	1
ii)	Let B_n be the balance in the fund at the end of n years (after the nth prize has been awarded and while funds are still available). Show that $B_n = 1200 - 200 \times (1.06)^n$	2
iii)	At the end of the tenth year (after that prize has been awarded), it is decided that the prize will henceforward be increased to \$90. For how many more years can the fund be used to award the full prize?	3

b) i) Sketch the graph of
$$y = e^x$$
 for $0 \le x \le 2$

The portion of the curve $y = e^x$ between y = 3 and y = 5 is rotated about ii) 2 the y-axis to give a solid. Show that the volume of the solid formed is 5

given by
$$\pi \int_{3}^{6} (\ln y)^2 dy$$
 cubic units.

Use Simpson's Rule and 5 function values to find an approximation to this iii) 3 volume (answer to 1 decimal place).

Question 9 - Start a new sheet of paper

a) The diagram shows a 16 cm high wine glass that is being filled with water at a constant rate (by volume). Let y = f(t) be the depth of the liquid in the glass as a function of time.

- i) Write down the approximate depth y_1 at which $\frac{dy}{dt}$ is a minimum. 1
- ii) Write down the approximate depth y_2 at which $\frac{dy}{dt}$ is a maximum. 1
- iii) If the glass takes 8 seconds to fill, graph y = f(t) and identify any points on your graph where the concavity changes. 2
- b) In the diagram, *CD* is an arc of a circle with radius 8cm and centre *O*. *M* is the midpoint of *OC* and angle *COD* is $\frac{2\pi}{3}$ radians.

Find the perimeter of the shaded area CDM in exact form.

- c) Find the exact value of k (where k>2) such that $\int_{2}^{k} \frac{2t}{3t^{2} 1} dt = \frac{1}{3} \log_{e} 13$ 3
- d) If a, b and c are consecutive positive terms of a geometric sequence, show that $\log a$, $\log b$ and $\log c$ are consecutive terms in an arithmetic sequence.

3

Question 10 - Start a new sheet of paper

a) State the Domain and Range of the function $y = 2\sqrt{25 - x^2}$ 2

b) Evaluate
$$\sum_{r=1}^{63} \frac{1}{\sqrt{r+1} + \sqrt{r}}$$
 2

c)

The diagram shows a farmhouse F that is located 240m from a straight section of road, at the end of which is the bus depot D. The front gate G of the farmhouse is 3000m from the bus depot. The school bus leaves the depot at 8am and travels along the road at 15 ms⁻¹. Peter lives in the farmhouse and can run across the open paddock at a speed of 4 ms⁻¹. The bus will stop for Peter anywhere on the road but will not wait.

Assume that Peter catches the bus at the point *P* where $\angle GFP = \theta$.

i)	Show that the time, in seconds, taken for the bus to go from D to P is given by $200 + 16 \tan \theta$	2
ii)	Find an expression, in terms of θ , for the time taken by Peter to run from <i>F</i> to <i>P</i> .	1
iii)	If Peter leaves home <i>T</i> seconds after 8am and he and the bus arrive at <i>P</i> at the same time, show that $T = 200 + 16 \tan \theta - 60 \sec \theta$	1
iv)	What is the latest time, to the nearest second, that Peter can leave home and still catch the bus?	4

***** THIS IS THE END OF THE EXAM *****

Marks

JKAHS MATHEMATICS (2UNIT) TRIAL 2011

. . ., .,

	Marks	Marker's Comments
(a) x?-3x-18=0 (x-b)(x+3)=0 x=-3 or b	1	to mark for each value
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	
$(c) \int Sec^{3}x dx = \pm \tan 3x + C$	1	+C not penalized as a primitive of Sector is \$ Tan 302
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S	I mark for each onswer
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	no morks deducted for not simplifying
$\begin{array}{c} F \\ F \\ \hline \end{array} & \begin{array}{c} F \\ \hline \end{array} & \begin{array}{c} + (4) = (4 - 3)^2 + 1 = 2 \\ \hline \end{array} & \begin{array}{c} - \\ \hline \end{array} & \begin{array}{c} - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ \end{array} & \begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	١	
$\frac{2}{2} \frac{f(y) - f(-y)}{-1} = \frac{y - 3}{-1}$	١	
$\frac{q}{r} = \frac{1}{r} = \frac{3\pi}{r}$ For locations, such lets 1	l	z≠o ż mork
-:- [32]-51 	ì	
(b) (i) (z=-2) ² + (y+4) ² = 9	l	
(ii) O times (the centre is though below) the axis and the radius is (90143)	١	

ALLIST O\StaffHomeS\WOHURAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc .

	•	
MATHEMATICS: Question?.	•	2011
(a) (i) y= In V2 ² 13	Marks	Marker's Comments
$y = \frac{1}{2} \ln (x^2 + 3)$	Y2	
$\frac{dy}{dx} = \frac{1}{2} \cdot \frac{\partial x}{x^{2+3}}$	1	
$= \frac{x}{x^{2}+3}$ (i) $y = (2x^{2}+7)^{3}$	3	
$dy = 3(2x^{2}+7)^{2}.4x$	У	
$= 12 \times (2x^2 + 7)^2$	Y2	
(iii) y=x ² cosx dy = 2xcosx - x ² sinx (Product Rule)	1 4	r each part
$= x \left(2\cos x - x \sin x \right)$	•	
$b(2^{8}y = x^{2} + 4x + 12)$ $8y = x^{2} + 4x + 4 + 8$		
$8y = (x+2)^2 + 8$ $8y - 8 = (x+2)^2$	1/2	If they just wrote down
$8(y-1) = (x+2)^2$	У <u> </u>	(-2,1) they opt the marks
verter is (-2,1) (1) 4a=8	1	
a=2 .: focal length $=2$	l	(12 for y-intercept
	2) 1/2 for focus / 1/2 for directrix
		12 for shape
$\begin{array}{c} (c) & \sec^2 x = 4 \\ c & \cos^2 x = \frac{1}{4} \end{array} \xrightarrow{7} c & \cos x = \frac{1}{2} \\ c & \cos^2 x = \frac{1}{4} \end{array} \xrightarrow{7} c & \sin x = \frac{1}{2} \\ x = \frac{1}{$	2.	* If they only had 2 answers - I mork
		* IP they had cosx = 1/

ICALLISTO/StaffHomeSIWOHURAH M Fac Admin/Assessment info/Suggested Mk solns template_V2.doc and then 2 movers =

•

J	TK AHS	:	TRIAL

LS

MATHEMATICS 24NIT

Mug 2011

JKAHS TRIALS : QUESTION 3

MATHEMATICS 24: nuy 2011

MARKS

COMMENTS

EXPECTED ANSWERS · No marks if ± (b) (1) P(same letter, both times) only. $= \left(\frac{1}{5}\right)^2 \times 5$ 5 1 · max 1 if n=2.75 (1) $P(E) = \frac{1}{2} \Rightarrow P(\overline{E}) = \frac{4}{2}$ 12 Jet n = number of spins generally poorly Then $\left(\frac{4}{5}\right)^{n} < 0.01$ 12 done $n \log (\frac{4}{5}) < \log \frac{1}{100}$ $n > \log \frac{1}{100} / \log (\frac{4}{5})$ n > 20.6 (1dp)1 for correct ... Number of spins is 21 Conclusion (0) (i) ± amplitude (2TT, TT) 3 2 period thy sale ł 12 shape -3 · 1/2 for (2π,π) (4) wl !! y = 3sin272 1 for labelled line two the origini ser 偏心 (111) here are 4 solutions for × >0 12 (2) for recognising that 6sin 2x-2 = 0 transform as can be seen on the graph and also due to $\pi > 3$, there would be no points of intersection beyond $x > 2\pi$. For x < 0 and $x > -2\pi$, to 351n2x= 1/2 12 (2) for 4 solutions; x>0 there would be a further 3 PoI; (1) for the 3 solutions; x 20 and Hence total number of solutions total of 7 6

YUESTION 3

5.0.0			
EXPECTED ANSWERS	MA	KRKS CON	NMENTS
$ \begin{array}{l} (i) \log_{R} 50 \\ = \log 5^{2} \times 2 \end{array} $		Fairly	well done
$= 2\log 5 + \log 2$ = $2 \times 1.838 + 0.792$	1	- Suu	
$= \frac{4.468}{\log_{R}(0.4)}$	12		
$= \log_{R}^{2/5}$ = $\log_{2} - \log_{5}$	12	difference	
= 0.792 - 1.838 $= -1.046$	12		
$\frac{1}{10} \frac{\log R}{\log R}$	1 q	·Gener clone wotient · Many	ally not well provided lengt tions
$= \frac{1}{\log_{g} 5 + \log_{g} 2}$		um Some	"creative" auto found
$=\frac{1}{1.838+0.792}$	1	then • max	resubstituted resubstituted (R=2.4) 1 ¹ / ₂ if answ
$= \frac{1}{2.63} \\ = \frac{100}{263}$		045 1	eft as 2.63
= 0.380 (3dp)			

MATHEMATICS: Question	4	
Suggested Solutions	Marks	Marker's Comments
a) i) $\frac{d^2y}{dx^2} = 6x$	1	Correctly differentiates
ii) For curve to be increasing, y'>0.		
i.e. $3x^2 - 4 > 0$ $x^2 > \frac{4}{3}$		
$\frac{1}{\sqrt{3}} \propto \frac{2}{\sqrt{3}} \propto \frac{2}{\sqrt{3}}$	1/2	Solves inequality for Y'
For curve to be concave down, y"<0.		
i.e. 6x<0 x<0	12	Solves inequality for y"
$\therefore \ x < \frac{-2}{\sqrt{3}} \text{ only.}$	1	Takes intersection
iii) $y = \int (3x^2 - 4) dx$		
$y = x^3 - 4x + c$	1	Indefinite integral
Since curve passes through (1,-2),		
-2 = 1 - 4 + c c = 1	1	Correctly evaluates Constant
$= - y = x^3 - 4x + 1$	ļ	-
b) i) (c(0,6)	<u> </u> 2	Accurate oliagram
B(-18,0) >> x		
D(-7, -3)		
$D = \left(\frac{-18+4}{2}, \frac{0-6}{2}\right) \qquad \qquad$	2	Calculate midpoint of AB
= (-7,-3)		
= (-7,-3)		

~ `

b) Continued. ii) $m_{AC} = \frac{6 - (-6)}{0 - 4}$ =-3 :. Equation of AC is $\gamma - 6 = -3(x - 0)$ $3x + \gamma - 6^{\gamma} = -3x + 6$ iii) $m_{AC} = -3$ (shown above) $m_{BC} = \frac{6 - 0}{0 - (-18)}$ $= \frac{1}{3}$	Marks 2 L	Marker's Comments Correct use of point-gradient a- two-point form
ii) $m_{AC} = \frac{6 - (-6)}{0 - 4}$ =-3 : Equation of AC is $y - 6 = -3(x - 0)$ $3x + y - 6^{2} = -3x + 6$ iii) $m_{AC} = -3$ (shown above) $m_{BC} = \frac{6 - 0}{0 - (-18)}$ $= \frac{1}{3}$		point-gradient a- two-point form
iii) $m_{AC} = -3$ (shown above) $m_{BC} = \frac{6-0}{0-(-18)}$ $= \frac{1}{3}$	L Z	
= {3	Lz	
		Calculate both gradients
$= m_{Ac} \times m_{Bc} = -3 \times \frac{3}{3}$ $= -1$ $\therefore AC \perp BC.$	42	Relate gradients
iv) If AB is diameter, $D(-7, -3)$ is centre. Radius $AD = \sqrt{(-7-4)^2 + (-3+6)^2}$	12	Centre co-ordinates
$= \sqrt{121 + 9}$ $= \sqrt{130} \text{units}$	42	Radius
: Circle equation: $(x+7)^2 + (y+3)^2 = 130$.	1	Equation
 V) Circumference = 2 πr = 2πr × J130 = 71.639334 ≈ 71.6 units (1dp) 	42 42	Exact Value Correctly approximates

.

Expectes) Answers MARKS COMMENTS
a) (i)

$$10^{10}$$

 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}
 10^{10}

2011	-		. .
·····	Expected Answers	MARKS	COMMENTS
5	b)(1) $M = M_0 e^{-Rt} = amount$ remaining when $t = 4$, $M = \frac{1}{4} M_0$ $\therefore \frac{1}{4} = e^{-4R}$ $4R = \ln 4$ $R = \frac{1}{2} \ln 2$	1 for recognising $M = \frac{1}{4}M_{o}$ 1 for final step	• A large number of students used $M = \frac{3}{4} M_{0}$, maximum then was 1 mark.
ents e display nts nal , to stion	(11) When $t = 90$ minutes = $1\frac{1}{2}$ hrs, then $M = 4$, kg $\therefore 4 = M_0 e^{-3/2} R$ $\therefore M_0 = 4 e^{3/2} R$ $= 4 e^{3/2} x^{\frac{1}{2}} \ln 2$ $= 4 e^{3/4} \ln 2$ $= 6.727 \dots Rg$ = 6.73 Rg (2dp) $\therefore M_0$ is 6.73 Rg	1 for setting up correct equation t for display t for ans to 2dp	4 lu (4/3) • Many student are still not showing how the initial
SLLOM			

QUESTION 5		
EXPECTED AN CULERS	MARKS	COMMENTS
$ \frac{(C)}{\cos c_{0} \theta} = \frac{1}{1 + \cos \theta} - \frac{1}{1 - \cos \theta} + \frac{1}{\cos \theta} + \frac{1}{\cos \theta} = \frac{1 + \frac{\cos \theta}{\sin \theta}}{\frac{1}{\sin \theta}} - \frac{1}{\frac{\cos \theta}{\cos \theta} + \frac{\sin \theta}{\sin \theta}} = \frac{1 + \frac{\cos \theta}{\sin \theta}}{\frac{1}{\cos \theta} + \frac{\cos \theta}{\cos \theta} + \frac{\sin \theta}{\sin \theta}} = \frac{1}{\cos \theta} \left(\frac{1 + \frac{\cos \theta}{\sin \theta}}{1 - \frac{\cos \theta}{\cos \theta} + \frac{1}{\cos \theta} + \frac{1}$	t for expression everything in terms of sinpand/or	COMMENTS • ft lents are still skipping many partl of their working e · -1 if Sin ² 0 + cos ² 0 = 1 was not stated or expressed accordingly in the expression

V

1

2011 TRIAL HSC 2.0 MATHEMATICS: Question. 6 Suggested Solutions	Marks	Marker's Comments
<u>Qub (i) fre 5 m (22) dre = - + (25 (22) + k</u>	1	Cas(22)+k without the minus loses t mark
$\frac{(1)}{1} + \frac{1}{2} + $	1	
(b) 5 + 2 - (-1+4) + 2 = 0 $$	1	I for each root
$5\pi^{2}-2bx+5 = 0$ $(5\pi-1)(x-5) = 0$ $Roots = 22 = 5 = 274 = 5$	1	
(c) Let c be the first titic and d the common difference $5_{bo} = \frac{50}{2} \left[2c + 59d \right] 2 1770$ $ba + 177d = 177 \dots (1)$ allo a + 59d = 3a 2a = 59d $\therefore ba = 177d \dots (2)$	Mr Nr	
Sub (2) in (1) $\int \frac{dz}{dz} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}$	1 1 1	I mark for each length
= (2) E = E) 22 itz = = 0: 1307758	1	

\CALLISTO\StaffHomeS\WOHURAH M Fac Admin\Assessment info\Suggested Mk solns template_V4.doc

2011 **Marker's Comments** Marks Suggested Solutions (b) is stops when v=0 <u>t'(t-3)</u> =0 () right or wrong only .: stops when t=0 or t=3 . Journey takes 3 minutes $\bigcup_{i=1}^{1} \frac{d_{i}}{d_{i}} = \frac{d_{i}}{d_{i}}$ lost one mark it . x= 1/3 - t+ - c they forgot the "+ c" When t=0, >c=0 .: c=0 (11) when t=3, x= 1/3×27 - 1/2×34 . It is 2'4km from Epping to Eastwood $\dot{\mathbb{W}}$ v = $t^2 - t^2$ #= 2t - t 21 =0 & t=0 or t=2 些= 2-2€ If they didn't when t=2, tr = 2-4=-2 <0 Y2 discuss why it i relative maximum or test the nature when t=2, $x=\frac{1}{3}(2)^{2}-\frac{1}{12}(2^{4})$ 1/2 at t=2, they lost ba mark!! " Maximum speed at x=4/3km 15 2 minutes ter

LISTO\StaffHome\$\WOHURAH M Fao Admin\Assessment info\Suggested Mk solns template V2.doo

WCALLISTO\StaffHomes\WOHURAH M Fac Admin\Assessment info\Suggested Mk solns template_V2.doc

MATHEMATICS: Question 8				
Suggested Solutions	Marks	Marker's Comments		
a) i) $B_1 = 1000 \times 1.06 - 72$ = 988	12	Interprets question		
: Bolance is \$ 988.	12	Evaluates		
ii) $B_2 = B_1 \times 1.06 - 72$ = 1000 (1.06) ² - 72(1.06) - 72 = 1000 (1.06) ² - 72(1.06 + 1)				
$B_3 = 1000 (1.06)^3 - 72 (1.06^2 + 1.06 + 1)$	1	Establish pattern		
$= B_n = 1000 (1.06)^n - 72 (1.06^{n-1} + \dots + 1.06 + 1)$				
$\beta_{n} = 1000 (1.06)^{n} - 72 \left[\frac{1.06^{n} - 1}{1.06 - 1} \right] = \frac{EQUATION}{ONE}$	12	Identify GP		
= 1000 (1·06) ⁿ - 1200 (1·06 ⁿ - 1)				
= 1000 (1.06) ⁿ - 1200 (1.06) ⁿ + 1200	12	Simplify		
$B_n = 1200 - 200 (1.06)^n$ as required.				
$\begin{array}{l} (ii) \beta_{10} = 1200 - 200 \left(1 \cdot 06\right)^{10} \\ = 841 \cdot 83046 \cdots \end{array}$	-1-2	Evaluating B10		
let Cn be the balance at the end of n years after the prize increases.		, i i i i i i i i i i i i i i i i i i i		
$: C_n = 841.83(1.06)^n - 90\left(\frac{1.06^n - 1}{1.06 - 1}\right) = 0$				
$= 841.83(1.06)^{2} - 1500(1.06^{2} - 1)$	12	Equation for		
$C_n = 1500 - 658 \cdot 17(1.06)^n$	2	new balance		
The fund will run out when $C_n = 0$,				
i.e. $1500 - 658.17 (1.06)^n = 0$ $(1.06)^n = \frac{1500}{658.17}$				
$n = \log_{1.06} \left(\frac{1520}{658.17} \right)$				
= <u>h1500 - h658-17</u> h1-06		Make n the		
$\gamma = 14 \cdot 14 \cdots$	1	subject		
: Full prize can be given for a further 14 years.	1	Final answer		

÷ .

MATHEMATICS: Questio		
Suggested Solutions	Marks	Marker's Comments
(2, e^2)	<u> </u> 2	Accurate shape
	42	Correct domain
$(6,1) \qquad \qquad$		
$ii) Y = e^{x}$		
$x = hy$ $x^{2} = (hy)^{2}$	/	Mahe x the subject
$V = \pi \int_{a}^{b} x^{2} dy \text{where } a = 3, b = 5$:- $V = \pi \int_{3}^{5} (lny)^{2} dy$	1	Form integral
iii) $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	Function Values
$\approx \frac{\pi}{6} \left[1 \cdot 207 + 4(1 \cdot 569) + 2(1 \cdot 922) \right] + 4(2 \cdot 262) + 2 \cdot 590 \right]$ $\approx 12 \cdot 02576 \cdots$)	Correct use of Simpson's formula
≈ 12.0 units ³ (Idp)		Approximated answer

				· · · · · · · · · · · · · · · · · · ·	
MATHEMATICS: Question	7		1	MATHEMATICS: Question	9
	Marks	Marker's Comments	,	Suggested Solutions	
Suggested Solutions Suggested Solutions i) $\frac{dy}{dt}$ is minimum when glass is widest, i.e. $y_1 = 12$. ii) $\frac{dy}{dt}$ is maximum when glass is thinnest, i.e. $y_2 = 4\frac{1}{2}$. iii) Conceptly changes at $y_1 \& y_2$. $\frac{1}{12}$ $\frac{1}{12$		Marker's Comments Accepted $\pm \frac{1}{2}$ Accepted $\pm \frac{1}{2}$ Paints of inflexion Endpaint (8,16) Shapee (i.e. correct Concavity) Aadius Arc length Cosine rule Simplify MD		Suggested Solutions c) $\int_{2}^{k} \frac{2t}{3t^{2}-1} dt = \frac{1}{3} \int_{2}^{k} \frac{6t}{3t^{2}-1} dt$ $= \frac{1}{3} \left[\ln(3t^{2}-1) \right]_{2}^{k}$ $\frac{1}{3} \ln 13 = \frac{1}{3} \left[\ln(3t^{2}-1) - \ln(12-1) \right]$ $\ln 13 = \ln \left[\frac{3t^{2}-1}{11} \right]$ $\frac{3t^{2}-1}{11} = 13$ $3t^{2} - 1 = 143$ $3t^{2} = 144$ $t^{2} = 48$ $t = \pm 4\sqrt{3} \text{but } t > 2$ $\therefore t = 4\sqrt{3} \text{orly.}$ d) Since a, b, c is a GP, $\frac{c}{b} = \frac{b}{a}$. $\therefore t = 4\sqrt{3} \text{orly.}$ d) Since a, b, c is a GP, $\frac{c}{b} = \frac{b}{a}$. $\therefore \log(\frac{c}{b}) = \log(\frac{b}{a})$ $\log c - \log b = \log b - \log a$ $\therefore \log a, \log b, \log c is a AP.$ $\frac{\text{ALTEENATIVE METHOD}}{1 = \log(ar)}$ $= \log(ar)$ $= \log(ar)$ $= \log(ar^{2})$ $= \log(ar^{2})$ $= \log(ar^{2})$ $= \log a + \log(r^{2})$ $= \log a, \log b, \log c is an AP where the common difference is logr.$	
				the common difference is logr.	

!

.

, ··

Marker's Comments

Marks

1

1

1/2

12

1

1

1

1

.

Integrate

Eliminate log terms

Consider restriction

Take logs of both sides

Maripulate with Log laws

Simplify

		·
2011 TRIAL HSC MATHEMATICS: Question) Marks	Marker's Comments
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2 Mark for each correct limit of domain or
Min value O at ends of conge. .: Range: O & y & 10	١	range
$(b) \stackrel{z}{\underset{r=1}{\overset{-}{\underset{r=1}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\overset{-}{\underset{r=1}{\underset{r=1}{\overset{-}{\underset{r=1}{\underset{r=1}{\overset{-}{\underset{r=1}{\underset{r=1}{\overset{-}{\underset{r=1}{\underset{r=1}{\overset{-}{\underset{r=1}{\atopr}{\underset{r=1}{\underset{r=1}{\underset{r=1}{\atopr}{\underset{r=1}{\underset{r=1}{\underset{r=1}{\underset{r=1}{\underset{r=1}{\underset{r=1}{\underset{r=1}{\underset{r=1}{\atopr}{\underset{r=1}{\atopr}{\underset{r=1}{\underset{r=1}{\underset{r=1}{\atopr}{\underset{r=1}{\underset{r=1}{\underset{r=1}{\underset{r=1}{\underset{r=1}{\underset{r=1}{\atopr}{\atopr=1}{\underset{r=1}{\underset{r=1}{\atopr}{\underset{r=1}{\atopr}{\atopr}{\atopr}{\atopr=1}{\atop{r=1}{\atopr=1}{\atopr}{\atopr}{\atopr}{\atopr}}{\underset{r=1}{\atopr}{\atopr}{\atopr}{\atopr}}{\underset{r=1}{\atopr}{\atopr}{\atopr}{\atopr}}{\atopr}}{\underset{r}}{\atopr}{\atopr}{\atopr}}{\atopr}$	12	
<u>→</u> → → → → → → → → → → → → →	<u>ا (</u>	
$= -\sqrt{1 + \sqrt{13}}$	土	
$\frac{(c)}{(i)} \xrightarrow{GP} = 240 \operatorname{Ton} O$ $\frac{(c)}{2} \xrightarrow{DP} = 3000 + 240 \operatorname{Ton} O$	42 42	
: Time = DP = 3000 + 240 Tano spood 15 = 200 + 16 Tan O	1	
(11) FP = 22405800 Time = 2405800 Time = 2405800 H b05800	1	60, J3600(1+Tanto Cosep, J3600(1+Tanto also received full marks
(ii) Time taken for Botor toreach P=T+60s		
T+60500 = 200+15TanO		
(iv) T = 200+16Ton 0-60Sec 0		
$\frac{dT = 16 \text{ Sec}^2 \Theta - 60 \text{ Sec} \Theta \text{ Ton } \Theta}{d\varphi}$ $\frac{d\varphi}{2T} = 4 \text{ Sec} \Theta (4 \text{ Sec} \Theta - 15 \text{ Ton } \Theta)$	1	
et = 0 for staturacy pts de 0 for staturacy pts 0 4520.0+0		

2011 TRIAL HSC. MATHEMATICS: Question. 1.0		
Suggested Solutions	Marks	Marker's Comments
$\begin{array}{c} (iv_{j:cont.} \\ \hline \\ & \underline{+SecQ = 15TonQ = 0} \\ \hline \\ & \underline{+SecQ = 15TonQ} \\ \hline \\ & \underline{+} \\ \hline \\ \hline \\ & \underline{+} \\ \hline \\ $		
- Swall = 4 15 Test nature	ł	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	١	
sutizag and traiberg ri sprada o zi suitagen at. te sussa xan land a sand suitagen at. (=) mas = 0.		
Co there is any one tranger for 0.26 < 0.30, 27 then the local max. is also the absolute max.		
Maximum Trone=200+11-Tan(Sin'(35)=605ec(Sin(13)) = 142-17_(2.dp)		
= 142 seconds (noorzst second)	上	or 2 minutes 22 seconds
<u>OR</u> TOST nature <u>al 21 - 452100 (4750032409-155238)</u> <u>al 32 - 452100 (4750032409-155238)</u> <u>al 67 - 4 (45200-155000)</u> ×4750005200		
5:57800711+652301-6523025131 = 65232560701- 923326107701-652301-652301-652201-652		
$\frac{1}{(8^{3})} \frac{1}{225m0-60-605m^{2}0} = -62^{-254}$		
Hence the concerts concerts down	4	
-: Latest time that Peter can leave home and still catch the bus is 8:02:22 am	5	

٠

CALLISTO\StaffHomeS\WOHURAH M Fao Admin\Assessment info\Suggested Mk solns template_V4.doc

\CALLISTO\StaffHome\$\WOHURAH M Fao Admin\Assessment info\Suggested Mk solns template_V4.doc

i.