Section I Multiple Choice 10 Marks

Attempt Question 1 - 10 (1 mark each)
 Allow approximately 15 minutes for this section.

Use the multiple choice answer sheet below to record your answers to Question 1 - 10 .
Select the alternative: A, B, C or D that best answers the question.
Colour in the response oval completely.
Sample:
$2+4=$?
(A) 2
(B) 6
(C) 8
(D) 9
A
\bigcirc
B
CD \bigcirc

If you think you have made a mistake, draw a cross through the incorrect answer and colour in the new answer
ie A
B
烄
C
\bigcirc
D \bigcirc

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word "correct" and draw an arrow as follows:
A

- B
B

D \bigcirc

Trial HSC Examination
 2U Mathematics, 2012

Multiple Choice Answer Sheet

Student ID number: \square
Completely colour in the response oval representing the most correct answer.

$\mathbf{1}$	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	\bigcirc
$\mathbf{2}$	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	\bigcirc
$\mathbf{3}$	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	\bigcirc
$\mathbf{4}$	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	\bigcirc
$\mathbf{5}$	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	\bigcirc
$\mathbf{6}$	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	\bigcirc
$\mathbf{7}$	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	\bigcirc
$\mathbf{8}$	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	\bigcirc
$\mathbf{9}$	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	\bigcirc
$\mathbf{1 0}$	A	\bigcirc	B	\bigcirc	C	\bigcirc	D	\bigcirc

Mark: /10

Section I Multiple Choice (10 marks)

Attempt Question 1 - 10 (1 mark each)
Allow approximately 15 minutes for this section.

Question 1

An infinite geometric series has a first term of 8 and a limiting sum of 12 . What is the common ratio?
A) $1 / 6$
B) $5 / 3$
C) $1 / 2$
D) $1 / 3$

Question 2

What is the greatest value taken by the function $f(x)=4-2 \cos x$ for $x \geq 0$?
A) 2
B) 4
C) 6
D) 8

Question 3

What is the value of $\int_{2}^{6} \frac{1}{x+2} d x$?
A) $\ln 2$
B) $\quad \ln 4$
C) $\ln 6$
D) $\quad \ln 8$

Question 4

The table below shows the values of a function $f(x)$ for five values of x.

\boldsymbol{x}	2	2.5	3	3.5	4
$\boldsymbol{f}(\boldsymbol{x})$	4	1	-2	3	8

What value is an estimate for $\int_{2}^{4} f(x) d x$ using Simpson's Rule with these five values ?
A) 4
B) 6
C) 8
D) 12

Question 5

It is known that the number $N(t)$ of ants in a certain nest at time $t \geq 0$ is given by $N(t)=\frac{K}{1+e^{t}}$ where K is constant and t is measured in months.
At time $t=0, N(t)$ is estimated at 2×10^{5} ants. What is the value of K ?
A) 2×10^{5}
B) 2×10^{-5}
C) 4×10^{5}
D) 4×10^{-5}

Question 6

Sixty tickets are sold in a raffle. There are two prizes. Lincoln buys 5 tickets. Which expression gives the probability that Lincoln wins both prizes?
A) $\frac{5}{60}+\frac{4}{59}$
B) $\frac{5}{60}+\frac{4}{60}$
C) $\frac{5}{60} \times \frac{4}{59}$
D) $\frac{5}{60} \times \frac{4}{60}$

Question 7

What is the equation of the normal to the curve $y=x^{2}-4 x$ at $(1,-3)$?
A) $x+2 y-7=0$
B) $x-2 y-7=0$
C) $2 x-y-5=0$
D) $2 x+y+5=0$

Question 8

Which of the following is the graph of $y=2 x^{3}-3 x^{2}$?
A)

B)

C)

D)

Question 9

The region in the diagram is bounded by the curve $y=x^{4}$, the y-axis and the line $y=16$.

Which of the following expressions is correct for the volume of the solid of revolution when this region is rotated about the y-axis?
A) $\pi \int_{0}^{2} x^{8} d x$
B) $\pi \int_{0}^{16} x^{8} d x$
C) $\pi \int_{0}^{2} \sqrt{y} d y$
D) $\pi \int_{0}^{16} \sqrt{y} d y$

Question 10

What are the solutions to the equation $e^{6 x}-7 e^{3 x}+6=0$?
A) $\quad x=1$ or $x=6$
B) $\quad x=0$ or $x=\frac{\ln 6}{2}$
C) $\quad x=0$ or $x=\frac{\ln 6}{3}$
D) $\quad x=1$ or $x=\frac{\ln 6}{2}$

End of Section I

Section II Total Marks is 90

Attempt Questions 11-16.
Allow approximately $\mathbf{2}$ hours \& $\mathbf{4 5}$ minutes for this section.
Answer all questions, starting each new question on a new sheet of paper with your student ID number in the top right hand corner and the question number on the left hand side of your paper.

All necessary working must be shown in each and every question.
Question 11 begins on the next page
a) \quad Simplify $\frac{3 x}{x+2}-\frac{5 x+19}{x^{2}+5 x+6}$

4

4
d) The angle of elevation of the top of tree $B T$ when viewed from point P is $10^{\circ} 12^{\prime}$.

After walking 100 m directly towards the tree one arrives at Q where the angle of elevation is $14^{\circ} 38^{\prime}$.

Copy the diagram and find the height of the tree to the nearest centimetre.
ii) $y=x^{2} \cos 4 x$
ii) $\int \frac{x^{2}-1}{x} d x$

Question 12 (15 Marks)

a) The diagram below shows two spinners.

Each of the three outcomes on the first spinner are equally likely. On the second spinner there are ten equally likely sectors for the arrow to land on with four possible outcomes.

In a game, both spinners are spun simultaneously. The player's score is the sum of the two numbers that the spinners land on. (eg A score of 4 in the above diagram).
A player wins if their score is an odd number greater than 4.
i) What is the probability of scoring 7 ?
ii) What is the probability that a player will win the first game?
iii) What is the probability that a player will win the first three games?

Question 12 (continued)

b) The fourth term of an Arithmetic Sequence is (-12) and the tenth term is 21 .

Calculate the value of the nineteenth term.
c) The point $Q(-2,1)$ lies on the line k which has equation $9 x-2 y+20=0$. The point $R(4,-2)$ lies on the line l which has equation $3 x+y-10=0$.
i) Find the coordinates of P, the point on the y-axis where k and l intersect.
ii) The line m joins Q and R. Show that the equation of m is $x+2 y=0$.
iii) Show, by shading on a sketch, the region defined by the three inequalities:

$$
9 x-2 y+20 \geq 0, \quad 3 x+y-10 \leq 0, \quad x+2 y \geq 0 .
$$

iv) Find, as a surd, the perpendicular distance from P to m and hence, or otherwise, find the exact area of the triangle bounded by the lines k, l and m.

Question 13 (15 Marks)

Start a new piece of paper

a) i) By completion of the square, or otherwise, show that the vertex of the parabola $x^{2}-10 x+15=2 y$ is at $(5,-5)$1

ii) Write down the focus of this parabola. 2
iii) Show that the parabola $y=4 x-x^{2}$ also passes through the point (5,-5). $\mathbf{1}$
iv) Find the other point of intersection of these two parabolas.
v) Hence find the area enclosed between the two parabolas.
b) The velocity, \dot{x}, in m / s of a particle moving in a straight line is given by $\dot{x}=1-2 \sin t$ for $0 \leq t \leq 2 \pi$, where t is the time in seconds. The particle is initially at $x=2$.
i) At what time(s) is the acceleration zero?
ii) What is the maximum velocity of the particle during this period. (You should demonstrate that this is a maximum and not a minimum.)
iii) Find the first time that the particle changes direction during this period.
iv) Hence, or otherwise, find the exact distance travelled by the particle between $t=0$ and the time when the particle first changes direction.
a) A sheep is grazing in a large paddock which is bounded on one side by a long straight fence. The sheep is tethered to a stake by a rope 20 m in length. If the stake is placed 10 m from the fence, find the area to the nearest square metre over which the sheep can graze.
b) The quadratic equation $x^{2}-3 x-13$ has roots α and β.
i) Write down the values of $\alpha+\beta$ and $\alpha \beta$.
ii) What is the exact value of $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$?
iii) What is the value of $6 \beta-2 \beta^{2}$?
c) A square $A B C D$ of side length 1 unit is shown below. The point F is drawn on $A B$ such that $\angle D C F=60^{\circ}$. The diagonal $D B$ intersects $C F$ at E.

i) Show that $\triangle D E C||\mid \triangle B E F$
ii) Show that $F B=1 / \sqrt{3}$
iii) Hence, or otherwise, find the ratio Area $\triangle D E C$: Area $\triangle B E F$
d) The region bounded by the graph $y=(x-3)^{2}$ and the line $y=9$ is rotated about the x-axis to form a solid of revolution.

Find the volume of the solid so formed.

a) Following an accident, water started leaking out of a tank. If the volume of water in the tank was $V(t)$ litres, then t days after the accident, the rate of change of V was given by $\frac{d V}{d t}=20 t-300$ litres per day.
When the tank stopped leaking, it still had 4750 litres in it.
i) For how many days was the tank leaking?
ii) Find a formula for V in terms of t.
iii) How much water was in the tank when it started leaking?
b) Allcare Home Loans has a special package for first home buyers. The main details of the package, as shown in their brochure, are summarised in the table.

Stage	Term	Special Features	Interest Rate
Introductory Stage	0-2 years (2 years)	No monthly repayments	6% pa compounded monthly
Secondary Stage	2-10 years (8 years)	Monthly repayments start. At the end of this period, the amount owing must be reduced to the original size of the loan.	9% pa compounded monthly
Final Stage	Variable (but not exceeding 20 years)	The borrower determines the size of the monthly repayment, provided that the loan is repaid within 20 years from the start of this stage.	12% pa compounded monthly

Alice and Bernard have accepted the terms of the above plan and they have borrowed $\$ 500,000$ to finance their first house.
i) Show that the amount owing at the end of the Introductory Stage, to the
nearest dollar, is $\$ 563,580$.

1
ii) The principal for the Secondary Stage will be $\$ 563,580$. Assume that the first monthly repayment, M, is paid after one month into the Secondary period. Find M, to the nearest cent if the amount owing at the end of the Secondary Stage is to be $\$ 500,000$.
iii) At the start of the Final Stage, Alice and Bernard have decided that they can afford to repay $\$ 6500$ per month.
a) Determine how many full payments of $\$ 6500$ it will take for the loan to have been repaid in full.
β The last monthly repayment of $\$ 6500$ is more than required. How much should be refunded to Alice and Bernard?
a) Given the function $y=\frac{10}{3+2 \cos x}$ in the domain $0 \leq x \leq 2 \pi$
i) Find the location and nature of all the stationary points in the domain.
ii) Graph the function in the given domain.
b) A mining company simultaneously established three new mining towns, A, B and C. Each had an initial population of 500 and it was planned that they each would grow by 50 inhabitants per year for the first ten years.
i) Only town A grew as planned. Write down an expression for the intended population of town A, t years after its opening ($t \leq 10$ and t is an integer).
ii) For various reasons, towns B and C did not grow as planned. Their populations are better modelled by:

Town B: $\quad \frac{d P_{B}}{d t}=-0.3 P_{B}$
Town $C: \quad P_{C}=100\left(5+t-t^{2} / 4\right)$
a) Show that the expression $P_{B}=500 e^{-0.3 t}$ satisfies the equation describing town B.
β Calculate, to the nearest integer, the population of town B after 6 years.
γ) Find when the population of town C reached its maximum and what was that maximum value?
8) The mining company has determined that any town is unviable if the population goes below 50 . Which will be the first town to close? (Justify your answer)

END OF EXAM

JRAHS ZUMATHS TRIAL, 2012

MATHEMATICS: Question.
MULTPLE CHICE
5. $\quad 2 \times 10^{5}=\ltimes$

$$
2 \times 10^{5}=\frac{k}{2} \quad: \quad k=4 \times 10^{5}
$$

$$
\text { 6. } \quad \frac{5}{60} \times \frac{4}{5 v^{2}}
$$

7. $\quad y=x^{2}-4 x$

$$
y^{\prime}=2 x-4
$$

$$
\text { ct } x=1 \quad m_{t}=-2
$$

$$
\therefore x_{n}=\frac{i}{2}
$$

$$
y+3=\frac{1}{2}(x-1)
$$

$$
x-2 y-7=0
$$

8.

$$
\begin{aligned}
y & =2 x^{3}-3 x^{2} \\
& =x^{2}(2 x-3)
\end{aligned}
$$

$$
\Rightarrow \text { ctounie rigt } a+x=0 \text { \& a single }
$$

$$
\text { root at } x=3 / 2
$$

Fine, $x=1 \quad y=-1 \Rightarrow \quad$ (B)

IICALLISTO\StaffHomeSIWOHJRAH M Fac Admin\Assessment infolSuggested Mk solns template_V4.doc

$$
\begin{aligned}
& 9 \cdot V=\int_{0}^{i 6} \pi x^{2} d y \\
& =\pi \int_{0}^{16} \sqrt{4} d y \\
& 10 . \\
& e^{6 x}-7 e^{3 x}+6=0 \quad 1 e+2 x=e^{3 x} \\
& u^{2}-7 u+6=0 \\
& (u-6)(u-1)=2 \\
& e^{3 x}=6 \text { or } e^{3 x}=1 \\
& 3 x=\ln 6 \quad 3 x=\ln 1 \\
& x=\frac{\ln 6}{3}
\end{aligned}
$$

$$
\begin{align*}
& 4 A=\underset{3}{20-5}\{4+4 \times(1)+(-2) 3+ \\
& \frac{2}{3}\{-2+4 \times 3+8\} \\
& =4 \tag{A}
\end{align*}
$$

JRAHS RU MATHS. TRIAL, 2012

MATHEMATICS: Question.. I/...
Suggested Solutions

Marks
Marker's Comments
(a) $\frac{3 x}{x+2}-\frac{5 x+19}{(x+2)(x+3)}$

$$
=\frac{3 x(x+3)-5 x-19}{(x+2)(x+3)}
$$

$$
=\frac{3 x^{2}+4 x-19}{(x+2)(x+3)}
$$

$(b)(i) \quad y=10\left(\frac{x-1}{x^{2}}\right)$

$$
\begin{aligned}
& =\ln (x-1)-1 n x^{2} \\
& =\ln (x-1)-2 \ln x
\end{aligned}
$$

$\begin{aligned} & \text { (i) } y=x^{2} \cos 4 x \\ & d y=2 x \cos 4 x \\ &(c)(i) \quad \int 3 x+e^{4 x} d x\end{aligned}$

$$
=\frac{3 x^{2}}{2}+e^{x}+e
$$

($\frac{1}{2}$ off for each error)
Stuctunts used quotient rule instead of using log laws. have difficulty have difficulty
expanding with
negative signs.
2 have difficulty
expanding with
negative sighs.

$$
2
$$

$$
12
$$

($\frac{1}{2}$ off for each error)
Students still

$$
y^{\prime}=-\frac{1}{x-1}-\frac{2}{x}
$$

$$
=\frac{2-x}{x-1)}
$$

\qquad
\qquad

$$
=2 x(\cos 4 x-2 x-144 x)
$$

($-\frac{1}{2}$ if no constant)
$\left(-\frac{1}{2}\right.$
for each error)

Students failing to make good use of sI. sheet.

IICALLISTO\StaffHome $\$$ WOHJRAH M Fac Admin\Assessment infolSuggested Mk solns template_V4.doc

MATHEMATICS: Question..//...

(1) $\frac{p T}{\sin 165^{\circ} 22 \prime}=\frac{100}{\sin 4026}$
\qquad
\qquad
($\frac{1}{2}$: $\quad \therefore \pi=P T \sin 10^{\circ} / 2$

$$
\begin{aligned}
& =\frac{100 \sin 165022^{\prime} \cdot \sin 10^{0} 12^{\prime}}{} \\
& =51040266^{\prime} \\
& =5756 .
\end{aligned}
$$

($\frac{1}{2}$) Thus, the height of the tree is

(an $79^{\circ} 48^{\prime}=\frac{100+x}{2}$
$<$ OTB $+14^{\circ} 38^{\prime}+90^{\circ}=180^{\circ}$

\qquad
tan $75^{\circ} 22^{\prime}=\frac{x}{h}$
$\left(\frac{1}{2}\right)$ From 2) $x=h$ tan 75022^{1} subset into (1)
\qquad

$$
h\left(\tan 79^{\circ} 48^{\prime}-\tan 75^{\circ} 22^{\circ}\right)=100
$$

$$
h=\frac{100}{\tan 79048^{\prime}-\tan 75^{\circ} 22^{\prime}}
$$

$\frac{1}{2}$

$$
=57.8756
$$

\therefore Height of the tree
$+(\pi, 4)$
\qquad
IICALLISTO\StaffHomeSIWOHVRAH M Fac Admin\Assessment infolSuggested Mk sons template_V4.doc
py $1 / 7$
MATHEMATICS: Question. 1.2.

(ii) P

$$
\left.\begin{aligned}
p\left(\text { win } 1^{s t} 3\right. & s n a e x)
\end{aligned}=\frac{7}{30} \times \frac{7}{30} \times \frac{7}{30} \cdots \right\rvert\,\{1
$$

(b)

$$
\begin{aligned}
& a+3 d=-12 \\
& a+9 d=21
\end{aligned}
$$

Imark

$$
\begin{aligned}
& \text { * If they } \\
& \text { git an of } 1 / 5 \\
& \text { ansiver } \\
& \therefore 2 m k s \text { max. } \\
& \text { * If theygsot } \\
& 1 / 5 \text { bithed } \\
& \text { the fiststine } \\
& \therefore 2 / 2 \text { miks. }
\end{aligned}
$$

*A lot of studets did NCT know the formula
x If then lef the "-" sign $\mathrm{F}_{\mathrm{k}-(1) \text { lost }}^{\text {link }}$. * wrong formula $=$ DMks

$$
=7012
$$

(5

$$
\begin{align*}
& 4 x-2 y+20=0=-(1) \tag{1}\\
& 3 x+10=0 \\
& 6 x-20=0=-(2) \tag{2}
\end{align*}
$$

(1) +

$$
\text { ans ito } x
$$

$$
\begin{aligned}
& 15 x=0 \\
& \text { sto }=0 \\
& 0-2 y+20=0 \\
& p, r(0,0) y=10
\end{aligned}
$$

\qquad
\qquad

\|CALLISTOIStaffHome\$IWOHURAH M Fac Admin\Assessment infolSuggested Mk solns template_V4.doc

MATHEMATICS: Question...12...

(iv)
 $\therefore g \wedge \rightarrow 0 R^{\circ} \quad y=y, m(x-x)$

$$
y-1=-1 / 2(x+2)
$$

It was a prof of so you had to show working to justify

$$
\begin{aligned}
2 y-2 & =-x-2 \\
2 y & =x
\end{aligned}
$$ the marks!!

$$
\therefore x+2 y=5
$$

* All students needed to do was plot P, Q and R but. \qquad
* students forgot how to simplify surds!!!

$$
\sqrt{9}=3
$$

IICALLISTO\StaffHome\$IWOHURAH M Fac Admin\Assessment infolSuggested Mk solus template_V4.doc

$$
\begin{aligned}
& \begin{aligned}
d= & a x+b y+c \mid \\
& =\frac{x+2 x-0=0}{\sqrt{2}^{2}+b^{2}}
\end{aligned} \\
& \frac{0 \times 1+2 \times 10+0}{\sqrt{T^{2}+2^{2}}} \\
& =\sqrt{5} \\
& =4 \sqrt{5} \text { units } \\
& Q R=\sqrt{(4-2)^{2}}+(-2-1)^{2} \\
& =\sqrt{3}=\sqrt{45} \\
& =3 \sqrt{5} \\
& A c \Leftrightarrow a=1 b h \\
& =\frac{1}{2} \times 35 \times 4 \sqrt{5} \\
& =300 \pi x^{2}
\end{aligned}
$$

2 U MATHS TRIAL SOLUTIONS. 2012

MATHEMATICS: Question. 13
Suggested Solutions
(a) (1) $x^{2}-10 x+15=2 y$

METHOD I

$$
\begin{aligned}
x^{2}-10 x+25 & =2 y-15+25 \\
-5 & =2 y+10 \\
(x-5)^{2} & =2(y+5)
\end{aligned}
$$

As it is of the form $(x-n)^{2}=4 a(y-k)$

$$
\therefore V e r t e x \quad V=(b, k)=(5,-5) \text { a ed }
$$

METHOD II: $\quad y=\frac{1}{2} x^{2}-5 x+\frac{15}{2}$
Axis $s f$ symmetry $x=-\frac{b}{200}=\frac{-(-5)}{2 \times \frac{1}{2}}=5$
of $x=5 \quad 25-10 \times 5+15=2 y$

$$
\begin{aligned}
2 y & =-10 \\
y & =-5
\end{aligned}
$$

$$
\therefore \text { T. pout }=V(5,-5)
$$

(ii) $A \leq 4 a \equiv 2$

$$
\begin{aligned}
& \therefore a=\frac{1}{2} \\
& \therefore t o a x s \\
&\left.t 5,-5+\frac{1}{2}\right)=\left(5,-4 \frac{1}{2}\right)
\end{aligned}
$$

(iii)
(ix)

$$
\begin{aligned}
& (i x) \quad y=4 x-x^{2}=(1) \\
& 2 y=x^{2}-10 x+15 \\
& 2\left(4 x-x^{2}\right)=x^{2}-10 x+15 \\
& 8 x-2 x=x^{2}-10 x+15 \\
& (-3)=x-6 x+5=0 \\
& (x-1)(x-5)=0
\end{aligned}
$$

$$
r-x=10 r 5
$$

in equal) $\quad y=3$ or -5
T, Other bout is (1,3)

$$
\begin{aligned}
& \text { verify }(5,-5) \quad \text { satisfies } \quad y=4 x-x^{2}
\end{aligned}
$$

MATHEMATICS: Question.l3

Suggested Solutions

$$
\begin{align*}
& \left.=\int 9 x-\frac{3}{2} x^{2}-\frac{15}{2} \right\rvert\, d x \\
& \text { Mrea }=\left[\left.\frac{9 x}{2}-\frac{1}{2} x^{3}-\frac{15}{2} x \right\rvert\,\right. \tag{1}\\
&=\left[\left(\frac{9 x 25}{2}-\frac{125}{2}-\frac{75}{2}\right)-\left(\frac{9}{2}-\frac{1}{2}-\frac{15}{2}\right)\right] \\
& \text { Area }=16=9 \text { ancts }
\end{align*}
$$

(la) $(1) \quad ;=Y=1-2$ sint $\quad 0 \leqslant t \leqslant 2 \pi$
Dater $t=0 \quad x=2 \quad v=1 \quad x=-2$

$$
\begin{aligned}
x=-2 c o s t & =0 \\
r-c o s t & =0 \\
t & =\frac{\pi}{2} \text { or } \frac{\pi}{2}
\end{aligned}
$$

\therefore oecel. $t, \frac{t}{2}$ or $\frac{3 \pi}{2}$ or $\frac{\pi}{2}$ secounds.

$$
x=1-2 \sin t
$$

$t=\frac{\pi}{2}$ or $\frac{\pi}{2}$

$$
A \leq 1 \quad-1 \leq \sin t \leqslant 1
$$

$$
s o-1 \leqslant 1-2 \sin t \leqslant 3
$$

$\therefore k a x$ speed is 3 mil \& cet $t=\frac{3 \pi}{2}$ ।
$O R$ Use \quad caleulecs useng (b) $(1) \quad t=\frac{\pi}{2}$, $\frac{3 \pi}{2}$ and $t E s T$
iii) Pcarticce cet $R E s$ only $v=x=0$

$$
\begin{array}{rl}
\therefore \quad 1-2 \operatorname{sint}=0 & s \\
s i n t & =\frac{1}{2} \\
t=\pi & s
\end{array}
$$

$F(\Delta t) t=\frac{\pi}{6}(s e c \delta n d s)$
furst $t=\frac{\pi}{6}($ seconds)
$T E s T$ if encenges dcvecton $S x\left(\frac{s e n}{6}\right)=-\sqrt{3}<0$
$\frac{1}{2}$ For $\frac{\pi}{6} s$

ES, if encenges dcvection $\leqslant x\left(\frac{\pi}{6}\right)=-\sqrt{3}<0 \therefore$ pushed boek
He
(iv) distance travelled $=\int 1-2 \sin t d t$

$$
\begin{align*}
& =[t+2 \cos E] 0 \\
& \left.=\left[\frac{\pi}{6}+2 \times \frac{\sqrt{3}}{2}\right)-(0+2)\right] \tag{ii}\\
& =\left(\frac{\pi}{6}+\sqrt{3}-2\right] m \\
& 0.2556 .
\end{align*}
$$ direction in

$$
i_{0}^{N} \leq t \leq \frac{\pi}{6}
$$

MATHEMATICS: Question.. 1.4

Marks

Different Approaches

If answer
step 2 Find 2θ.

$$
\therefore 2 \theta=\frac{2 \pi}{3}
$$

$$
\begin{aligned}
\text { shaded Sector } & =\frac{1}{2} r^{2}(\theta-\sin \theta) \\
& =\frac{20^{2}}{2}\left(\frac{2 \pi}{3}-\sin \frac{2 \pi}{3}\right. \\
& =200\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\therefore \text { Crazing area } & =A_{\text {circle }}-A_{\text {segment }} \\
& =\pi \times 20^{2}-\left(200\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right)\right. \\
& =400 \pi-\frac{400 \pi}{3}+100 \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& =1010.96 \cdots \\
& 11 m^{2}(10 \text { neo } \\
& \frac{\pi}{5}+100 \sqrt{3} .
\end{aligned}
$$

b (i)

$$
\left.\begin{array}{rl}
\alpha+\beta & =3 \\
\alpha \beta & =-13
\end{array}\right\}
$$

(ii)

$$
\begin{aligned}
\alpha \beta=-13 \alpha^{2} \beta^{2} & =\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha^{2}+\frac{1}{\beta^{2}}=\frac{\alpha^{2}+\beta^{2}}{(\alpha \beta)^{2}}} \\
& =\frac{9+26}{169}=\frac{35}{169} \\
& =
\end{aligned}
$$

\(\left.\begin{array}{rl}\alpha+\beta \& =3

\alpha \beta \& =-13\end{array}\right\}\)| $\frac{\alpha^{2}+\beta^{2}}{(\alpha \beta)^{2}}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha^{2} \beta^{2}}$ |
| :--- |
| $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$ |
| |
| $=\frac{9+26}{169}=\frac{35}{169}$ | Took $10 \sqrt{3}$ instead of $20 \sqrt{3}$.

- 838 - Means only area of major sector was calculated

Area is $1011 \mathrm{~m}^{2}$ (to nearest m^{2}) accepted $\frac{800 \pi}{3}+100 \sqrt{3}$.

MATHEMATICS: Question..! 4.
Pg 2
Suggested Solutions

c) In In $\triangle F B E$ and $\triangle G D C$,

$$
\angle B F E=\angle E C D=60^{\circ}
$$

(alternate angles are equal, $A B \| C D$ opp. sides of square).
$\angle F E B=\angle D E C$

(vertically opposite andes
are equal)
$\therefore \triangle D E C I I I \triangle B E F$ (Equiangular) r
ii)

$$
\begin{aligned}
\angle F C B & =30^{\circ}\left(\angle D C B \text { is } 90^{\circ}\right) \\
F B & =B C \tan 30^{\circ} \\
& =1\left(\frac{1}{\sqrt{3}}\right) \\
& =\frac{1}{\sqrt{3}}
\end{aligned}
$$

iii) $D C=1$ and $F B=\frac{1}{\sqrt{3}}$

$$
\therefore \frac{D C}{F B}=\frac{1}{1 / \sqrt{3}}=\sqrt{3}
$$

\therefore ratio of areas $=(\sqrt{3})^{2}: 1^{2}$

$$
=3: 1
$$

using

$$
A=\frac{1}{2} a b \sin C .
$$

IICALLISTOIStaffHomeS|WOHURAH M Fac Admin\Assessment infolSuggested Mk sols template_V4.doc

MATHEMATICS: Question... $14 .$.
Pg 3

$$
\begin{array}{|l|l|}
\hline \text { Suggested Solutions } & \text { Marks } \\
\hline
\end{array}
$$

$$
\begin{aligned}
& =486 \pi-\pi \int_{0}^{6}\left((x-3)^{2}\right)^{2} d x \\
& =486 \pi-\pi \int_{0}^{6}(x-3)^{4} d x
\end{aligned}
$$

$$
=486 \pi-\pi\left[\frac{(x-3)^{5}}{5}\right]_{0}^{6}
$$

$$
=486 \pi-\frac{2 \pi 3^{5}}{5}
$$

$$
=486 \pi-\frac{486 \pi}{5}
$$

$$
=\frac{1944 \pi}{5}
$$

\therefore Volume is $\frac{1944 \pi}{5} \mu^{3}$ accepted $388.8 \pi \mu^{3}$. or $1221 \cdot 45 \cdot \mu^{3}$
\checkmark Vcylinder
$\checkmark(x-3)^{4}$
$0 \int_{0}^{16}$ with
\checkmark correct working.

If
$486 \pi-$ dud not
square
$(x-3)^{2}$
some did not find volume of the cylinder

- Some expanded

$$
\left|\begin{array}{l}
(x-3)^{4} \text { as } \\
x^{4}-12 x^{3}+54 x^{2}-108 x+
\end{array}\right|
$$

$$
81
$$

MATHEMATICS: Question. 15

Suggested Solutions
(a) (1) Stofs leaking kur dt $=0$

$$
20 t-300=0
$$

$$
20 t=300
$$

$$
t=15
$$

\because After 15 days
(ii) $v=10 t^{2}-300 t+c$

Wher $t=15, v=475 C$

$$
\begin{array}{c|c|c|}
\therefore 45 C^{\prime}= & 1 / 2 \\
4750=2250-4500+500 \\
c=7050 \\
\therefore v=10 t^{2}-300 t+700 & 1 / 2
\end{array}
$$

(lii) wher $t=0, v=7 \in v e$
$\therefore \quad 70 \wedge<1$ at $t h e \quad \leq t r=t$
(b) (1)

$$
\begin{aligned}
A_{24} & =500000\left(1+\frac{0.06}{12}\right)^{34} \\
& =500000(1.005)^{24} \\
& =563579.888 \\
& =563580 \text { to the nearest } \$ 1
\end{aligned}
$$

(ii) $A=563580(1.0075)=14$

$$
A_{2}=A_{1} \times 1.0075-m
$$

$$
=563 S 80(1.0075)-\sim(1,0075+1)
$$

$$
A_{3}=563560(1.0075)^{2}-m\left(1.0075^{2}+1.0075+1\right)
$$

IICALLISTO\StaffHomesiWOHVRAH M Fac Admin\Assessment infolSuggested Mk solns template_V4.doc

MATHEMATICS: Question.

IICALLISTO\StaffHomesiWOH\RAH M Fac Admin\Assessment infolSuggested Mk solns template_V4.doc

MATHEMATICS: Question.

IICALLISTO\StaffHomesWOHURAH M Fac Admin\Assessment infolSuggested Mk solns template_V4.doc

IICALLISTO\StaffHome§IWOHJRAH M Fac Admin\Assessment infolSuggested Mk solns template_V4.doc

