Section I Multiple Choice (10 Marks)

Attempt Questions 1-10 (1 mark each)
Allow approximately 20 minutes for this section.

Question 1

The condition for the quadratic equation $3 x^{2}-12 x+k=0$ to have real roots is
A) $k \leq 36$
B) $k \geq 36$
C) $k \leq 12$
D) $k \geq 12$

Question 2

The equation of the semi-circle illustrated alongside is given by
A) $y=\sqrt{9-x^{2}}$
B) $y=-\sqrt{9-x^{2}}$
C) $y=\sqrt{3-x^{2}}$
D) $y=-\sqrt{3-x^{2}}$

Question 3

The graph on the right shows the curve $y=f(x)$. The shaded areas are bounded by $y=f(x)$ and the x axis.

Shaded area A is 9 square units, shaded area B is 6 square units and shaded area C is 5 square units.

The value of $\int_{-3}^{7} f(x) d x$ is
A) 8
B) -8
C) 20
D) $\quad-20$

Question 4

When three marksmen take part in a shooting contest, their chances of hitting the target are $\frac{1}{3}, \frac{1}{4}$ and $\frac{1}{5}$. Calculate the probability that one, and only one, bullet will hit the target if the three marksmen shoot at the target simultaneously.
A) $\frac{47}{60}$
B) $\frac{1}{3}$
C) $\frac{13}{30}$
D) $\frac{1}{60}$

Question 5
A parabola has the equation $x^{2}=12(8-y)$. What is the equation of its directrix ?
A) $y=-3$
B) $y=3$
C) $y=5$
D) $y=11$

Question 6

The area between the curve $=\frac{1}{x}$, the x axis and the ordinates $x=1$ and $x=b$ is equal to 2 square units. The value of b is
A) e
B) e^{2}
C) $2 e$
D) 3

Question 7

The roots of the quadratic equation $g x^{2}-x+h=0$ are -1 and 3 . The value of h is
A) -6
B) $\quad-3$
C) $-\frac{3}{2}$
D) 2

Question 8

A table of values made to help sketch the curve of $y=f(x)$ is shown below.

\boldsymbol{x}	0	2	4	6	8
$\boldsymbol{f}(\boldsymbol{x})$	7	9	14	4	-3

Given that $f(x)$ is continuous over the domain $0 \leq x \leq 8$, the use of Simpson's Rule with five ordinates to estimate $\int_{0}^{8} f(x) d x$ will give the result:
A) 28
B) 40
C) 56
D) 80

Question 9

A manufacturer increases the price of a car by 15% to a new selling price of $\$ 18860$. What was the price of the car before the increase?
A) $\$ 16000$
B) $\quad \$ 16031$
C) $\$ 16400$
D) $\$ 17000$

Question 10

If $A C D$ is a straight line, $\angle B A C=\alpha$ and $\angle B C D=\beta$ in the diagram shown, which of the following is true ?
A) $w^{2}=u^{2}+v^{2}-2 u v \cos \beta$
B) $w^{2}=u^{2}+v^{2}+2 u v \cos \beta$
C) $u^{2}=v^{2}+w^{2}-2 v w \cos \beta$

D) $\frac{u}{\sin \alpha}=\frac{w}{\cos \beta}$

End of Section I

Section II

Total Marks is 90

Attempt Questions 11-16

Allow approximately $\mathbf{2}$ hours \& $\mathbf{4 0}$ minutes for this section.
Answer all questions, starting each new question on a new sheet of paper with your Student ID number in the top right hand corner and the question number on the left hand side of the paper.

All necessary working must be shown in each and every question.

Question 11 (15 Marks)

Start a new piece of paper

Marks

a) Find the value of π^{e}, correct to three significant figures.
b) The graph of $y=f(x)$ passes through the point $(2,5)$ and $f^{\prime}(x)=2 x-3$. Find $f(x)$.
c) If $\frac{\sqrt{128}-\sqrt{50}}{\sqrt{3}}=\sqrt{k}$, what is the value of k ? (Show working)
d) Find, with a diagram and all necessary working, the equation of the locus of all points which are equidistant from the point $S(2,3)$ and the line $y=5$. Express your answer in the form $(x-h)^{2}=4 A(y-k)$ and hence write down the coordinates of the vertex of the locus.
e) In the diagram, $A B C D$ is a rectangle such that $A B=2 A D$. The point M is the midpoint of $A D$ and the line $B M$ meets $A C$ at X.

i) Copy the diagram and show that the triangles $A X M$ and $C X B$ are similar.
ii) Show that $3 C X=2 A C$.
iii) Show that $9(C X)^{2}=5(A B)^{2}$.

Question 12 (15 Marks)

Start a new piece of paper
Marks
a) Factorise fully $2 x^{4}+128 x$

2
b) Integrate : $\int \frac{(\sqrt{x}+1)^{2}}{x} d x$
c) A market gardener plants cabbages in rows. Owing to the wedge shape of his field, the first row has 43 cabbages, the second row has 47 cabbages and each succeeding row has four more cabbages than the previous row.
i) Calculate the number of cabbages in the $12^{\text {th }}$ row.
ii) In this plan, which row would be the first to contain more than 200 cabbages ?
iii) In fact, the farmer finished up only having planted 1065 cabbages. How many rows was that?
d) A team of five students is to be chosen randomly from a class of twelve students. Find the probability that :
i) three particular students A, B and C are all in the team.
ii) students A and B are chosen but C is not.

1
iii) $\quad A, B$ and C are all omitted from the team. 1
iv) at least one of the students A, B or C is chosen in the team.

Question 13 (15 Marks) Start a new piece of paper

a) Find derivatives (simplifying answers if appropriate) of :
i) πx^{π}

1
ii) $x \tan 3 x$

2
iii) $\quad \log _{e}\left(\frac{x+1}{\sqrt{x-1}}\right)$
b)

The graph on the right shows part of the curve $y^{2}=x(x-4)^{2}$.
i) Find the exact volume of the solid formed when the loop is rotated about the x axis.
ii) Find the area of the loop.

Question 13 (continued)

c) The rate at which carbon dioxide will be produced by the action of yeast in a dough is given by $\frac{d V}{d t}=\frac{1}{100}\left(200 t-t^{2}\right)$ where $V \mathrm{~cm}^{3}$ is the volume of gas produced after t minutes.
i) At what rate is the gas being produced 2 minutes after the yeast begins to work ? $\mathbf{1}$
ii) How much carbon dioxide will be produced in the first 5 minutes?
iii) Assuming that the given formula is only valid while $\frac{d V}{d t}$ is positive, how long will it be before the reaction stops and how much gas will have been produced altogether?

Question 14 (15 Marks) Start a new piece of paper

a) A fish farmer began business on $1^{\text {st }}$ January 2001 with a stock of 100000 fish. He had a contract to supply 14800 fish at a price of $\$ 10$ per fish to a retailer at the end of December each year. In the period between January and December each year the number of fish increases by 10%.
i) Find the number of fish remaining after the second harvest in December 2002.
ii) Show that F_{n}, the number of fish just after the nth harvest, is given by $F_{n}=148000-48000(1 \cdot 1)^{n}$
iii) At the end of which year did the farmer sell his last fish and what was his total income over the life of the business? (NB. In the last season, the farmer will not fully complete his contract but he just sells all that he has.)
b) In this section you will find it useful to draw a set of coordinate axes and update your diagram as information becomes available.
i) Find the equation of the line l which passes through $A(-3,1)$ and $B(0,5)$.
ii) Find the distance from the point $C(2,1)$ to the line l.
iii) Hence, or otherwise, verify that the line l is a tangent to the circle

$$
x^{2}+y^{2}-4 x-2 y-11=0 .
$$

iv) Show that the equation of the line through C which is parallel to l is given by $4 x-3 y-5=0$
v) Hence, or otherwise, write down the equation of k, the other tangent to the circle which is parallel to l.
vi) Write down the equations of the two horizontal lines, m and n, which are tangents to this circle.
vii) Find the area of the parallelogram defined by the lines k, l, m and n.

Question 15 (15 Marks)

a) The mass M grams of a piece of radioactive material at time t years, is decaying according to the equation $\frac{d M}{d t}+k M=0$ where k is a positive constant.
i) Show that $M=A e^{-k t}$, where A is a constant, is a solution of this equation.
ii) What is the physical significance of A ?
iii) Given that $A=50$ and that the mass is 45 grams after 2 years, find the exact value of k.
iv) To the nearest year, what is the half-life of the radioactive material ? (ie. How long does it take for the material to reduce to half of its original mass ?)
b) A particle starts from rest at O and moves along the x axis so that its acceleration after t secs is $\left(24 t-12 t^{2}\right) \mathrm{m} / \mathrm{sec}$.
i) Find when the particle again returns to O and its velocity at that time.
ii) What is the farthest that the particle travels from O during this interval.
c) A rectangular box, open at the top, is to be constructed out of thin sheet metal on a base which is twice as long as it is wide.
i) The box is to have a volume of 972 cubic units. If its width is x units and its height y units, find a formula for y in terms of x.
ii) Show that the area A square units of sheet metal required is given by

$$
A=2 x^{2}+\frac{2916}{x} .
$$

iii) Hence find the least area of sheet metal required to make such a box.

Question 16 (15 Marks)

Start a new piece of paper
Marks
a)

A circle of radius r is drawn with its centre on the circumference of another circle of radius r.

Find, in terms of r, the exact area common to both circles (shaded in the diagram) .

b) i) Draw the graphs of $y=4 \cos x$ and $y=2-x$ on the same set of axes for $-2 \pi \leq x \leq 2 \pi$.
ii) Explain why all the solutions of the equation $4 \cos x=2-x$ must lie between $x=-2$ and $x=6$.

4
c) Two particles A and B start moving on the x axis at time $t=0$. The position of particle A at time t is given by $x_{A}=-6+2 t-\frac{1}{2} t^{2}$ and the position of particle B at time t is given by $x_{B}=4 \sin t$.
i) Find expressions for the velocities of the two particles.
ii) Use part (b) of this question to explain why there are exactly two occasions, t_{1} and t_{2}, when the two particles have the same velocity.
iii) Show that the total distance travelled by particle A between these two occasions is

$$
4-2\left(t_{1}+t_{2}\right)+\frac{1}{2}\left(t_{1}^{2}+t_{2}^{2}\right)
$$

iv) Explain why the two particles can never meet.

END OF EXAMINATION

Multiple choice

ZUNIT TRIAL 2013. $\left(\begin{array}{c}\text { MARKING } \\ \text { (SOL) }\end{array}\right.$

2013 TRIAL HSC MATHEMATICS: Question..!!.... 193

Suggested Solutions
(1)

$$
\text { (a) } \begin{aligned}
& \pi^{e}=22.459 \ldots \\
&=22.5 \text { to } 3 \text { sig } \\
& \text { b) } \begin{aligned}
f(x) & =x^{2}-3 x+k \\
5 & =4-6+k \\
\therefore k & =7 \\
\therefore f(x) & =x^{2}-3 x+7
\end{aligned} . \begin{aligned}
\therefore f(x)
\end{aligned}
\end{aligned}
$$

$$
=22.5 \text { (to } 3 \text { sig. figs })
$$

c)

$$
\begin{aligned}
\frac{\sqrt{128}-\sqrt{50}}{\sqrt{3}} & =\frac{8 \sqrt{2}-5 \sqrt{2}}{\sqrt{3}} \\
& =\frac{3 \sqrt{2}}{\sqrt{3}} \\
& =\sqrt{3 \sqrt{2}} \\
& =\sqrt{6} \\
\therefore k & =6
\end{aligned}
$$

d)

$-\overline{P S}=\overline{P M}$

$$
\sqrt{(x-2)^{2}+(y-3)^{2}}=5-y
$$

$$
(x-2)^{2}+y^{2}-6 y+9=25-10 y+y^{2}
$$

$$
(x-2)^{2}=16-4 y
$$

\therefore Vertex is at $(2,4)$
Verypoolly done: More than half the candidates scored 1 or 0 out of 4 as they failed to derive the locus and find vertex from equation as required.

MATHEMATICS: Question...l!... 5 S $]^{3}$		
Suggested Solutions	Marks	Marker's Comments
e) (iii)	1	

20 TRIAL $2 O 13$ MATHEMATICS
(ii) $a+(n-1) d>200$

$$
43+(n-1) 4>200
$$

$$
n>404
$$

First row to entan more than 200

- eabbages is row 41
- Thr fonsmon planted 15 ons
\qquad
\cdots

$$
39+40>200
$$

$$
40>161
$$

\qquad
\qquad
\qquad
\qquad
\qquad
 n5swert
\qquad
\qquad
\qquad

$$
\begin{aligned}
& 1 \text { nosk for } \\
& \text { answer } \\
& \text { (c) (i) } 43,4 T_{1} 51 \\
& a=43, d=4 \text { inark for } \\
& \text { evaluating } a+d \\
& -T=4=43+(12-1) x 4 \\
& =43+44 \\
& =87
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) } \quad S_{n}=\frac{n}{2}(2 \Omega+(n-n d) \\
& \begin{array}{l}
\operatorname{Sn}=\frac{n}{2}(20+(n-1) d) \\
10(86+(n-1) \times 4)
\end{array} \\
& 2 B 0=86 n+4 n^{2}-4 n \\
& 2130=82 n+40^{2} \\
& \div b y z \\
& =\quad 2 n^{2}+412-1065=0 \\
& n=\frac{-4 \pm \sqrt{4^{2}+4 \times 2 \times 1065}}{2 \times 2} \\
& n=-41 \pm \sqrt{1029} \\
& =\frac{-41+10}{4} \Leftrightarrow 0>0 \\
& \quad n=15
\end{aligned}
$$

LU) TRIAL 2013 MATHEMATICS: Question.!?.. Suggested Solutions

(ii) $P\left(A_{m} B_{r=0}\right)=\frac{5}{12} \times \frac{4}{11} \times \frac{7}{10}$
$=\frac{1}{66} \quad 1$ ark
(ii) $P\left(A_{\text {out }}\right.$ Bout Cot $=\frac{1}{12} \times \frac{6}{10} \times \frac{5}{10}$
(iv)p(at lest i student A, B orC $)=1-P(A B C$ ant

$$
\begin{aligned}
& =1-\frac{1}{44} \\
& =\frac{31}{44} \quad 1 \text { mark }
\end{aligned}
$$

\qquad

20 TRIAL 2013 MATHEMATICS: Question. I?

IICALLISTO\StaffHomeslWOHURAH M Fac Admin\Assessment infolSuggested Mk solns template_V4.doc

2U TRIAL 2O13 MATHEMATICS: Question !!3... (cont.) id 2
Suggested Solutions
$13(6) \quad \frac{d y}{d t}=\frac{1}{100}\left(20 t-t^{2}\right)$

$$
\begin{aligned}
& \text { When } t=2 \text { miss } \\
& \frac{d v}{d t}=\frac{1}{105}(400-4) \\
&=\frac{396}{18}
\end{aligned}
$$

\therefore Rate is $3.96 \mathrm{~cm}^{3} / \mathrm{mm}$ OR $\frac{97}{25} \mathrm{~cm}^{3} / \mathrm{min}$
(ii) $\frac{\partial v}{d t}=\frac{1}{100}\left(200 t-t^{2}\right)$

$$
v=\frac{1}{\operatorname{tog}}\left(100 t^{2}-t^{3}\right)+c
$$

Wham $v=0, t=0 \quad c=0$

$$
v=\frac{1}{100}\left(100 t^{2}-\frac{t^{3}}{3}\right)
$$

1 mask for integration
$\frac{1}{2}$ mark deducted for no "C"
OR

$$
\begin{aligned}
& \left.\frac{1}{100}\right)_{0}^{5}\left(200 t-t^{2}\right) d t \\
& \therefore=\frac{1}{100}\left[200 t^{2}-\frac{t^{3}}{3}\right]_{0}^{5} \\
& V=\frac{1}{100}\left[2500-\frac{25}{3}\right] \\
& V=\frac{295}{12} \text { or } 24 \frac{7}{12} \mathrm{~cm}^{3} \\
& 1 \text { mask for cosier }
\end{aligned}
$$

(ii) Reaction will strep when $\frac{d v}{d t}=0$

$$
\begin{aligned}
& \frac{d v}{d t}=\frac{1}{\operatorname{tos}}\left(200 t-t^{2}\right) \\
& 0=\frac{1}{10 x}\left(20 t-t^{2}\right) \\
& 2 .-t=0 \text { or } 2000 \\
& \quad \quad 10 h o n t=200 \text { as } t>0 \\
& V=\frac{1}{100}\left(100 t^{2}-\frac{t^{3}}{3}\right) \\
& =\frac{1}{100}\left(100 \times(200)^{2}-(200)^{3}\right) \\
& =\frac{40000}{3} \operatorname{man}^{3} \operatorname{or} 13333.3 \mathrm{~cm}^{3}
\end{aligned}
$$

\cdots Reactor stops after 200 minutes in which $\frac{40000 \mathrm{~cm}^{3} \text { of gas has bo produced }}{3}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
NCALLISTO\StaffHom eSIWOHURAH M Fac Admin \Assessment infolSuggested Mk solis template_V4.doc

MATHEMATICS: Question..14...

MATHEMATICS: Question.If... continved.

Suggested Solutions
(3) (i)

$$
\begin{aligned}
& x=\frac{5-1}{0=3}=4 \\
& y=5=4 / 3 x=0 \\
& 3 y-15=4 x \\
& y=4 x+15
\end{aligned}
$$

(ii) $a=4 \quad b=-3 \quad c=15 \quad x=2 \quad y=1$

$$
\begin{aligned}
d & =\left\lvert\, \frac{4 \times 2+-3 \times 1}{\sqrt{16}+15}\right. \\
& =\left\lvert\, \frac{2 n}{5}\right. \\
& =4 u_{n}+
\end{aligned}
$$

(Iu) $x^{2}+y^{2}-4 x-2 y=11=0$

$$
x^{2}-4 x+y^{2}-2 y=11
$$

$$
(x-2)^{2}+(y-1)^{2}=16
$$

$c i-c l e c e t r e s t(2,) \sin u=4$
snce the perprodicular alistince is empato the referis of the circle the Line is a tagest to the circle
(iv) eqn of lin threcot c(2,1)
(v) $\quad I_{\sim} t_{\text {te }}$ form $4 x-3 x+k=0$

$$
\begin{aligned}
& \begin{array}{l}
m_{2}=413 \\
y_{2}-y=m(x-x)
\end{array} \\
& 4-1=4 / 3(x-2) \\
& 3 x-3=4 x-8 \\
& 0=4-3-3-5
\end{aligned}
$$

$$
\begin{aligned}
& \text { as ts prallel to } \ell \text { pras } \\
& \qquad 4 x-3 x-2 s=c>1
\end{aligned}
$$

(v) trapts are $y=5$ act $Y=-3$
right or wrong
nCALLISTO\StaffHomeSIWOHVRAH M Fac Admin\Assessment infolSuggested Mk soins template_V4.doc

MATHEMATICS: Questiom.... $4 . .$. cont.

IICALLISTO\StaffHomeSIWOHJRAH M Fac Admin\Assessment infolSuggested Mk solns template_V4.doc

MATHEMATICS: Question .1.5... $2 \boldsymbol{2}$
Suggested Solutions
b)

$$
\begin{aligned}
\ddot{x} & =24 t-12 t^{2} \\
\dot{x} & =12 t^{2}-4 t^{3}+k \\
\dot{x} & =0 \text { when } t=0 \quad \therefore k=0 \\
\therefore \dot{x} & =12 t^{2}-4 t^{3} \\
x & =4 t^{3}-t^{4}+c \\
x & =0 \text { when } t=0 \quad \therefore c=0 \\
\therefore x & =4 t^{3}-t^{4}
\end{aligned}
$$

(i) $x=0$

$$
\begin{array}{r}
4 t^{3}-t^{4}=0 \\
t^{3}(4-t)=0 \\
t=0,4
\end{array}
$$

\therefore Particle returns in C at $t=4 s$.

$$
\begin{aligned}
\text { Velocity } & =12\left(4^{2}\right)-4 \times 4^{3} \\
& =-64
\end{aligned}
$$

\therefore Vetocith is $-64 \mathrm{~m} / \mathrm{s}$
(or $64 \mathrm{~m} / \mathrm{s}$ to left) when $t=4 \mathrm{~s}$.
(ii) Farthest from 0 when $v=0$.

$$
\begin{gathered}
12 t^{2}-4 t^{3}=0 \\
4 t^{2}(3-t)=0 \\
t=0,3
\end{gathered}
$$

\therefore Particle stops at $t=3 \mathrm{~s}$.
when $t=3, x=4 \times 27-81$

$$
=2 \hat{7}
$$

\therefore Particles farthest point from
© is 27 m .
1
integrating a finding x.
$t=4$ and $v^{\prime}=-64$
1 correct answer

i i 3

\begin{tabular}{|c|c|c|}
\hline Suggested Solutions \& Marks \& Marker's Comments \\
\hline \begin{tabular}{l}
(a) Area of shaded region \(=\) twice the area of minor segments
\[
A=\frac{1}{2} r^{2}(\theta-\sin \theta)
\] \\
But \(\theta=2 \times \frac{\pi}{3} \ldots\)...equilateral triangles \\
Hence
\[
\begin{aligned}
\& A=\frac{1}{2} r^{2}\left(\frac{2 \pi}{3}-\sin \frac{2 \pi}{3}\right) \\
= \& \frac{1}{2} r^{2}\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right) u n i t^{2}
\end{aligned}
\]
\end{tabular} \& 1
1

1

1 \& | For a correct sum of areas |
| :--- |
| For correct expression dependent on previous statement |
| For correctly determining the angle at the center (either $\frac{\pi}{3}$ or $\frac{2 \pi}{3}$) |
| For correct final expression in terms of r |
| NO HALF MARKS |

\hline | (b) |
| :--- |
| (ii) When $x=-2, y=4$ and when $x=6, y=-4$ and since the function $4 \cos x$ always lie between -4 and 4 , the solutions must lie between these points i.e. between -2 and 6 | \& 1

1

1 \& | 1 mark for both graphs with correct shape |
| :--- |
| For correct intercepts and correct domain for both graphs |
| - Poorly answered |
| - Poor use of language |
| - Any sensible explanation |

\hline
\end{tabular}

(c)
(i) $v_{A}=\dot{x}_{A}=2-t$

$$
v_{B}=\dot{x}_{B}=4 \sin t
$$

(ii) From (b), the equation $2-x=4 \cos x$ yields 3 solutions i.e.

| 1 | 1 mark each, almost all |
| :--- | :--- | got this out!

Mention must be made that $t>0$!

For correct expression for total distance

Correct integration
Correct evaluation of integral

Generally poorly done!
Evidence of "forced" results!

Confusion between displacement and distance.

Many students made the following incorrect formulation:
$x_{A}=x_{A}\left(t_{2}\right)-x_{A}\left(t_{1}\right)$,
which fails to take into account the two different directions particle A moves.

No marks were awarded for this fatal error!

Qu 16 393

