TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2015

MATHEMATICS

General Instructions:

- Reading Time: 5 minutes.
- Working Time: 3 hours.
- Write in black pen.
- Board approved calculators \& templates may be used
- A Standard Integral Sheet is provided.
- In Question 11-16, show all relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for careless or badly arranged working.

Total Marks 100
Section I: 10 marks
Attempt Question 1-10.
Answer on the Multiple Choice answer sheet provided.
Allow about 15 minutes for this section.

Section II: 90 Marks
Attempt Question 11-16

Answer on lined paper provided. Start a new page for each new question.
Allow about 2 hours \& 45 minutes for this section.

The answers to all questions are to be returned in separate stapled bundles clearly labelled Question 11, Question 12, etc. Each question must show your Candidate Number.

Multiple Choice Questions

Choose the best answer for each of the following questions.

1. For what values of k does the equation $x^{2}-6 x-3 k=0$ have real roots?
A $k \leq-3$
B $k \geq-3$
C $k \leq 3$
D $k \geq 3$
2. Two ordinary dice are rolled. The "score " is the sum of the numbers on the top faces. What is the probability that the scores is 9 ?
A $\frac{1}{9}$
B $\frac{1}{4}$
C $\frac{1}{3}$
D $\frac{3}{4}$
3. Express $\frac{\sqrt{5}}{1+\sqrt{2}}$ in the form of $\sqrt{a}-\sqrt{b}$ where a and b are rational numbers.
A $\sqrt{10}-\sqrt{5}$
B $\sqrt{5}-\sqrt{10}$
C $(\sqrt{10}-\sqrt{5}) / 3$
D $(\sqrt{5}-\sqrt{10}) / 3$
4. Find the derivative of $\cos ^{2} 3 x$ with respect to x.
A $-2 \sin 3 x \cos 3 x$
B $-6 \sin 3 x \cos 3 x$
C $2 \sin 3 x \cos 3 x$
D $2 \sin 3 x \cos 3 x$
5. Evaluate $\int_{0}^{1}\left(e^{-3 x}-1\right) d x$.
A $-\left(\frac{e^{-3}}{3}+1\right)$
B $-\frac{e^{-3}}{3}+\frac{2}{3}$
C $-\left(\frac{e^{-3}}{3}+\frac{2}{3}\right)$
D $\frac{1}{3}\left(e^{-3}-1\right)$
6. What are the domain and range of $f(x)=\sqrt{4-x^{2}}$?

A Domain: $-2 \leq x \leq 2$ Range: $0 \leq y \leq 2$
B Domain: $-2 \leq x \leq 2$ Range: $-2 \leq y \leq 2$
C Domain: $0 \leq x \leq 2$ Range: $-4 \leq y \leq 4$
D Domain: $0 \leq x \leq 2$ Range: $0 \leq y \leq 4$
7. Daniel planted a bed of gardenias in rows on his commercial property. Each row had to be fertilised before planting.

There were 13 gardenia plants in the first row, 19 gardenia plants in the second row, and so on. Each succeeding row had 6 more gardenia plants than the row before it.

If Daniel wanted to plant 1453 gardenias, how many rows will he need to fertilise?
A 20.28
B 20.40
C 23.61
D 23.74
8. A particle moves so that its velocity function at time t seconds, is given by : $v=2 e^{-t}(1-t)$.
Find the time when the acceleration is zero.
A $t=0$
B $t=1$
C $t=2$
D $t=3$
9. Find the perimeter (P) of the sector of a circle with a radius of 20 cm and an angle 36° subtended at the centre.

A $P=0.5 \times 400 \times\left(\frac{\pi}{5}-\sin \frac{\pi}{5}\right) \mathrm{cm}$
B $\quad P=\left(0.5 \times 400 \times \frac{\pi}{5}\right) \mathrm{cm}$
C $P=\left(40+\frac{\pi}{5}\right) \mathrm{cm}$
D $P=(40+4 \pi) \mathrm{cm}$
10. Find the values of x for which the geometric series $2+4 x+8 x^{2}+\ldots$ has a limting sum.
A $x<\frac{1}{2}$
B $x \geq \frac{1}{2}$
C $\quad|x| \leq \frac{1}{2}$
D $|x|<\frac{1}{2}$
a. Evaluate $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}$.
b. Find $\int(\sqrt{5 x-1}) d x$.
c. Evaluate $\int_{1}^{3} \frac{3 x}{x^{2}+4} d x$.
d. Differentiate $y=\frac{\sin x}{1+\cos x}$ and simplify.
e. (i) Differentiate $x \ln x$.
(ii) Hence find $\int \ln x d x$. $\quad 2$
f. If $a, \mathrm{~b}$ and c are consecutive terms of a geometric sequence, show that $\ln a, \ln b \quad 2$ and $\ln c$ are consecutive terms of an arithmetic sequence.
g. A parabola in the coordinate plane is represented by the equation $x^{2}-10 x-16 y-7=0$.
(i) Find the coordinates of the vertex. 2
(ii) Find the focal length. 1

Question 12 (Start a new page)

a. A Geiger counter is taken into a region after a nuclear accident and gives a reading of 10000 units. One year later, the same Geiger counter gives a reading of 9000 units. It is known that the reading is given by the formula $T=T_{0} e^{-k t}$, where T_{0} and k are constants and t is the time, measured in years.
(i) Evaluate the exact values of T_{0} and k. 2
(ii) It is known that the region will become safe after the reading reaches 40 units. 2 After how many years will the region become safe?
(iii) Sketch the graph of $T=T_{0} e^{-k t}$.
b. (i) On a Cartesian plane, plot the points A, B and C which are $(-4,3),(0,5)$ and $(9,2) \quad 1$ respectively.
(ii) Find the length of the interval $B C$. 1
(iii) Show that the equation of the line l, drawn through A and parallel to $B C$ is 2 $x+3 y-5=0$.
(iv) Find the co-ordinates of D, the point where the line l meets the x-axis. 1
(v) Prove that $A B C D$ is a parallelogram. 2
(vi) Find the perpendicular distance from the point B to the line l. 2
(vii) Hence or otherwise find the area of the parallelogram $A B C D$. 1

Question 13 (Start a new page)

a. A particle is moving on the x-axis. It starts from the origin, and at the time t seconds, its velocity $v \mathrm{~m} / \mathrm{s}$ is given by $v=1-2 \sin t$.
Let $t=t_{1}, t=t_{2}$ be the first two times when the particle comes to rest.
(i) Find t_{1} and t_{2}.
(ii) Sketch the velocity function for $0 \leq t \leq 2 \pi$.
(iii) Find the acceleration at t_{1} and t_{2}.
(iv) Find the displacement function.
(v) Hence, or otherwise, find the exact distance travelled between t_{1} and t_{2}.
b. $\quad \alpha, \beta$ are the roots of the quadratic equation $2 x^{2}-(4 k+1)+2 k^{2}-1=0$. If $\alpha=-\beta$, find the value of k.
c. Given that $f(x)=4 x-3$ is the gradient function of a curve and the line $y=5 x-7$ is tangent to the curve.
Find the equation of the curve.

Question 14 (Start a new page)

a.

Two squares $A B C D$ and $A E F G$ are drawn above. $A G$ and $E B$ intersect at K and $D G$ and $A B$ intersect at H. Let $\angle A D G=\alpha$.

Copy the diagram into your writing booklet.
(i) Prove that $\triangle A D G \equiv \triangle A B E$.
(ii) Prove that $E B \perp D G$.

Question 14 (continued)

b. A bag contains 2 red balls, one black ball, and one white ball. Ming selects one ball from the bag and keeps it hidden. He then selects a second ball, and also keeping it hidden.
(i) Draw a tree diagram to show all the possible outcomes.
(ii) Find the probability that both the selected balls are red.
(iii) Find the probability that at least one of the selected balls is red.
(iv) Ming drops one of the selected balls and we can see that it is red. What is the probability that the ball that is still hidden is also red?
c.

In the diagram above, $T X A$ is a right-angled triangle.

$$
X Y=p, T Z=h, \angle T Y Z=\phi, \angle Z X A=\alpha, \angle T X Y=\theta .
$$

Copy the diagram into your writing booklet.
(i) Consider $\triangle X Y T$ in the above diagram, show that $T Y=\frac{p \sin \theta}{\sin (\phi-\theta)}$.
(ii) Show that $\angle Y Z T=\frac{\pi}{2}+\alpha$.
(iii) Hence, use part (i) and (ii) to show that $h=\frac{p \sin \theta \sin \phi}{\sin (\phi-\theta) \cos \alpha}$.

Question 15 (Start a new page)

a. Graph the solution of $4 x \leq 15 \leq-9 x$ on a number line.
b. (i) Find the area bounded by the curve $y=\tan 2 x, 0 \leq x \leq \frac{\pi}{6}$ and the x-axis
(ii) The region bounded by the curve $y=\tan 2 x, 0 \leq x \leq \frac{\pi}{6}$ and the x-axis is rotated about the x-axis and form a solid.

Find the volume of this solid using two applications of Simpson's Rule.
c. In the diagram below, $P(2 t, 2 / t)$ is a variable point on the branch of the hyperbola $y=4 / x$ in the first quadrant.

The tangent at P meets the y-axis at A and the x-axis at B.

(i) Show that the equation of the tangent at P is $t^{2} y=4 t-x$.
(ii) Let the square of the length of $A B$, ie $A B^{2}$, be denoted by v.

Find the value of t for which v is a minimum.

Question 16 (Start a new page)

a. If $\log _{5} 8=a$, prove that $\log _{10} 2=\frac{a}{a+3}$.
b. (i) Justify the graph of $f(x)=x-\frac{1}{x^{2}}$ is always concave down.
(ii) Sketch the graph of $f(x)=x-\frac{1}{x^{2}}$, showing all intercept(s) and stationary point(s).
c. When Robby is 3 months old, his parents decide to make a regular deposit of $\$ 500$ every 3 months, starting with first one when Robby is 3 months old in an account that earns interest of 8% p.a., the interest being paid every 3 months.
(i) Show that the day after Robby's $1^{\text {st }}$ birthday (after payment is made), the value of 2 the account is given by $\$ 2060.80$.
(ii) How much money will be in the account the day when Robby turns 15 after the payment is made?
(iii) No more payments are made into the account after Robby turns 15 and no withdrawals are made.
Find the amount in the account on Robby's $16^{\text {th }}$ birthday.
(iv) Robby decides that he will withdraw a regular amount of money from this account each birthday, starting with his $16^{\text {th }}$ birthday. He cannot decide whether he should withdraw $\$ 4000$ or $\$ 5000$ each birthday.
By considering the result of part (iii), comment on what will happen in each case.

END of PAPER

2015 JRAHS MC $2 n$-Trial
1).

$$
\begin{gather*}
\Delta \geqslant 0 \\
36-4(-3 k) \geqslant 0 \\
36+12 k \geqslant 0 \\
k \geqslant-3 \tag{B}
\end{gather*}
$$

2) $(3,6),(6,3)(5,4)(4,5)$

$$
\begin{equation*}
\frac{4}{36}=\frac{1}{9} \tag{A}
\end{equation*}
$$

3) $\frac{\sqrt{5}}{1+\sqrt{2}} \times \frac{1-\sqrt{2}}{1-\sqrt{2}}=\frac{\sqrt{5}-\sqrt{10}}{-1}=\sqrt{10}-\sqrt{2}$
(A)
4)

$$
\begin{aligned}
& 2 \cos 3 x(-\sin 3 x) \times 3 \\
= & -6 \cos 3 x \sin 3 x
\end{aligned}
$$

(B)
5)

$$
\begin{align*}
& \left.\frac{e^{-3 x}}{-3}-x\right]_{0}^{1}=\frac{e^{-3}}{-3}-1-\left(\frac{1}{-3}-0\right) \\
= & \frac{-e^{-3}}{3}-1+\frac{1}{3} \\
= & -\frac{1}{3}\left[2+e^{-3}\right] \quad \text { (c) } \tag{c}
\end{align*}
$$

6) (A)
7)

$$
\begin{align*}
& a=13 \quad d=6 \\
& 1453=\left[\frac{2 a+(n-1) d}{2}\right] n \\
& 2906=26 n+(n-1) 6 n \\
& 0=6 n^{2}+20 n-2906 \\
& 0=3 n^{2}+10 n-1453 \\
& n=\frac{-10 \pm \sqrt{100-4(3)(-1453)}}{6} \\
& n=(-10 \pm \sqrt{17536}) \pm 6 \\
& n=20.40 \tag{B}
\end{align*}
$$

8)

$$
\begin{aligned}
& v=2 e^{-t}-2 e^{-t} \cdot t \\
& \ddot{x}=-2 e^{-t}+(-1+t) 2 e^{-t} \\
& \ddot{x}=2 e^{-t}(-2+t)=0
\end{aligned}
$$

wher $t=2$ (C)
9)

$$
\begin{align*}
& \left.P=40+20 \cdot \frac{\pi}{5} \quad 20 / \frac{1}{5}\right\rangle^{20} \\
& P=40+4 \pi \tag{D}
\end{align*}
$$

(0) $\frac{1}{|2 x|}<1$

$$
\begin{equation*}
|x|<\frac{1}{2} \tag{D}
\end{equation*}
$$

J:Mathslmarking templates\Suggested Mk solns template_V2_no Ls.doc
$2 u: 2015$ TRIAL MATHEMATICS: Question...!!... JRAHS
Suggested Solutions \mid Marks \quad Marker's Comments
d)

$$
\begin{aligned}
y & =\frac{\sin x}{1+\cos x} \\
\frac{d y}{d x} & =\frac{\cos x(1+\cos x)-\sin x(-\sin x)}{(1+\cos x)^{2}} \\
& =\frac{\cos x+\cos ^{2} x+\sin ^{2} x}{(1+\cos x)^{2}} \\
& =\frac{\cos x+1}{(1+\cos x)^{2}} \\
& =\frac{1}{1+\cos x}
\end{aligned}
$$

e) (1) $\frac{d}{d x}(x \ln x)=1 \cdot \ln x+x \cdot \frac{1}{x}$
(ii) $\therefore \int(\ln x+1) d x=x \ln x+c$

$$
\begin{aligned}
\therefore \int \ln x d x & =x \ln x-\int 1 d x+c \\
& =x \ln x-x+c \\
& =x(\ln x-1)+c
\end{aligned}
$$

for correct differentiation
for correct simplification

$$
=\ln x+1
$$

for correct differentiation
for correctly antidifferentiating
for correct integration

J:Mathslmarking templateslSuggested Mk sols template_V2_no Ls. doc

MATHEMATICS: Question..!2..

iii)

Note: $\begin{array}{rl}x & 0\end{array}$

* Vertical Intercept
\ICALLISTO\StaffHomeSIWOHURAH M Fac Admin\Assessment infolSuggested Mk solns template_V2.doc

IICALLISTO\StaffHomeSIWOHURAH M Fac Admin\Assessment infolSuggested Mk solns template_V2.doc

MATHEMATICS: Question

MATHEMATICS: Question 13
Suggested Solutions
a) i) $v=1-2 \sin t$
$v=0$, when particle is at rest
$0=1-2 \sin t$
$2 \sin t=1$

$$
\sin t=\frac{1}{2}
$$

$$
t=\frac{\pi}{6}, \frac{5 \pi}{6}
$$

$$
\therefore t_{1}=\frac{\pi}{6}, t_{2}=\frac{5 \pi}{6}
$$

\qquad
\qquad
\qquad
iii) $\ddot{x}=-2 \cos t$
when $t_{1}=\frac{\pi}{6}, \ddot{x}=-2 \cos \frac{\pi}{6}$

$$
=-\sqrt{3} \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
t_{2}=\frac{5 \pi}{6} \quad \ddot{x} & =-2 \cos \frac{5 \pi}{6} \\
& =\sqrt{3} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

iv)

$$
\text { iv) } \begin{aligned}
& v=1-2 \sin t \\
& \frac{d x}{d t}=1-2 \sin t \\
& \therefore x=t+2 \cos t+c \\
& \text { when } t=0, x=0 \\
& 0=0+2 \cos (0)+c \\
& \therefore c=-2 \\
& \therefore x=t+2 \cos t-2
\end{aligned}
$$

Suggested Solutions

$$
\begin{aligned}
\text { v) when } t_{1} & =\frac{\pi}{6}, x_{1}=\frac{\pi}{6}+2 \cos \frac{\pi}{6}-2 \\
& =\frac{\pi}{6}+\sqrt{3}-2 \\
t_{2} & =\frac{5 \pi}{6}, x_{2}=\frac{5 \pi}{6}-\sqrt{3}-2 \\
\text { distance } & =\left|\frac{5 \pi}{6}-\sqrt{3}-2-\left(\frac{\pi}{6}+\sqrt{3}-2\right)\right| \\
& =\left|\frac{4 \pi}{6}-2 \sqrt{3}\right| \\
& =2 \sqrt{3}-\frac{2 \pi}{3}
\end{aligned}
$$

b) sum of roots:

$$
\alpha+\beta=\frac{(4 k+1)}{2}
$$

since $\alpha=-\beta$

$$
-\beta+\beta=\frac{4 k+1}{2}
$$

$$
0=\frac{4 k+1}{2}
$$

$$
4 k+1=0
$$

$$
4 k=-1
$$

$$
k=-\frac{1}{4}
$$

c)

$$
\begin{aligned}
& y=5 x-7 \\
& m=5 \\
& \therefore 4 x-3=5 \\
& 4 x=8 \\
& x=2
\end{aligned}
$$

when $x=2, y=5(2)-7$

$$
=3
$$

\therefore the tangent cuts the curve at $(2,3)$

$$
\begin{aligned}
f(x) & =4 x-3 \\
F(x) & =\int(4 x-3) d x \\
& =2 x^{2}-3 x+c
\end{aligned}
$$

at $(2,3)$

$$
\begin{aligned}
& 3=2(2)^{2}-3(2)+c \\
& \therefore c=1 \\
& \therefore y=2 x^{2}-3 x+1
\end{aligned}
$$

MATHEMATICS: Question... 14.
(i)

In \triangle 's $A D G$ and $A B E$

- $A D=A B$ (given $A B C D$ is a square).
- $A G=A E$ (given $A E F G$ is a square). $\angle D A B=\angle E A G=90^{\circ}$ (angles of a square).

Now, $\angle E A B=90+\angle B A G$ proven
and $\angle D A G=90+\angle B A G$
$\therefore \therefore \angle A G=\angle E A B$
$\therefore \triangle A D G \equiv \triangle A B E \quad(S A S)$
(ii) In \triangle 's $A D H+B H J$
$\angle A D G=\angle E B A=\alpha$ (corresponding angles,
$\triangle A Q G \equiv \triangle A B E$)
$\angle J H B=\angle A H D$ (vertically opposite angles)
$\therefore \triangle A D H H \triangle B H J$ (equiangular)

$$
\therefore \angle D A H=\angle H J B=90^{\circ} \text { (corresponding }
$$ angles, similar triangles)

$\therefore E B \perp D G$
b)
(i)

(ii)

$$
\begin{aligned}
P(R R) & =\frac{2}{4} \times \frac{1}{3} \\
& =\frac{1}{6}
\end{aligned}
$$

\|CALLISTO\StaffHomeSIWOHURAH M Fac Admin\Assessment infolSuggested Mk solis template_V2.doc

MATHEMATICS: Question...14. page 2.

Suggested Solutions	
(iii) $P($ at least 1 Red $)$	$=1-P($ no red $)$
	$=1-[P(B W)+P(W B)]$
	$=1-\left(\frac{1}{4} \times \frac{1}{3}+\frac{1}{4} \times \frac{1}{3}\right)$
	$=1-\frac{1}{6}$
	$=\frac{5}{6}$

(iv) Our sample space was
(RR) RB $R W$, $B W$ WB W.
Since we know one of the balls is Red, we now only have 5 possible outcomes.

$$
\therefore P(R R)=\frac{1}{5}
$$

(c)

$$
\langle X T Y+\theta+180-\phi=180(\text { angle sum } \triangle X T Z)
$$

$$
\angle X T Y=\varnothing^{\prime}-\theta
$$

Using the sin Rule

$$
\begin{aligned}
& \frac{p}{\sin <x+y}=\frac{T y}{\sin \theta} \\
& \frac{p}{\sin (\phi-\theta)}=\frac{T y}{\sin \theta} \\
& T y=\frac{p \sin \theta}{\sin (\phi-\theta)}
\end{aligned}
$$

I mk given.
\ICALLISTO\StaffHomesIWOHURAH M Fac Admin\Assessment infolSuggested Mk solis template_V2.doc

MATHEMATICS: Question. 14 .. page. 3

MATHEMATICS: Question 15

MATHEMATICS: Question 15

$$
\text { c) i) } \begin{array}{rl}
y & =\frac{4}{x} \\
y^{\prime} & =-\frac{4}{x^{2}} \\
a t & P\left(2 t, \frac{2}{f}\right) \\
y^{\prime} & =-4 \\
& =-1 \\
t^{2}
\end{array}
$$

\therefore equation of tangent at P is:

$$
\begin{aligned}
y-\frac{2}{t} & =\frac{1}{t^{2}}(x-2 t) \\
t^{2} y-2 t & =-x+2 t \\
t^{2} y & =-x+4 t \\
t^{2} y & =4 t-x
\end{aligned}
$$

ii) $\quad t^{2} y=4 t-x$
when $x=0, y=\frac{4}{t}$

$$
\therefore A \text { is }\left(0, \frac{4}{4}\right)
$$

when $y=0, x=4 t$

$$
\therefore B \text { is }(4 f, 0)
$$

$$
\begin{aligned}
v & =A B^{2} \\
& =(4 t)^{2}+\left(\frac{4}{t}\right)^{2} \\
& =16 t^{2}+\frac{16}{t^{2}} \\
v^{\prime} & =32 t-\frac{32}{t^{3}}
\end{aligned}
$$

need to show all steps!

NOTE: $V=A B^{2}$
NOT $V=A B$
for stationary points $v^{\prime}=0$

$$
\begin{aligned}
& 0=32 t-\frac{32}{t^{3}} \\
& 0=32 t^{4}-32 \\
& t^{4}=1
\end{aligned}
$$

MATHEMATICS: Question 15

$$
\therefore t= \pm 1
$$

but t is in the first quadrant

$$
\therefore t=1
$$

$$
v^{\prime \prime}=32+\frac{96}{t^{4}}
$$

at $t=1$

$$
v^{\prime \prime}=32+96>0
$$

\therefore the curve concaves up at $x=1$
$\therefore t=1$ is a minimum
\qquad
need to state why it is the positive one.
can also use the table for the gradient

x	0.9	1	1.1
v^{\prime}	-15	0	11

MATHEMATICS: Question..|.6.. Page 1.

MATHEMATICS: Question. 16.. page 3.

(ii) 15 years $=60$ terms

$$
\begin{gathered}
S_{60}=500\left(1+(1.02)^{1}+(1.02)^{2}+(1.02)^{3}+\ldots+(1.02)^{59}\right) \\
a=500 \\
r=1.02 \\
S_{60}=\frac{500\left(1.02^{60}-1\right)}{1.02-1} \quad \text { ie } S_{n}=\frac{a(r n-1)}{r-1} \\
=
\end{gathered}
$$

(iii) No more deposits are made in the 16 th year, but interest is added. to $\$ 57025.77$.

$$
\therefore A_{16}=\$ 57025.77(1.02)^{4}
$$

$$
=\$ 61726.53 \text { is in account after }
$$

16th birthday
(iv) We can see from (iii) that Robbie earned (61726.53-57025.77) interest. ie $\$ 4700.76$ interest.
If Robbie were to withdraw $\$ 4000$ each year his account is still accruing money because ha is earning $\$ 4700$ interest.
If he withdrew $\$ 5000$ each year, he is taking out more than the interest earned, He Ar count a glance would decrease.

