Student	
Number:	
Class:	l

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2015

MATHEMATICS

Total Marks 100

General Instructions:

•	Reading Time: 5 minutes.	Se	ection I: 10 marks
•	Working Time: 3 hours.	•	Attempt Question 1 – 10.
•	Write in black pen.	ŀ	Answer on the Multiple Choice answer sheet provided.
•	Board approved calculators & templates may be used		Allow about 15 minutes for this section.
•	A Standard Integral Sheet is provided.		
		Se	ection II: 90 Marks
•	In Question 11 - 16, show all relevant mathematical reasoning and/or calculations.	•	Attempt Question 11 - 16
•	Marks may not be awarded for careless or badly arranged working.	•	Answer on lined paper provided. Start a new page for each new question.
			Allow about 2 hours & 45 minutes for this section.

The answers to all questions are to be returned in separate *stapled* bundles clearly labelled Question 11, Question 12, etc. Each question must show your Candidate Number.

Multiple Choice Questions

Choose the best answer for each of the following questions.

1. For what values of k does the equation $x^2 - 6x - 3k = 0$ have real roots? B $k \ge -3$ C $k \le 3$ D $k \ge 3$ A $k \leq -3$ 2. Two ordinary dice are rolled. The "score " is the sum of the numbers on the top faces. What is the probability that the scores is 9? B $\frac{1}{4}$ C $\frac{1}{3}$ D $\frac{3}{4}$ A $\frac{1}{0}$ Express $\frac{\sqrt{5}}{1+\sqrt{2}}$ in the form of $\sqrt{a} - \sqrt{b}$ where a and b are rational numbers. 3. A $\sqrt{10} - \sqrt{5}$ B $\sqrt{5} - \sqrt{10}$ C $(\sqrt{10} - \sqrt{5})/3$ D $(\sqrt{5} - \sqrt{10})/3$ Find the derivative of $\cos^2 3x$ with respect to x. 4. A $-2\sin 3x\cos 3x$ B $-6\sin 3x\cos 3x$ C $2\sin 3x\cos 3x$ D $2\sin 3x\cos 3x$ 5. Evaluate $\int_{0}^{1} (e^{-3x} - 1) dx$. A $-(\frac{e^{-3}}{3}+1)$ B $-\frac{e^{-3}}{3}+\frac{2}{3}$ C $-(\frac{e^{-3}}{3}+\frac{2}{3})$ D $\frac{1}{3}(e^{-3}-1)$ What are the domain and range of $f(x) = \sqrt{4 - x^2}$? 6.

A Domain: $-2 \le x \le 2$ Range: $0 \le y \le 2$ B Domain: $-2 \le x \le 2$ Range: $-2 \le y \le 2$ C Domain: $0 \le x \le 2$ Range: $-4 \le y \le 4$ D Domain: $0 \le x \le 2$ Range: $0 \le y \le 4$

7. Daniel planted a bed of gardenias in rows on his commercial property. Each row had to be fertilised before planting.

There were 13 gardenia plants in the first row, 19 gardenia plants in the second row, and so on. Each succeeding row had 6 more gardenia plants than the row before it.

If Daniel wanted to plant 1453 gardenias, how many rows will he need to fertilise?

A 20.28	B 20.40	<u>C</u> 23.61	D 23.74

8. A particle moves so that its velocity function at time t seconds, is given by : $v = 2e^{-t}(1-t)$.

Find the time when the acceleration is zero.

A
$$t=0$$
 B $t=1$ C $t=2$ D $t=3$

9. Find the perimeter (P) of the sector of a circle with a radius of 20cm and an angle 36° subtended at the centre.

A
$$P=0.5 \times 400 \times \left(\frac{\pi}{5} - \sin\frac{\pi}{5}\right) \text{cm}$$

B $P=\left(0.5 \times 400 \times \frac{\pi}{5}\right) \text{cm}$
C $P=(40 + \frac{\pi}{5}) \text{cm}$

D
$$P = (40 + 4\pi) \text{cm}$$

.

•

10. Find the values of x for which the geometric series $2 + 4x + 8x^2 + ...$ has a limiting sum.

A
$$x < \frac{1}{2}$$
 B $x \ge \frac{1}{2}$ C $|x| \le \frac{1}{2}$ D $|x| < \frac{1}{2}$

~ 11 ...

- .

.

V	uest	ION 11 IVIAN	'KS
a.		Evaluate $\lim_{x \to 2} \frac{x^3 - 8}{x - 2}.$	• 2
b.		Find $\int (\sqrt{5x-1}) dx$.	1
c.		Evaluate $\int_{1}^{3} \frac{3x}{x^2 + 4} dx.$	2
d.		Differentiate $y = \frac{\sin x}{1 + \cos x}$ and simplify.	2
e.	(i) (ii)	Differentiate $x \ln x$. Hence find $\int \ln x dx$.	1 2
f.		If a, b and c are consecutive terms of a geometric sequence, show that $\ln a$, $\ln b$ and $\ln c$ are consecutive terms of an arithmetic sequence.	2
g.		A parabola in the coordinate plane is represented by the equation $x^2 - 10x - 16y - 7 = 0$.	
	(i) (ii)	Find the coordinates of the vertex. Find the focal length.	2 1
Q	uesti	on 12 (Start a new page)	
a.		A Geiger counter is taken into a region after a nuclear accident and gives a reading of 10 000 units. One year later, the same Geiger counter gives a reading of 9000 units. It is known that the reading is given by the formula $T = T_0 e^{-kt}$,	
		where T_0 and k are constants and t is the time, measured in years.	
	(i)	Evaluate the exact values of T_0 and k.	2
	(ii)	It is known that the region will become safe after the reading reaches 40 units.	2
	(iii)	Sketch the graph of $T = T_0 e^{-kt}$.	1
b.	(i)	On a Cartesian plane, plot the points A , B and C which are (-4,3), (0,5) and (9,2) respectively.	1
	(ii) (iii)	Find the length of the interval <i>BC</i> . Show that the equation of the line <i>l</i> , drawn through <i>A</i> and parallel to <i>BC</i> is $x + 3y - 5 = 0$.	1 2
((iv) (v) (vi) (vii)	Find the co-ordinates of D , the point where the line l meets the x-axis. Prove that $ABCD$ is a parallelogram. Find the perpendicular distance from the point B to the line l . Hence or otherwise find the area of the parallelogram $ABCD$.	1 2 2 1

Question 13 (Start a new page)

a.	A particle is moving on the x-axis. It starts from the origin, and at the time t seconds, its velocity v m/s is given by $v = 1 - 2 \sin t$.	
	Let $t = t_1$, $t = t_2$ be the first two times when the particle comes to rest.	
(i)	Find t_1 and t_2 .	2
(ii)	Sketch the velocity function for $0 \le t \le 2\pi$.	2
(iii)	Find the acceleration at t_1 and t_2 .	2
(iv)	Find the displacement function.	2
(v)	Hence, or otherwise, find the exact distance travelled between t_1 and t_2 .	2
b.	α , β are the roots of the quadratic equation $2x^2 - (4k+1) + 2k^2 - 1 = 0$. If $\alpha = -\beta$, find the value of k.	2
c.	Given that $f(x) = 4x - 3$ is the gradient function of a curve and the line $y = 5x - 7$ is tangent to the curve. Find the equation of the curve.	3

Question 14 (Start a new page) a.

Two squares *ABCD* and *AEFG* are drawn above. *AG* and *EB* intersect at *K* and *DG* and *AB* intersect at *H*. Let $\angle ADG = \alpha$.

Copy the diagram into your writing booklet.

(i) Prove that $\triangle ADG \equiv \triangle ABE$.

(ii) Prove that $EB \perp DG$.

JRAHS 2105 2u Trial

- 2 -

2 3

Question 14 (continued)

b. A bag contains 2 red balls, one black ball, and one white ball. Ming selects one ball from the bag and keeps it hidden. He then selects a second ball, and also keeping it hidden.

(i)	Draw a tree diagram to show all the possible outcomes.	1
(ii)	Find the probability that both the selected balls are red.	1
(iii)	Find the probability that at least one of the selected balls is red.	1
(iv)	Ming drops one of the selected balls and we can see that it is red. What is the	1
	probability that the ball that is still hidden is also red?	

In the diagram above, TXA is a right-angled triangle. XY = p, TZ = h, $\angle TYZ = \phi$, $\angle ZXA = \alpha$, $\angle TXY = \theta$.

Copy the diagram into your writing booklet.

2

(i) Consider $\triangle XYT$ in the above diagram, show that $TY = \frac{p \sin \theta}{\sin(\phi - \theta)}$.

(ii) Show that $\angle YZT = \frac{\pi}{2} + \alpha$. (iii) Hence use part (i) to character $p \sin \theta \sin \phi$ 3

(iii) Hence, use part (i) and (ii) to show that
$$h = \frac{p \sin \theta \sin \phi}{\sin(\phi - \theta) \cos \alpha}$$
.

Question 15 (Start a new page)

a.	Graph the solution of $4x \le 15 \le -9x$ on a number line.	3

- b. (i) Find the area bounded by the curve $y = \tan 2x$, $0 \le x \le \frac{\pi}{6}$ and the x-axis 3
 - (ii) The region bounded by the curve $y = \tan 2x$, $0 \le x \le \frac{\pi}{6}$ and the x-axis is rotated about the x-axis and form a solid.

Find the volume of this solid using two applications of Simpson's Rule.

In the diagram below, P(2t, 2/t) is a variable point on the branch of the hyperbola y=4/x in the first quadrant.

The tangent at *P* meets the *y*-axis at *A* and the *x*-axis at *B*.

(i) Show that the equation of the tangent at P is $t^2 y = 4t - x$. 2

4

2

3

2

(ii) Let the square of the length of AB, ie AB^2 , be denoted by v. Find the value of t for which v is a minimum.

Question 16 (Start a new page)

a. If
$$\log_5 8 = a$$
, prove that $\log_{10} 2 = \frac{a}{a+3}$.

b. (i) Justify the graph of
$$f(x) = x - \frac{1}{x^2}$$
 is always concave down.

(ii) Sketch the graph of $f(x) = x - \frac{1}{x^2}$, showing all intercept(s) and stationary point(s).

- c. When Robby is 3 months old, his parents decide to make a regular deposit of \$500 every 3 months, starting with first one when Robby is 3 months old in an account that earns interest of 8%p.a., the interest being paid every 3 months.
 - (i) Show that the day after Robby's 1st birthday (after payment is made), the value of 2 the account is given by \$ 2060.80.
 - (ii) How much money will be in the account the day when Robby turns 15 after the 2 payment is made?
 - (iii) No more payments are made into the account after Robby turns 15 and no
 withdrawals are made.
 Find the amount in the account on Robby's 16th birthday.
 - (iv) Robby decides that he will withdraw a regular amount of money from this account each birthday, starting with his 16th birthday. He cannot decide whether he should withdraw \$4000 or \$5000 each birthday.
 By considering the result of part (iii), comment on what will happen in each case.

END of PAPER

c.

1)
$$2015 \text{ JRAHS} \text{ Mc} 21-$$

1) $\Delta \ge 0$
 $36-4(-3k) \ge 0$
 $36+12k \ge 0$
 $k \ge -3$ (B)
2) $(3.6), (6.3) (5.8)(4.57)$
 $\frac{4}{7b} = \frac{4}{9}$ (A)
3) $\frac{\sqrt{5}}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}} = \frac{\sqrt{5}-\sqrt{5}}{-1} = \sqrt{70}-\sqrt{2}$
(A)
4) $2 \cos 3x (-5i \cdot 7x) \times 3$
 $= -b \cos 3\pi \sin 3x$
(B)
5) $\frac{e^{2x}}{-3} - x \int_{-3}^{1} = \frac{e^{3}}{-3} - 1 - (\frac{1}{-3} - 0)$
 $= -\frac{e^{3}}{3} - 1 + \frac{1}{3}$
 $= -\frac{1}{3} [2 + e^{-3}]$ (C)
6) (A)
7) $a = 13 \ d = 6$
 $1453 = [\frac{2a + (b-1)d}{2}]n$
 $2906 = 26n + (n-1)6n$
 $0 = 6n^{3} + 10n - 25 \cdot 6$
 $0 = -10 \pm \sqrt{107 \cdot 736} - 14 \cdot 53$
 $n = -10 \pm \sqrt{107 \cdot 736} - 14 \cdot 53$
 $n = (-10 \pm \sqrt{107 \cdot 736}) = 6$
 $n = 10.40$ (B)

ŝ

ender unter the second of the

¢

Trial
8)
$$V = 2e^{-t} - 2e^{-t} t$$

 $X = -2e^{-t} (-1+t)2e^{-t}$
 $X = 2e^{-t} (-2t+t) = 0$
when $t = 2$ C
9) $P = 40 + 30 \cdot \frac{\pi}{5}$ $\frac{10}{5}$
 $P = 40 + 4\pi$
D
10) $\frac{1}{|2x|} < 1$ D
 $|x| < \frac{1}{2}$

.

P.|

Marks	JRAHS Marker's Comments
1	correct factorisation
1	evaluation of limit.
1	correct integration
1	correct integration
+	correct evaluation of integral
	Marks 1

J:\Maths\marking templates \Suggested Mk solns template_V2_no Ls.doc

- rage 2 -		
24: 2015 TRIAL MATHEMATICS: Question !!		JRAHS
d) $y = \frac{Sin x}{1 + cor x}$	Marks	Marker's Comments
$\frac{dy}{dx} = \frac{c_{0}x(1+c_{0}x) - s_{1}x(-s_{1}x)}{(1+c_{0}s_{1}x)^{2}}$	1	for correct differentiation
$= \frac{\cos x + \cos^2 x + \sin^2 x}{(1 + \cos x)^2}$		
$= \frac{\cos x + 1}{(1 + \cos x)^2}$		
$= \frac{1}{1+\cos x}$	1	for correct simplification
e) (i) $\frac{d}{dx}(x \ln x) = 1 \cdot \ln x + x \cdot \frac{1}{x}$ = $\ln x + 1$	l	for correct differentiation
(") $\therefore \int (\ln x + i) dx = x \ln x + c$ $\therefore \int \ln x dx = x \ln x - \int i dx + c$	I	for correctly antidefferentiating
$= x \ln x - x + C$ $= x (\ln x - 1) + C$	1	for correct integration

J:\Maths\marking templates\Suggested Mk solns template_V2_no Ls.doc

- 1age 5-		
24 TRIAL 2015 MATHEMATICS: Question	Monko	JRAHS
f) a, b, c in $GP \Rightarrow \frac{b}{a} = \frac{c}{b}$ $b^2 = ac$ Taking log: $ln b^2 = ln(ac)$ $\Rightarrow 2 lnb = lna + lnc$ i.e lnb-lng = lnc-lnb	I	for correct decluction from GP sequence
Hence common difference, d'exists for sequence lna, lnb, lnc => lna, lnb, lnc are in AP	1	for showing existence of common difference
9) (1) $x^2 - 10x - 1by -7 = 0$ $1by = x^2 - 10x + 5^2 - 32$ $= (x-5)^2 - 32$ $\therefore (x-5)^2 = 1b(y+2)$ $\therefore Vertex (5, -2)$ (1) focal length, $a = 4$ Method II: axis of symmetry, $x = \frac{-b}{2a}$ Method III: $y' = 0 \implies x = 5$ etc	1	for x ² = 4ay for correct vertex for focel length

J:\Maths\marking templates \Suggested Mk solns template_V2_no Ls.doc

2mit

[\]CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V2.doc

\\CALLISTO\StaffHomeS\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V2.doc

a s

\\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment in fo\Suggested Mk solns template_V2.doc

MATHEMATICS: Question 13 Suggested Solutions Marks **Marker's Comments** = = = + 5 - 2 +2 = = , x2 = = = - 13 - 2 many students distance = 1至-J3-2-(丧+J3-2) 1 did not include = 1 提 - 2531 the absolute 2] 3 - 7 1 value for distance sum of roots: 6 K+B==(4k+1) Since d= - B - B+B = 4k+1 1 = 4k+1 2 4k+1=04k = -1ł $k = -\frac{1}{4}$ c) y = 5x - 7could also use: m = 5 (. 4x - 3 = 5) $5x-7=2x^2-3x+c$: ax - 8x+ k+7=0 4x = 8<u>n = 2</u> Δ=0 when x = 2, y = 5(2) - 7= 3 c = 1 :. the tangent cuts the curve :. y= 2x2-3x+1 ł at(2,3)f(x) = 4x - 3 $F(x) = \int (4x - 3) dx$ $= 2x^2 - 3x + C$ a + (2,3) $3 = 2(2)^2 - 3(2) + c$

\CALLISTO\StaffHomeS\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V2.doc

Q14, (

\\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V2.doc

Q14 (2)

MATHEMATICS: Question 14 page3				
Suggested Solutions	Marks	Marker's Comments		
(ii) $\langle YZT = \langle TAX + \langle AXZ \rangle$ (exterior angle of ΔAXZ). $\langle \langle YZT = TT + \chi \rangle$ $\frac{1}{2}$	lmk	(answer was given).		
(iii) In \triangle TYZ $\frac{TY}{\sin(\sqrt{2}T)} = \frac{h}{\sin \emptyset}$ $\frac{TY}{\sin(\frac{\pi}{2} + \alpha)} = \frac{h}{\sin \emptyset}$ Subst $TY = \frac{p \sin \theta}{\sin(\theta - \theta)}$ from (ii)	1 mk			
$i \frac{p \sin \theta}{\sin (\phi - \theta) \sin (\frac{\pi}{2} + \alpha)} = \frac{h}{\sin \phi}$ $h = \frac{p \sin \theta \sin \phi}{\sin (\phi - \theta) \sin (\frac{\pi}{2} + \alpha)}$ Now: $\sin (\frac{\pi}{2} + \alpha)$	lmk	It was not sufficient to proceed from $sin(\frac{\pi}{2}+\alpha)$ to $cos\alpha$		
$= \cos\left(\frac{\pi}{2} - \left(\frac{\pi}{2} + \alpha\right)\right)$ = $\cos(-\alpha)$ = $\cos\alpha$. $h = \frac{\rho \sin \theta \sin \phi}{\sin(\phi - \theta) \cos \alpha}$	lmk.	acknowledgement was given to them being equal. this was answer given		
		•		

 $\label{eq:calling} \label{eq:calling} \label{eq:calling} \label{eq:calling} \label{eq:calling} \label{calling} \label{calling} \label{calling} \label{calcing} \label{calcin$

014 3

MATHEMATICS: Question 15 **Suggested Solutions** Marks Marker's Comments a) 4x ≤ 15 ≤ -9x 4× 515 15 5-92 or $\chi \leq 15$ -9x 215 $x \leq -15$ 3 えき ł х. x < -I Į 15 A= Etan2x dx 6i) · COS2X ļ $\frac{1}{2} \left[\ln(\cos 2\pi) \right]^{\frac{3}{2}}$ 1 $\frac{1}{2}$ $\left(\ln(\cos \frac{\pi}{2}) - \ln(1)\right)$ - う いう = 1 In 2 1 tan22x dx ii) $V = \hat{T}$ 끈 <u><u></u></u> <u>т</u> 문 X 6 ł tan21 0.072 3 $v = \pi \left(\frac{\pi}{12 \times 6} \left(0 + 4 \left(\tan^2(\frac{\pi}{12}) \right) + \frac{1}{3} \right) \right)$ need to show that $+\frac{1}{12\times6}(3+4\times1+3)$ 2 applications were used or = 1.0902970... (calc display) = 1.0903 (4 dp) unit³ 5 function values L

MATHEMATICS: Question 15 Suggested Solutions Marks **Marker's Comments** e) i) y = # '= - 늈 at P(2t, <u>루</u>) $\frac{1}{(2+)^2}$ 1 equation of tangent at P is: $f = \frac{2}{4} = -\frac{1}{4^2} (x = 24)$ need to show all steps! -2t = -x + 2tĮ = - - - + + + + $= 44 - \pi$ ii) $t^2y = 4t - x$ =0, y=4 · A is (0, 4 when y=0, x=44:. B is (44, 0) $v = AB^2$ NOTE: V= AB2 NOT V= AB = 16+2 +2 ١ $v' = 32t - \frac{24}{4}$ 1 for stationary points v'=00 = 32 + - 32£3 $0 = 34^{4} - 32$ $+^{4} = 1$

MATHEMATICS: Question	5	
Suggested Solutions	Marks	Marker's Comments
	1	need to state
but t is in the first quadrant		where it is the
		positive orie.
v'' = 32 + 96		
		can also use
		the table for
		the condinat
TO TARABUSCIER AND THE THE CULL VE CONCERNENCE OF THE TARABUSCIER AND THE TARABUSCIER		me gradient
t=1 is a minimum		209111
		V1-15 0 11
	1	
	ľ	

MATHEMATICS: Question. 1.6. Page .		
Suggested Solutions	Marks	Marker's Comments
Suggested Solutions (a) $\log_5 8 = a$ $\log_5 2^3 = a$ $a = 3 \log_5 2$ $a = 3 \log_5 2$ $a = \frac{3 \log_{10} 2}{\log_{10} 5}$ $a = \frac{3 \log_{10} 2}{\log_{10} 2}$ $a = \frac{3 \log_{10} 2}{\log_{10} (\frac{10}{2})}$ $a = \frac{3 \log_{10} 2}{\log_{10} (\frac{10}{2})}$	Imk	Marker's Comments Note: Do not use log_2 for $log_{10}2$. $log_2 = log_2^2$ = ln2.
$1 - \log_{10} 2$	Imk	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Imk.	
(b) (i) $f(x) = x - x$ $f'(x) = 1 + 2x^{-3}$ $f''(x) = -6x^{-4}$ $f''(x) = -6x^{-4}$ $f''(x) = -6x^{-4}$ $f''(x) = -6x^{-4}$ Since $x^{4} > 0$ then $-\frac{6}{2} < 0$ for all x	Imk	
Since f"(5c) KO the graph of f(5c) is always Concave down.	Imk	•

\\CALLISTO\StaffHome\$\WOH\JRAH M Fac Admin\Assessment info\Suggested Mk solns template_V2.doc

Q16 ()

Q 16(2)

•