Section I Multiple Choice (10 marks)

Attempt Question 1 - 10 (1 mark each)
Allow approximately 15 minutes for this section.

Question 1

Factorise $8 x^{6}-27$
A) $\left(2 x^{2}-3\right)\left(4 x^{4}-6 x^{2}+9\right)$
B) $\left(2 x^{2}+3\right)\left(4 x^{4}-6 x^{2}+9\right)$
C) $\left(2 x^{2}-3\right)\left(4 x^{4}+6 x^{2}+9\right)$
D) $\left(2 x^{2}+3\right)\left(4 x^{4}-6 x^{2}+9\right)$

Question 2

What is the greatest value taken by the function $f(x)=3-2 \cos x$?
A) 1
B) 2
C) 3
D) 5

Question 3

What is the value of $\int_{2}^{6} \frac{1}{x+2} d x$?
A) $\ln 2$
B) $\quad \ln 4$
C) $\ln 6$
D) $\ln 8$

Question 4

The table below shows the values of a function $f(x)$ for five values of x.

\boldsymbol{x}	2	2.25	2.5	2.75	3
$\boldsymbol{f}(\boldsymbol{x})$	3	4	-1	3	7

What value is an estimate for $\int_{2}^{3} f(x) d x$ using Simpson's Rule with these five values?
A) 3
B) 4
C) 5
D) 6

Question 5

The perpendicular distance from the point $(-3,2)$ to the line $x-4 y=1$ is closet to:
A) 1.1
B) 2.8
C) 2.9
D) 3.3

Question 6

Thirty tickets are sold in a raffle. There are two prizes (first and second). Lewis buys 4 tickets. What is the probability of him winning the second prize but not the first?
A) $\frac{2}{15}$
B) $\frac{26}{225}$
C) $\frac{52}{435}$
D) $\frac{26}{435}$

Question 7

What is the equation of the normal to the curve $y=x^{2}-4 x$ at $(1,-3)$?
A) $x+2 y-7=0$
B) $x-2 y-7=0$
C) $2 x-y+1=0$
D) $2 x+y+1=0$

Question 8

The concave up parabola with focus $S(3,2)$, focal length 1 and axis of symmetry perpendicular to the x-axis is:
A) $(x-3)^{2}=4(y-2)$
B) $(x-3)^{2}=4(y-1)$
C) $(y-2)^{2}=4(x-3)$
D) $(x-3)^{2}=4(y-3)$

Question 9

What is the derivative of $\frac{x}{\cos x}$?
A) $\frac{\cos x+x \sin x}{\cos ^{2} x}$
B) $\frac{\cos x-x \sin x}{\cos ^{2} x}$
C) $\frac{x \sin x-\cos x}{\cos ^{2} x}$
D) $\frac{-x \sin x-\cos x}{\cos ^{2} x}$

Question 10

What are the solutions to the equation $25^{x}-5^{x+1}+6=0$?
A) $\quad x=2$ or $x=3$
B) $\quad x=\frac{\ln 2}{\ln 5}$ or $x=\frac{\ln 3}{\ln 5}$
C) $\quad x=\ln \frac{2}{5}$ or $x=\ln \frac{3}{5}$
D) No Solutions

End of Section I

Section II

Attempt Questions 11-16.

Allow approximately $\mathbf{2}$ hours $\& \mathbf{4 5}$ minutes for this section.
Answer all questions, starting each new question on a new sheet of paper with your student ID number in the top right hand corner and the question number on the left hand side of your paper.

All necessary working must be shown in each and every question.

Question 11 (15 Marks)

Start a new piece of paper
a) For the series $2-1+\frac{1}{2}-\frac{1}{4}+\cdots$
i. Find the $8^{\text {th }}$ term of the series.
ii. Find the limiting sum of the series.
b) Differentiate with respect to x :
i. $\sin \left(\frac{x-1}{x^{2}}\right)$
ii. $x^{2} \mathrm{e}^{-x}$
c) Find:
i. $\quad \int \sqrt{3 x+1} d x$
ii. $\int \frac{2 x+1}{x^{2}} d x$
d)
i. Prove that $\frac{\cos ^{2} x}{1-\sin x}=1+\sin x$.
ii. Hence or otherwise, find the range of $y=\frac{\cos ^{2} x}{1-\sin x}$.
iii. Sketch $y=\frac{\cos ^{2} x}{1-\sin x}-\pi \leq x \leq \pi$ showing all important features.
a)

The diagram shows two points $A(2,2)$ and $B(1,5)$ on the number plane.
Copy the diagram into your writing paper.
i. Find the coordinates of M , the midpoint of AB .
ii. Show that the equation of the perpendicular bisector of AB is $x-3 y+9=0$.
iii. Find the coordinates of the point C that lies on the y axis and is equidistant from A and B .
iv. The point D lies on the intersection of the line $y=5$ and the perpendicular bisector $x-3 y+9=0$. Find the coordinates of D .
v. Find the area of $\triangle A B D$.
b) A particle travels in a straight line. Its velocity \dot{x} at time t is given by

$$
\dot{x}=\left(3 t^{2}-9 t+6\right) m s^{-1}
$$

i. Find the expression for the particle's displacement x in terms of t, if after 1 second the particle is at $x=3$.
ii. Find the expression for the particle's acceleration in terms of t.
iii. At what time(s) is the particle at rest?
iv. Draw a velocity-time graph representing the motion of this particle showing all important features.
v. Find the total distance travelled by the particle after 2 seconds.
a) Let $f(x)=(x+2)\left(x^{2}+4\right)$.
i. Show that $y=f(x)$ has no stationary points.
ii. Find the values of x for which $y=f(x)$ is concave up and concave down respectively.
iii. Sketch the graph $y=f(x)$, indicating all intercepts and any points of inflexion.
b) On the $1^{\text {st }}$ of January 2001, Mary decides to put $\$ 5000$ into a savings account that earns her interest at a rate of 4% p.a. compounded at the end of each month.
i. Show that (to the nearest dollar) Mary will have $\$ 5636$ in her account on the $1^{\text {st }}$ of January 2004.
ii. At this rate, at the end of which year and month will Mary's account exceed \$10 000 ?
iii. Mary has started working and is able to deposit $\$ 500$ on the $2^{\text {nd }}$ of every month starting from January 2004. How much will Mary have in her account on the $1^{\text {st }}$ of January 2007? (Use $\$ 5636$ as the starting amount in 2004).
c) Given that $y=(3 x+1)^{2}$. Show that $y-y^{\prime}+4=x\left(y^{\prime}-12\right)-y$.
a)

The diagram shows the graph $y=\log _{2} x$ between $x=1$ and $x=8$. The shaded region, bounded by $y=\log _{2} x$, the line $y=3$, and the x and y axes, is rotated about the y axis to form a solid.
i. Show that the volume of the solid is given by

$$
V=\pi \int_{0}^{3} e^{y \ln 4} d y
$$

ii. Hence find the volume of the solid.
b) The death rate of an endangered species on an island is given by

$$
\frac{d P}{d t}=-k P
$$

where P is the population of the species after t days and k is a constant.
i. Show that $P=A e^{-k t}$ is a solution to the equation, where A is a constant.
ii. Initially there were 2000 of the species on the island, after 300 days only 1000 were left. What is the population (to the nearest whole number) after 400 days?
iii. After how many days will the population of the species drop below 400 ?
c) Use the Trapezoidal Rule with 5 function values to obtain an estimate for:

$$
\int_{-2}^{6} \log _{e} \sqrt{x+3} d x
$$

Simplify your answer as much as possible.
d)
i. Rationalise the denominator in the expression

$$
\frac{1}{\sqrt{n}+\sqrt{n+1}} \text {, where } \mathrm{n} \text { is a positive integer }
$$

ii. Using your result from part i or otherwise, find the value of the sum

$$
\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\cdots+\frac{1}{\sqrt{99}+\sqrt{100}}
$$

a)

In the diagram, ABCD is a rectangle and $A B=2 A D$. The point M is the midpoint of AD . The line BM meets AC at X .
i. Show that the triangles AXM and BXC are similar.
ii. Show that $3 \mathrm{CX}=2 \mathrm{AC}$
iii. Show that $9(C X)^{2}=5(A B)^{2}$
b)

A rectangular beam of width $w \mathrm{~cm}$ and depth $d \mathrm{~cm}$ is cut from a cylindrical pine log as shown.

The diameter of the cross-section of the \log (and hence the diagonal of the cross-section of the beam is 15 cm .

The strength S of the beam is propotional to the product of its width and the square of its depth, so that

$$
S=k d^{2} w
$$

i. Show that $S=k\left(225 w-w^{3}\right)$.
ii. Find numerically the dimensions that will maximise the strength of the beam. Justify your answer.
iii. Find the strength S of the beam if its cross sectional area is a square with diagonal 15 cm .
iv. Express as a percentage, how much stronger will the beam of maximum strength be in comparison to the square beam in part iii to the nearest $\%$.
c) 65 blue marbles are placed into a bag with red marbles in it. Then a sample of 32 marbles were drawn out of the bag. It was noted that of the 32 drawn out, 27 of them were red. What is the expected number of red marbles in the bag to begin with?

Please Turn Over

a)
i. Show that the tangent to $y=x^{3}$ at the point where $x=2$ is $y=12 x-16$.
ii. Show that the tangent meets the curve again at $(-4,-64)$.
iii. Find the area of the region enclosed between the curve and the tangent.
b) Joe tosses an unbiased coin continuously, until, for the first time, the same result is repeated in two consecutive throws (that is, 2 heads in a row or 2 tails in a row).
i. What is the probability that the game ends within the first 3 throws?
ii. Joe decides that he wins if the game ends after an odd number of throws, and he loses if the game ends after an even number of throws. Find the probability that Joe wins the game.
c) Two ships P and Q are observed to be at a bearing of $315^{\circ} \mathrm{T}$ and $045^{\circ} \mathrm{T}$ respectively from a port A. From a second port B, which is 1 km due east of A , the ships P and Q are observed to be at a bearing of $293^{\circ} \mathrm{T}$ and $023^{\circ} \mathrm{T}$ respectively. Let the point of intersection of QA and PB be T.
i. Draw a diagram illustrating the information given above.
ii. Show that BT is given by $\frac{\sin 45^{\circ}}{\sin 112^{\circ}}$ and AT is given by $\frac{\sin 23^{\circ}}{\sin 112^{\circ}}$.
iii. Hence, or otherwise, find the distance between the two ships P and Q correct to 2 decimal places, giving reasons.

End of Exam.

1. $\left(2 x^{2}\right)^{3}-3^{3}=\left(2 x^{2}-3\right)\left(4 x^{4}+6 x^{2}+9\right) \quad$ (c)
2. greatest value at $x=180$

$$
\begin{align*}
f(x) & =3-2 \cos (180) \\
& =5 \tag{D}
\end{align*}
$$

3. $\int_{2}^{6} \frac{1}{x+2} d x=[\ln (x+2)]_{2}^{6}$

$$
=\ln 8-\ln 4
$$

$$
\begin{equation*}
=\ln 2 \tag{A}
\end{equation*}
$$

4. $\int_{2}^{3} f(x) d x \approx \frac{0.25}{3}(3+4 \times 4+2(-1)+4(3)+7)$

$$
\begin{equation*}
=3 \tag{A}
\end{equation*}
$$

5. $d=\frac{|1(-3)-4(2)-1|}{\sqrt{1^{2}+(-4)^{2}}}$

$$
\begin{equation*}
=2.910 \ldots \tag{c}
\end{equation*}
$$

6. $\frac{26}{30} \times \frac{4}{29}=\frac{52}{435}$
7.

$$
\begin{aligned}
y & =x^{2}-4 x \\
y^{\prime} & =2 x-4 \\
\text { at } & (1,-3) \\
y^{\prime} & =2(1)-4 \\
& =-2 \\
m_{\perp} & =\frac{1}{2}
\end{aligned}
$$

\therefore equation is: $y+3=\frac{1}{2}(x-1)$

$$
\begin{equation*}
x-2 y-7=0 \tag{B}
\end{equation*}
$$

8. vertex: $(3,1) \quad a=1$

$$
\begin{equation*}
(x-3)^{2}=4(y-1) \tag{B}
\end{equation*}
$$

9. $\frac{d}{d x}\left(\frac{x}{\cos x}\right)=\frac{\cos x+x \sin x}{\cos ^{2} x}$
10. $25^{x}-5^{x+1}+6=0$

$$
\begin{aligned}
& 5^{2 x}-5 \times 5^{x}+6=0 \\
& \left(5^{x}-2\right)\left(5^{x}-3\right)=0 \\
& \therefore 5^{x}=2,5^{x}=3 \\
& x \ln 5=\ln 2, x \ln 5=\ln 3 \\
& x=\frac{\ln 2}{\ln 5}, x=\frac{\ln 3}{\ln 5}
\end{aligned}
$$

MATHEMATICS: Question II
a) i)

$$
\begin{aligned}
a & =2, r=-\frac{1}{2} \\
T_{8} & =a r^{n-1} \\
& =2\left(-\frac{1}{2}\right)^{7} \\
& =-\frac{1}{64}
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
S_{\infty} & =\frac{a}{1-r} \\
& =\frac{2}{1+\frac{1}{2}} \\
& =\frac{4}{3}
\end{aligned}
$$

b)i) $\frac{d}{d x}\left(\sin \left(\frac{x-1}{x^{2}}\right)\right)$

$$
\begin{aligned}
= & \cos \left(\frac{x-1}{x^{2}}\right) \times\left(\frac{x^{2}-(x-1) 2 x}{x^{4}}\right) \\
& =\frac{2-x}{x^{3}} \cos \left(\frac{x-1}{x^{2}}\right) \\
i i) \frac{d}{d x}\left(x^{2} e^{-x}\right) & =2 x e^{-x}-x^{2} e^{-x} \\
& =x e^{-x}(2-x)
\end{aligned}
$$

c) i)

$$
\text { i) } \begin{aligned}
\int \sqrt{3 x+1} d x & =\frac{1}{3} \times \frac{2}{3}(3 x+1)^{\frac{3}{2}}+c \\
& =\frac{2}{9}(3 x+1)^{\frac{3}{2}}+c \\
\text { ii) } \int \frac{2 x+1}{x^{2}} d x & =\int\left(\frac{2}{x}+\frac{1}{x^{2}}\right) d x \\
& =2 \ln x-\frac{1}{x}+c
\end{aligned}
$$

d) i)

$$
\begin{aligned}
& \frac{\cos ^{2} x}{1-\sin x}=1+\sin x \\
& \begin{aligned}
\text { LHS } & =\frac{\cos ^{2} x}{1-\sin x} \\
& =\frac{1-\sin 2}{1-\sin x}
\end{aligned}
\end{aligned}
$$

MATHEMATICS: Question. $1 ?$

MATHEMATICS: Question ...12...

Suggested Solutions
(i) $\dot{x}=\left(3 t^{2}-a t+b\right) 4 s^{-1}$

Dis placement

$$
\begin{aligned}
& x=\int 3 t^{2}-9 t+b a t \\
& x=t^{3}-\frac{9 t^{2}}{2}+6 t+c
\end{aligned}
$$

when $t=1, x=3$

$$
\begin{aligned}
3 & =1-\frac{a}{2}+b+c \\
c & =\frac{1}{2} \\
\therefore x & =t^{3}-\frac{9 t^{2}}{2}+6 t+\frac{1}{2}
\end{aligned}
$$

$$
\text { (ii) } \ddot{x}=6 t-9
$$

(iii) time when particle is ot rest

$$
\begin{aligned}
& \dot{x}=0 \\
& \therefore \quad 3 t^{2}-a t+b=0 \\
& t^{2}-3 t+2=0 \\
& (t-1)(t-2)=0 \\
& \quad t=1 \text { ar } t=2
\end{aligned}
$$

(IV)

1 mark for getting both
$t=1$ or 2 sec
$\checkmark 1$ marie for getting x intercepts as $x=1$ and $x=2$ and $y=6$
$\checkmark 1$ mark for
2
-page 4 -
MATHEMATICS: Question.?.2..

QUESTION 13 2units Trial 2016.
a)i) Shew $f(x)$ has no syationary points.

$$
\begin{align*}
f(x) & =(x+2)\left(x^{2}+4\right) \\
f^{\prime}(x) & =(x+2) \cdot 2 x+\left(x^{2}+4\right) \cdot 1 \\
& =2 x^{2}+4 x+x^{2}+4 \tag{i}\\
& =3 x^{2}+4 x+4
\end{align*}
$$

$$
\begin{align*}
\Delta & =b^{2}-4 a c \\
& =16-4(3)(4) \tag{1}\\
& =-32
\end{align*}
$$

$$
\begin{aligned}
& =-32 \\
& f^{\prime}(x) \neq 0 \quad \text { since } \Delta<0 \text { (noreal root) }
\end{aligned}
$$

\therefore ar stationory points.
ii) $f^{\prime \prime}(x)=6 x+4$
$f^{\prime \prime}(x)>0$ concave up $f^{\prime \prime}(x)<0$ concove rount

$$
\begin{aligned}
\therefore 6 x+4 & >0 \\
6 x & >-4 \\
x & >-\frac{2}{3}
\end{aligned}
$$

$$
\begin{aligned}
6 x+4 & <0 \\
6 x & <-4 \\
x & <-2 / 3
\end{aligned}
$$

or

x		$i z-0.6$		
$f^{\prime \prime}(x)$	-0.2	0	0.4	

conceredown
conceve up

Q/3acont...

to get 2 monks.
(1) Show y and x intercept $广$ shape
(2) pt of inflexion
b) is $\operatorname{Jan} 2001, p-5000, r-4 \% p \cdot a$
compounded at end of each in th.
i) Last Jan 2004

$$
\begin{array}{rlrl}
n & =3 \times 12 & r & =\frac{4 \%}{12} \tag{1}\\
& =36 & & \frac{0.04}{12}
\end{array}
$$

for

$$
\begin{align*}
A & =P(1+r)^{n} \\
& =5000\left(1+\frac{0.04}{12}\right)^{36} \tag{D}\\
& =5636.36 \\
& =\$ 5636 \quad(\text { showed })
\end{align*}
$$

correct n and r
for subbing
correctly
ii) $\mathrm{A}>10000$

$$
\begin{aligned}
& 10000 \\
& \therefore \quad 5000\left(1+\frac{0.04}{12}\right)^{n}=10000 \\
&\left(1+\frac{0.04}{12}\right)^{n}=2 \\
& n=\frac{\lg _{e} 2}{1 g_{e}\left(1+\frac{0.04}{12}\right)}
\end{aligned}
$$

$$
=208.29 . \quad-12 \text { to get }
$$ years $\} m$ th s -

$$
\text { for } A>10000
$$

$$
\begin{aligned}
\text { years } \\
2001+17 \\
2018
\end{aligned} \quad \text { Jan } 4 \text { May } \quad \therefore \text { ninths }
$$

Q 13 B CONT..
iii) deposit $\$ 500$ on anat of every ind t. frat ting from Jan 2004.
? much in Jon on 2007?

$$
\begin{align*}
& \therefore P=5636 \quad I=1+\frac{0.04}{12}=\frac{301}{300} \\
& A-500 \\
& A_{1}=5636\left(\frac{301}{300}\right)+500\left(\frac{301}{300}\right) \\
& A_{2}=5636\left(\frac{301}{300}\right)^{+}+500\left(\frac{301}{300}+\frac{301^{2}}{300}\right) \\
& A_{n}=5236\left(\frac{301}{300}\right)^{n}+500\left(\frac{301}{300}+\cdots+\frac{301}{300}\right) \\
& G P=500 \times\left(\frac{301}{300}\left(\frac{301^{36}}{300}-1\right)\right) \\
& A_{36}=(5636+500) \times \frac{301}{300} \cdots 1
\end{align*}
$$

Let $P=5636 \quad M=500 \quad K=\frac{301}{300}$
OR.

$$
A_{1}=(P+M) R=R P+R M
$$

$$
A_{1}=(P+M) R=(R P+R M+M) R=R^{2} P+R^{2} M+R M
$$

$$
A_{2}=(R P+R M+M) R=\left(R^{2} P+R^{2} M+R M+M\right) R=R^{3} P+R^{3} M+R^{2} M+R M
$$ easier to

$$
\therefore A_{n}=R^{n} P+R^{n} m+\cdots .+R^{2} m+R M . \quad \text { easier to } \quad \text { work with. }
$$

$$
=R^{n} p+\operatorname{kn} \frac{\left(R^{n}-1\right)}{R-1}
$$

then sub the values

Q 13c cort.
c) $y=(3 x+1)^{2}$
show $y-y^{\prime}+4=x\left(y^{\prime}-12\right)-y$

$$
\begin{aligned}
& y^{\prime}=2(3 x+1) \cdot 3 \\
& =6(3 x+1) \text { or } 18 x+6
\end{aligned}
$$

$$
\begin{array}{rl}
\text { LHS } & \text { RAS } \\
(3 x+1)^{2}-(18 x+6)+4 & x(18 x+6-12)-(3 x+1)^{2} \\
9 x^{2}+6 x+1-18 x-6+4 & =18 x^{2}-6 x-\left(9 x^{2}+6 x+1\right) \\
9 x^{2}-12 x-1 & =18 x^{2}-6 x-9 x^{2}-6 x-1 \\
& 9 x^{2}-12 x-1
\end{array}
$$

$$
L H S=R H S
$$

Question 14 2units trial 2016.
ai)

$$
\begin{aligned}
& V=\pi \int_{0}^{3} e^{y \ln 4} d y \cdot(f \operatorname{low}) \\
& y=\log _{2} x \quad(\log \text { is an exponent) } \\
& 2^{y}=x \quad \text { (square) } \\
& \left(2^{y}\right)^{2}=x^{2} \quad \text { we know } a^{x}=e^{x \ln a} \\
& 2^{2 y}=x^{2} \quad y=
\end{aligned}
$$

$$
\begin{aligned}
& 2^{2 y}=x \\
& x^{2}=e^{2 y \ln 2} \\
&=e^{y \ln 2^{2}} \\
&=e^{y \ln 4} \\
&
\end{aligned}
$$

ii) Find the volume $r=\pi \int_{0}^{3} x^{2} d y$.

$$
\begin{aligned}
\ln 4 & =\frac{\ln x}{\ln 2} \\
\ln 2 y & =\ln x \\
\ln x & =\ln 2 y \\
x & =e^{y \ln 2} \\
x^{2} & =e^{y \ln 2} \\
& =e^{y \ln 4}
\end{aligned}
$$

$$
\begin{aligned}
& =\pi \int_{0}^{3} c^{y \ln 4} d y \\
& =\pi\left[\frac{e^{y \ln 4}}{\ln 4}\right]_{0}^{3}
\end{aligned}
$$

$$
=\frac{7}{\ln 4}\left(e^{3 \ln 4}-e^{0}\right)
$$

$$
\left.\begin{array}{l}
=\ln _{\ln 4}^{\ln 4}\left(e^{3 \ln 4}-1 ;\right. \\
\frac{63 \pi}{\ln 4}, 142.77
\end{array}\right\}
$$

Q 14 cont.
b) i)

$$
\begin{aligned}
P & =A e^{-k t} \\
\frac{d P}{d t} & =-k A e^{-k t} \\
& =-k P
\end{aligned}
$$

ii)

$$
\begin{array}{ll}
t=0, & p-2000 \\
t=300 & p-1000 \\
t=400 & p=?
\end{array}
$$

\therefore when $t=0$

$$
\begin{aligned}
P & =A e^{-k t} \\
2000 & =A e^{-0} \\
A & =2000
\end{aligned}
$$

when $t=300 \quad P=1000$

$$
\begin{align*}
& \therefore 1000=2000\left(e^{-k(300)}\right) \\
& 1000=2000 e^{-300 k} \\
& e^{-300 k}=1 / 2 \\
& -300 k=\frac{\ln 1 / 2}{-300} \text { or } \frac{\ln 2}{300} \text { or } 0.00231 \tag{1}
\end{align*}
$$

when $t=400$ final P.

$$
\begin{aligned}
\therefore \quad P & =2000 e^{-k(400)} \\
& =793.7
\end{aligned}
$$

$$
\text { after }=794
$$

400 days
$P=794$ (nearest whole number)

14 bii)

$$
\begin{align*}
P & <400 \\
\therefore \quad 400 & =2000 e^{-k t} \\
\frac{1}{5} & =e^{-k t} \tag{1}\\
t & =\frac{\ln \frac{1}{5}}{-k} \tag{1}\\
& =696.6 \ldots
\end{align*}
$$

after 697 days $P<400$
14C) Trapetoidal kule 5 func.

$$
\begin{aligned}
\because A & \approx \frac{b-a}{5 w}\left(\sum w f(x)\right) \\
& \approx\left[\frac{6--2}{8}(0+2(\ln \sqrt{3}+\ln \sqrt{5}+\ln \sqrt{7})+\ln 3)\right] \\
& \approx(\ln 3+\ln 5+\ln 7+\ln 3) \\
& \approx(2 \ln 3+\ln 5+\ln 7)
\end{aligned}
$$

$\approx \ln (9 \times 5 \times 7)_{2}$ (simplified as much as possib/e)
*. (5.75)

$$
\begin{align*}
&\left.14 d_{i}\right) \frac{1}{\sqrt{n}+\sqrt{n+1}} \times \frac{\sqrt{n}-\sqrt{n+1}}{\sqrt{n}-\sqrt{n+1}} \quad \text { multiply with (4) } \\
&=\frac{\sqrt{n-\sqrt{n+1})}}{n-(n+1)} \\
&=\frac{\sqrt{n}-\sqrt{n+1}}{} \\
&=\sqrt{n+1}-\sqrt{n} \tag{i}
\end{align*}
$$

ii) Find the sum of

$$
\frac{\text { Find the sum of }}{\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\cdots+\frac{1}{\sqrt{99}+\sqrt{100}}, \frac{1}{1}}
$$

using the result from i)

$$
\begin{aligned}
& 1 \operatorname{sing} \text { the result from i) etc }+(\sqrt{9} 9-\sqrt{98})+(\sqrt{100}-\sqrt{\text { gq }}) \\
& (\sqrt{2}-\sqrt{1})+(\sqrt{3}-\sqrt{2})+(\sqrt{4}-\sqrt{\beta})+\ldots+\text { off. }
\end{aligned}
$$

* everything in the middle cancels off.

$$
\therefore \quad(-\sqrt{1}+\sqrt{100}) \quad(n>0)
$$

$$
\begin{equation*}
=-1+10 \tag{i}
\end{equation*}
$$

from question

MATHEMATICS: Question 15
a) i) $A D \| B C$ (opposite sides of a rectangle are parallel)
in $\triangle A \times m \& \triangle C \times B$
$\angle M A X=\angle B C X$ (alternate angles,

$$
A D /(B C)
$$

$\angle M X A=\angle B X C$ (vertically opposite angles are equal)

$$
\therefore \triangle A \times m / \| \Delta C \times B \text { (equiangular) }
$$

ii) $A m=\frac{1}{2} A D$ (M is the midpoint)
$A D=B C$ (opposite sides of a rectangle are equal)

$$
\begin{aligned}
\therefore \quad A m & =\frac{1}{2} B C \\
\quad \frac{A m}{B C} & =\frac{1}{2}
\end{aligned}
$$

$$
\left.\frac{A x}{C X}=\frac{A m}{B C}=\frac{1}{2} \quad \begin{array}{c}
\text { (corresponding sides } \\
\text { in similar triangles } \\
\text { are in proportion) }
\end{array}\right)
$$

$$
\begin{aligned}
\therefore C X & =2 A x \\
A X & =\frac{1}{2} C x \\
A C & =C X+A x \\
& =C x+\frac{1}{2} C x \\
A C & =\frac{3}{2} C x \\
\therefore \quad 2 A C & =3 C X
\end{aligned}
$$

iii) $A B=2 A D$ (given)
$A D=B C$ (proven above)

$$
\left.\begin{array}{rl}
\therefore & A B=2 B C \\
& B C=\frac{1}{2} A B \\
& A B^{2}+B C^{2}=A C^{2}(\text { Pythagoras' Theorem) }
\end{array}\right\}
$$

MATHEMATICS: Question 15

$$
\begin{aligned}
& \text { Suggested Solutions } \\
& \text { b)i) } d^{2}=15^{2}-\omega^{2}(\text { pythagoras theorem }) \\
&=225-\omega^{2} \\
& S=k \omega d^{2} \\
& \therefore S=k \omega\left(225-\omega^{2}\right) \\
&=k\left(225 \omega-\omega^{3}\right)
\end{aligned}
$$

ii) $\frac{d s}{d w}=k\left(225-3 w^{2}\right)$
for st. pt. $\frac{d s}{d w}=0$

$$
\begin{aligned}
& k\left(225-3 w^{2}\right)=0 \\
& 3 \omega^{2}=225 \\
& \omega^{2}=75 \\
& \omega=5 \sqrt{3},(\omega>0) \\
& \frac{d^{2} s}{d w^{2}}=-6 k \omega \\
& \text { when } \omega=5 \sqrt{3}, \frac{d^{2} s}{d \omega^{2}}=-30 \sqrt{3} k \\
&<0
\end{aligned}
$$

\therefore curve is concave down

$$
\therefore S \text { is a maximum }
$$

when $\omega=5 \sqrt{3}, d^{2}=225-75$

$$
\begin{aligned}
& =150 \\
d & =\sqrt{150}, d>0 \\
& =5 \sqrt{6}
\end{aligned}
$$

\therefore dimensions are $5 \sqrt{3}$ by $5 \sqrt{6}$
iii)

$$
\begin{aligned}
& d=\omega \\
& \therefore \omega^{2}=15^{2}-\omega^{2} \\
& 2 \omega^{2}=225 \\
& \omega^{2}=\frac{225}{2} \\
& \omega=\frac{15}{\sqrt{2}} \\
& S=k \omega^{3} \\
& =k\left(\frac{15}{\sqrt{2}}\right)^{3} \\
& =\frac{3375 k}{2 \sqrt{2}}
\end{aligned}
$$

iv) max strength: $S=k(5 \sqrt{3})(5 \sqrt{6})^{2}$

$$
=750 \sqrt{3} \mathrm{k}
$$

MATHEMATICS: Question 15

Suggested Solutions	Marks	Marker's Comments
\therefore percentage is: $\frac{750 \sqrt{3}}{\frac{3375}{2 \sqrt{2}}} \times 100$		
	$=108.866 \ldots$	
	$=109 \%($ nearest $\%$)	

MATHEMATICS: Question........

MATHEMATICS: Question.......

- Page 5-

MATHEMATICS: Question........

Suggested Solutions	Marks Awarded

Similarity calculate PT:
LAT $=68^{\circ}\left(V_{e}\right.$
$\cos 68=\frac{A T}{P T}$

$$
\begin{aligned}
\text { PT } & =\frac{\sin 23}{(\sin 112)(\cos 68)} \\
& =1.124959103
\end{aligned}
$$

$\frac{\text { Using cosine rule }}{2}$

$$
\begin{aligned}
& P Q^{2}=P T^{2}+Q T^{2}-2(P T)(Q T) \cos 112 \\
& P Q=2.67 \mathrm{~km}(2 d P)
\end{aligned}
$$

Method 2

Using Pythagoras
To get QA

$$
\begin{aligned}
& Q A \\
& Q A=A T+Q T(\text { given }) \\
&=\frac{\sin 23}{\sin 112}+\frac{\sin 45}{(\sin 112)(\cos (68)} \\
&=2.457
\end{aligned}
$$

To get PA

$$
\begin{aligned}
\frac{P A}{\sin 18} & =\frac{A T}{\sin A P T}=\frac{\sin 23}{(\sin 112)(\cos 68)} \\
& =1.043
\end{aligned}
$$

then use puthogoras theorem.

Some found

$$
\angle P=22^{\circ}
$$ and used $\sin 22$ instead of $\operatorname{Cos} 68$

$\checkmark 1$ mark
showing $\angle P A Q$ is aright angle and finding

$$
\angle P T A=\overrightarrow{68}
$$

and use pythagoras \checkmark Calculate QA as AT +QT
\checkmark Calculate
PA using sine rule

