Section I Multiple Choice (10 marks)

Attempt Question 1 – 10 (1 mark each) Allow approximately 15 minutes for this section.

Question 1

Factorise $8x^6 - 27$

A) $(2x^2 - 3)(4x^4 - 6x^2 + 9)$ B) $(2x^2 + 3)(4x^4 - 6x^2 + 9)$ C) $(2x^2 - 3)(4x^4 + 6x^2 + 9)$ D) $(2x^2 + 3)(4x^4 - 6x^2 + 9)$

Question 2

What is the greatest value taken by the function $f(x) = 3 - 2\cos x$?

A) 1 B) 2 C) 3 D) 5

Question 3

What i	s the value of	$\int_2^6 \frac{1}{x+2} dx$	x ?				
A)	ln 2	B)	ln 4	C)	ln 6	D)	ln 8

Question 4

The table below shows the values of a function f(x) for five values of x.

x	2	2.25	2.5	2.75	3
f(x)	3	4	-1	3	7

What value is an estimate for $\int_2^3 f(x) dx$ using Simpson's Rule with these five values ?

A) 3 B) 4 C) 5 D) 6

Question 5

The perpendicular distance from the point (-3, 2) to the line x - 4y = 1 is closet to:

A) 1.1 B) 2.8 C) 2.9 D) 3.3

JRAHS 2 Unit Trial 2016

Question 6

Thirty tickets are sold in a raffle. There are two prizes (first and second). Lewis buys 4 tickets. What is the probability of him winning the second prize but not the first?

A) $\frac{2}{15}$ B) $\frac{26}{225}$ C) $\frac{52}{435}$ D) $\frac{26}{435}$

Question 7

What is the equation of the **normal** to the curve $y = x^2 - 4x$ at (1, -3)?

A)	x + 2y - 7 = 0	B)	x - 2y - 7 = 0
C)	2x - y + 1 = 0	D)	2x + y + 1 = 0

Question 8

The concave up parabola with focus S(3, 2), focal length 1 and axis of symmetry perpendicular to the x - axis is:

A) $(x-3)^2 = 4(y-2)$	B)	$(x-3)^2 = 4(y-1)$
C) $(y-2)^2 = 4(x-3)$	D)	$(x-3)^2 = 4(y-3)$

Question 9

What is the derivative of $\frac{x}{\cos x}$?

A) $\frac{\cos x + x\sin x}{\cos^2 x}$ B) $\frac{\cos x - x\sin x}{\cos^2 x}$ C) $\frac{x\sin x - \cos x}{\cos^2 x}$ D) $\frac{-x\sin x - \cos x}{\cos^2 x}$

Question 10

What are the solutions to the equation $25^x - 5^{x+1} + 6 = 0$?

- A) x = 2 or x = 3 B) $x = \frac{\ln 3}{\ln 5}$ or $x = \frac{\ln 3}{\ln 5}$
- C) $x = ln\frac{2}{5}$ or $x = ln\frac{3}{5}$ D) No Solutions

End of Section I

Section II Total Marks is 90

Attempt Questions 11 – 16. Allow approximately 2 hours & 45 minutes for this section.

Answer all questions, starting each new question on a new sheet of paper with your **student ID number** in the top right hand corner and the question number on the left hand side of your paper.

All necessary working must be shown in each and every question.

Que	stion 11 (15 Marks)	Start a new piece of paper	Marks
a)	For the series $2 - 1 + \frac{1}{2} - \frac{1}{4} + \cdots$		
i.	Find the 8 th term of the series.		1
ii.	Find the limiting sum of the series.		1
b)	Differentiate with respect to x:		
i.	$sin\left(\frac{x-1}{x^2}\right)$		2
ii.	$x^2 e^{-x}$		2
c)	Find:		
i.	$\int \sqrt{3x+1} dx$		1
ii.	$\int \frac{2x+1}{x^2} dx$		2
d)			
i.	Prove that $\frac{\cos^2 x}{1-\sin x} = 1 + \sin x$.		2
ii.	Hence or otherwise, find the range of	of $y = \frac{\cos^2 x}{1 - \sin x}$.	1
iii.	Sketch $y = \frac{\cos^2 x}{1 - \sin x}$ $-\pi \le x \le \pi$ sho	owing all important features.	3

a)

1

2

The diagram shows two points A(2, 2) and B(1, 5) on the number plane.

Copy the diagram into your writing paper.

At what time(s) is the particle at rest?

i.	Find the coordinates of M, the midpoint of AB.	1
ii.	Show that the equation of the perpendicular bisector of AB is $x - 3y + 9 = 0$.	2
iii.	Find the coordinates of the point C that lies on the <i>y</i> axis and is equidistant from A and B.	1
iv.	The point D lies on the intersection of the line $y = 5$ and the perpendicular bisector $x - 3y + 9 = 0$. Find the coordinates of D.	1
v.	Find the area of $\triangle ABD$.	2
b)	A particle travels in a straight line. Its velocity \dot{x} at time t is given by	
	$\dot{x} = (3t^2 - 9t + 6) \ ms^{-1}$	
i.	Find the expression for the particle's displacement x in terms of t, if after 1 second the particle is at $x = 3$.	2
ii.	Find the expression for the particle's acceleration in terms of t .	1

- iv. Draw a velocity-time graph representing the motion of this particle showing all important
- v. Find the total distance travelled by the particle after 2 seconds.

features.

iii.

Question 13 (15 Marks)

Start a new piece of paper

a) Let
$$f(x) = (x+2)(x^2+4)$$
.

i.	Show that $y = f(x)$ has no stationary points.	2
ii.	Find the values of x for which $y = f(x)$ is concave up and concave down respectively.	2
iii.	Sketch the graph $y = f(x)$, indicating all intercepts and any points of inflexion.	2

b) On the 1st of January 2001, Mary decides to put \$5000 into a savings account that earns her interest at a rate of 4% p.a. compounded at the end of each month.

i. Show that (to the nearest dollar) Mary will have \$5636 in her account on the 1st of January 2 2004.

- ii. At this rate, at the end of which year and month will Mary's account exceed \$10 000? 2
- Mary has started working and is able to deposit \$500 on the 2nd of every month starting 3 from January 2004. How much will Mary have in her account on the 1st of January 2007? (Use \$5636 as the starting amount in 2004).

c) Given that
$$y = (3x + 1)^2$$
. Show that $y - y' + 4 = x(y' - 12) - y$. 2

Question 14 (15 Marks)

a)

The diagram shows the graph $y = log_2 x$ between x = 1 and x = 8. The shaded region, bounded by $y = log_2 x$, the line y = 3, and the x and y axes, is rotated about the y axis to form a solid.

i. Show that the volume of the solid is given by

$$V = \pi \int_0^3 e^{y \ln 4} dy$$

- ii. Hence find the volume of the solid.
- b) The death rate of an endangered species on an island is given by

$$\frac{dP}{dt} = -kP,$$

where P is the population of the species after t days and k is a constant.

i.	Show that $P = Ae^{-kt}$ is a solution to the equation, where A is a constant.	1
ii.	Initially there were 2000 of the species on the island, after 300 days only 1000 were left. What is the population (to the nearest whole number) after 400 days?	3
iii.	After how many days will the population of the species drop below 400?	2

c) Use the Trapezoidal Rule with 5 function values to obtain an estimate for:

$$\int_{-2}^{6} \log_e \sqrt{x+3} \, dx$$

Simplify your answer as much as possible.

d)

i. Rationalise the denominator in the expression

$$\frac{1}{\sqrt{n}+\sqrt{n+1}}$$
, where n is a positive integer

ii. Using your result from part i or otherwise, find the value of the sum

$$\frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}} + \dots + \frac{1}{\sqrt{99} + \sqrt{100}}$$

JRAHS 2 Unit Trial 2016

2

2

2

1

2

Start a new piece of paper

a)

In the diagram, ABCD is a rectangle and AB = 2AD. The point M is the midpoint of AD. The line BM meets AC at X.

- i. Show that the triangles AXM and BXC are similar.
- ii. Show that 3CX = 2AC
- iii. Show that $9(CX)^2 = 5(AB)^2$

b)

A rectangular beam of width w cm and depth d cm is cut from a cylindrical pine log as shown.

The diameter of the cross-section of the log (and hence the diagonal of the cross-section of the beam is 15 cm.

The strength S of the beam is proportional to the product of its width and the square of its depth, so that

- $S = kd^2w.$
- i. Show that $S = k(225w w^3)$.
- ii. Find numerically the dimensions that will maximise the strength of the beam. Justify your 3 answer.
- iii. Find the strength S of the beam if its cross sectional area is a square with diagonal 15 cm. 1
- iv. Express as a percentage, how much stronger will the beam of maximum strength be in 2 comparison to the square beam in part iii to the nearest %.
- c) 65 blue marbles are placed into a bag with red marbles in it. Then a sample of 32 marbles 2 were drawn out of the bag. It was noted that of the 32 drawn out, 27 of them were red. What is the expected number of red marbles in the bag to begin with?

Please Turn Over

2

2

2

Question 16 (15 Marks)

Start a new piece of paper

Marks

``	
a (
u,	

i.	Show that the tangent to $y = x^3$ at the point where $x = 2$ is $y = 12x - 16$.	3
ii.	Show that the tangent meets the curve again at $(-4, -64)$.	1
iii.	Find the area of the region enclosed between the curve and the tangent.	2

- b) Joe tosses an unbiased coin continuously, until, for the first time, the same result is repeated in two consecutive throws (that is, 2 heads in a row or 2 tails in a row).
- i. What is the probability that the game ends within the first 3 throws?
- ii. Joe decides that he wins if the game ends after an odd number of throws, and he loses if the game ends after an even number of throws. Find the probability that Joe wins the game. 2
- c) Two ships P and Q are observed to be at a bearing of $315^{\circ}T$ and $045^{\circ}T$ respectively from a port A. From a second port B, which is 1 km due east of A, the ships P and Q are observed to be at a bearing of $293^{\circ}T$ and $023^{\circ}T$ respectively. Let the point of intersection of QA and PB be T.

i.	Draw a diagram illustrating the information given above.	1
ii.	Show that BT is given by $\frac{\sin 45^{\circ}}{\sin 112^{\circ}}$ and AT is given by $\frac{\sin 23^{\circ}}{\sin 112^{\circ}}$.	2

iii. Hence, or otherwise, find the distance between the two ships P and Q correct to 2 decimal 3 places, giving reasons.

End of Exam.

MATHEMATICS: Ou	n estion	nultipli	e
Suggested Solutions		Marks	Marker's Comments
$1.(2x^2)^3 - 3^3 = (2x^2 - 3)(4x^4 + 6x^2 + 9)$	(C)		
2. greatest value at x= 180			
$f(x) = 3 - 2\cos(180)$			
$3. \int_{2}^{6} \frac{1}{x+2} dx = \left[\ln (x+2) \right]_{2}^{6}$			
= 1n8 - 1n4	-		
$= \ln 2$	(A)		
4. $\int_{2}^{\infty} f(x) dx \approx \frac{3}{3} (3 + 4x4 + 2(-1) + 4)$	(3)+7)		
= 3	(H)		
$\int d = \frac{1}{\sqrt{1^2 + (-4)^2}}$			
= 2.910	(C)		
$\begin{array}{r} 6. \ \underline{26} \\ 30 \ 29 \ \underline{435} \end{array}$	(C)		
$7. y = x^2 - 4x$			
$y' = 2\pi - 4$			
a + (1 - 5)			
y			
$m_{\perp} = \frac{1}{2}$			
\therefore equation is: $y+3 = \frac{1}{2}(x-1)$			
x-2y-7=0	(B)		
8. vertex: $(3,1)$ $a=1$	(B)		
$9.d(x) = \cos x + x \sin x$			
dx (cosx) - cos²x	(A)		
10. $25^{x} - 5^{x+1} + 6 = 0$			
$5^{22} - 5x5^{2} + 6 = 0$			
(3 - 1)(3 - 3) = 0			
xlns=ln2, $xlns=ln3$			
$\frac{n}{1n5}$, $x = \frac{1n3}{1n5}$	(B)		

MATHEMATICS: Question			
Suggested Solutions	Marks	Marker's Comments	
a)i) $a = 2$, $r = -\frac{1}{2}$ $T_8 = ar^{n-1}$ $= 2(-\frac{1}{2})^7$ $= -\frac{1}{64}$	1		
$ii) S = \frac{a}{1-r}$ $= \frac{2}{1+\frac{1}{2}}$ $= \frac{4}{3}$			
b) i) $\frac{d}{dx} \left(\sin\left(\frac{2\zeta-1}{\chi^2}\right) \right)$ = $\cos\left(\frac{\chi-1}{\chi^2}\right) \times \left(\frac{\chi^2-(\chi-1)2\chi}{\chi^4}\right)$	2		
$= \frac{2-\chi}{\chi^{3}} \cos\left(\frac{\chi-1}{\chi^{2}}\right)$ ii) $\frac{d}{d\chi} (\chi^{2}e^{-\chi}) = 2\chi e^{-\chi} - \chi^{2}e^{-\chi}$ $= \chi e^{-\chi} (2-\chi)$	2		
c)i) $\int \sqrt{3x+1} dx = \frac{1}{3} \times \frac{2}{3} (3x+1)^{32} + c$ = $\frac{2}{9} (3x+1)^{\frac{3}{2}} + c$ ii) $\int \frac{2x+1}{x^2} dx = \int (\frac{2}{x} + \frac{1}{x^2}) dx$	1		
$= 2\ln x - \frac{1}{x} + c$	1		
$LHS = \frac{\cos^2 x}{1-\sin x}$ $= \frac{1-\sin^2 x}{1-\sin x}$	ł		

- Page 1-

MATHEMATICS: Ouestion					
Suggested Solutions	Marks	Marker's Comments			
a) (i) midpoint $\left(\frac{1+2}{2}, \frac{5+2}{2}\right)$ = $\left(\frac{3}{2}, \frac{7}{2}\right)$	١	both se and y have to correct to get Incork			
(iii) Equation of perpendicular bisector of AB $M_{AB} = \frac{5-2}{1-2} = -3$ $\therefore Perpendicular bisector has gradient \frac{1}{3} \times \frac{1}{2} Equation. is:y - \frac{1}{2} = \frac{1}{3}(x - \frac{3}{2}) 3y - \frac{21}{2} = x - \frac{3}{2} 6y - 21 = 2x - 3 2x - 6y + 18 = 0 x - 3y + 9 = 0$	ζ A	I mark for getting the gradient (1) for perpendicular bisector I mark for subing in x = 32 and y= 32 and gradient 32 into equation			
(iii) (bordinates of C since C lies on the yaxis the coordinate would be $(0,c)$ AC = BC $\int (2-6)^2 + (2-c)^2 = \int (1-0)^2 + (5-c)^2$ $4 + (4-4c+c^2) = 1 + (25-10c+c^2)$ $c^2 - 4c + 8 = c^2 - 10c+26$ bc = 18 C = $\frac{18}{6}$ C = 3 \therefore coordinate of C is $(0,3)$		Answer had to be written as a coordinate			

MATHEMATICS: Question. ^{1,2}				
Suggested Solutions	Marks	Marker's Comments		
IV) Loard mates of D		1 mark - for		
when y=5		Loordinate		
3L - 3(5) + 9 = 0		(6,5)		
$y_{c} - 15 + 9 = 0$				
$\times - 6 = 0$				
x =				
$\therefore D$ is (b, s)				
(V) Firea of triangle ABD.				
		Alternatively		
8/22 0/45)	2	From diagram		
		BD is 5 units		
4 THE		perpendicular		
$\frac{2}{1} + A(2)^{2}$		height is 3 units		
123456		Area = 1 bh		
	-	= 1×5×3		
$d_{AB} = \int (2-i)^2 + (2-5)^2 d_{HD} = \int (b-\frac{3}{2})^4 (3-\frac{3}{2})^4$		2		
$e\sqrt{1+q}$		- 15		
$=\sqrt{10}$		2 is is u		
		2		
= 3,10				
Non = + bh				
riea - Z		1 marke for		
= 1 × 10 ×		getting		
= 30		distances		
ц.		and		
$= \frac{15}{2}$		1 marke for		
2		area calcolation		
Avea 15 15 M.				

J:\Maths\marking templates\Suggested Mk solns template_V2_no Ls.doc

-Page 3-

J:\Maths\marking templates\Suggested Mk solns template_V2_no Ls.doc

-page 4 -

MATHEMATICS: Question 1.2					
Suggested Solutions	Marks	Marker's Comments			
$ \begin{bmatrix} V \end{bmatrix} Distance = \int_{0}^{1} (3t^{2} - 9t + 6) dt + \int_{1}^{2} (3t^{2} - 9t + 6) dt $ $= \begin{bmatrix} t^{3} - 9t + 6t \\ t \end{bmatrix}_{0}^{1} + \begin{bmatrix} t^{3} - 9t + 6t \\ t \end{bmatrix}_{0}^{2} + \begin{bmatrix} t^{3} - 9t + 6t \\ t \end{bmatrix}_{1}^{2} $	~	Need absolute Value for area between X = 1 and X = 2 (below X-axis)			
$= (3 - \frac{1}{2}) + (\frac{5}{2} - 3) $		to get I mark			
$= 2^{\frac{1}{2}} + \left(\frac{-1}{2}\right)$	-	equals 3 units			
$= 2\frac{1}{2} + \frac{1}{2}$ $= 3$ i. distance = 3 units Alternatively Use distance $5c = t^3 - \frac{9}{2}t^2 + 6t + \frac{1}{2}$ $\frac{t}{2} + \frac{1}{2} + \frac{1}{$		Second method needed proper working out to get full 2 marks			

QUESTION 13 2 units Trial 2016.
a)i) show
$$\gamma'(x)$$
 has no stationary points.
 $\gamma'(x) = (x + 2) (x^2 + 4)$
 $\gamma'(x) = (x + 2) \cdot 2x + (x^2 + 4) \cdot 1$
 $= 2x^2 + 4x + x^2 + 4$
 $= 3x^2 + 4x + 4$

$$\Delta = b^{2} + 4ac$$

$$= 16 - 4(3)(4)$$

$$= -32$$

$$= -32$$

$$= -32$$

$$= since \Delta < o (noreal root)$$

$$= -(1)$$

$$= -32$$

$$= -32$$

$$= since \Delta < o (noreal root)$$

Q 13 a cont ...,
aiii)
$$3 \frac{1}{2}$$
 (- $\frac{1}{2}$, $\frac{160}{21}$) 7 of get 2 monts.
 $4 \frac{1}{2}$ ($\frac{1}{23}$, $\frac{1}{21}$) 7 of $\frac{1}{2}$ of $\frac{1}{2}$ of $\frac{1}{2}$ ($\frac{1}{2}$) $\frac{1}{2}$) $\frac{1}{2}$ ($\frac{1}{2}$) $\frac{1}{2}$ ($\frac{1}{2}$) $\frac{1}{2}$ ($\frac{1}{2}$) $\frac{1}{2}$) $\frac{1}{2}$ ($\frac{1}{2}$) $\frac{1}{2}$

6)

Q136 CONT ...

3

& 13c cont.

c)
$$y: (3x+i)^2$$

show $y-y'+4 = x(y'-i2)-y$
 $y'= 2(3x+i) \cdot 3$
 $= 6(3x+i) \text{ or } 18x+6.$

$$LHS = (3x+1)^{2} - (13x+6) + 4$$

= $9x^{2} + 6x + 1 - 13x - 6 + 4$
= $9x^{2} - 12x - 1$

$$RAJ$$

$$x(18x+6-13) - (3x+1)^{2}$$

$$= 18x^{2} - 6x - (9x^{2} + 6x + 1)$$

$$= 18x^{2} - 6x - 9x^{2} - 6x - 1$$

$$= 9x^{2} - 12x - 1$$

ai)

$$V = H \int_{0}^{3} e^{y \ell_{0} t} dy \cdot (t k \ell_{0} w)$$

$$y = \log_{2} x (\log u r)$$

$$(y)^{2} = x^{2} (\log u r)$$

$$x^{2} = e^{y \ell_{0} t^{2}}$$

$$y = (\log u r)$$

$$(z \ell_{0} w)$$

$$z^{2} = e^{y \ell_{0} t^{2}}$$

$$z^{2} = e^{y \ell_{0} t^{2}}$$

$$(z \ell_{0} w)$$

$$(z \ell_{$$

Q 14 cont...

$$(b);) \qquad P = Ae^{-kt}$$

$$\frac{dP}{dt} = -kAe^{-kt}$$

$$= -kP$$

$$(b)$$

ii)
$$t = 0$$
, $P - 2000$
 $t = 300$ $P - 1000$
 $t = 400$ $P = ?$.
 \therefore when $t = 0$
 $P = A e^{-kt}$
 $2000 = A e^{-0}$
 $A = 2000$ (1)
when $t = 300$ $P = 1000$
 \therefore 1000 = $2000 e^{-k(300)}$)
 $1000 = 2000 e^{-300k}$
 $e^{-300k} = \frac{9}{10} \frac{1}{300}$ or $\frac{\ln 2}{300}$ or 0.00231 (1)
 \therefore $P = 2000 e^{-k(400)}$
 \therefore $P = 2000 e^{-k(400)}$
 \therefore $P = 2000 e^{-k(400)}$
 $= 793.7$
 $464r$ $= 794$ (1)
 $P = 794$ (heorest whele number)

------ .

ب ت

MATHEMATICS: Question	5	
Suggested Solutions	Marks	Marker's Comments
a)i)AD//BC (opposite sides of a rectangle are parallel)		
In DAXM & DCXB	71	
L MAX = LBCX (alternate angles, AD//BC)	5	2
LMXA = LBXC (vertically opposite angles are equal) DAXM/1/DCXB (equiangular)		
ii) AM = = = AD (M is the midpoint)		
AD = BC (opposite sides of a		
rectangle are equal)		
$\therefore Am = 2BC$	1	
$\frac{AM}{BC} = \frac{1}{2}$		
AX = AM = 1 (corresponding sides		
CX BC 2 in similar triangles		
are in proportion)		
\therefore CX = 2AX	h	
$A x = \frac{1}{2}C x$		
AC = CX + AX		
$= CX + \frac{1}{2}CX$	'	
$AC = \frac{3}{2}CX$		
\therefore 2AC = $3CX$	1 1	
iii) AB=2AD (given)	γ	
AD = BC (proven above)		
AB = 2BC	$ \langle 1 $	
BC = ZAB		
$AB^2 + BC^2 = AC^2$ (Pythagoras' Theorem		
$AB^{2} + (\frac{1}{2}AB)^{2} = AC^{2}$	-	
$\frac{5}{4}AB^2 = AC^2$		
from (ii) \Rightarrow 2AC = 3CX		
$4AC^2 = 9CX^2$	$\left \left \right\rangle \right $	
$AC^2 = \frac{9}{4}CX^2$		
$AB^{2} = 4CX^{2}$ $AB^{2} = 9CX^{2}$	5	

MATHEMATICS: Question 15				
Suggested Solutions	Marks	Marker's Comments		
MATHEMATICS: Question [5 Suggested Solutions b)i)d ² = 15 ² - w ² (pythagoras theorem) = 225 - w ² S = kw d ² \therefore S = kw (225 - ω^{2}) = k (225 - ω^{2}) for st. pt. $\frac{ds}{dw} = 0$ k (225 - $3w^{2}$) = 0 $3w^{2} = 225$ $w^{2} = 75$ $\omega = 5\sqrt{3}$, ($\omega > 0$) $\frac{d^{25}}{dw^{2}} = -6kw$ when $w = 5\sqrt{3}$, $\frac{d^{25}}{dw^{2}} = -30\sqrt{3}$ k 40 \therefore curve is concave down \therefore S is a maximum when $w = 5\sqrt{3}$, $d^{2} = 225 - 75$ = 150 $d = \sqrt{150}$, $d>0$ $= 5\sqrt{6}$ \therefore dimensions are $5\sqrt{3}$ by $5\sqrt{6}$ iii) $d = w$ $\therefore w^{2} = 15^{2} - w^{2}$ $2w^{2} = 225$ $w^{2} = \frac{225}{\sqrt{2}}$ $w = \frac{15}{\sqrt{2}}$ $S = Rw^{3}$ $= k (\frac{15}{\sqrt{2}})^{3}$	Marks	Can use table with first derivative.		
= 3375 k	1			
iv) max strength: $S = R(513)(516)^2$ = 75013 R	1			

MATHEMATICS: Question 15			
Suggested Solutions	Marks	Marker's Comments	
: percentage is: $\frac{750\sqrt{3}}{3375} \times 100$ = 108.866 = 109% (nearest %)	1		
c) let the number of red marbles be x .			
65+x = 32 32x = 1755 + 27x 5x = 1755 x = 351	5		
to begin with	1		

- Page 1 -

MATHEMATICS: Question				
Suggested Solutions	Mai	rks	Marker's Comments	
a (i) $y = x^{3}$ $\frac{dy}{dx} = 3x^{3}$ when $x = 2$ $y = 8$ then $\frac{dy}{dx}$ i. equation of tangent is $y - 8 = 12(x - y)^{2}$ $y - 8 = 12x - 2y^{3}$ y - 12x + 16 = 6 y = 12x - 16	$= 3(2^2) = 12$ 2) +	5 m L	ark - Sinding dx dx gradient of 12 ark - sub in y-y, = m(x-x)	
(i). $y = x^{3}$ Test (-4 g-64) LHS = -64 RHS = (-4) ³ = -64 Since LHS = RHS for We can say tangent at Heets again at. (-4, -4 Alternatively $y = x^{3}$ and $y = 12x - 16$ i. $x^{3} - 12x + 16 = 0$ Sub in $x = -4$ to get 4 then sub in to find y equations	= 12x - 16 $= -64$ $= -64$ soft equations	I Te you te ta C S f : o The d I X end (X X the X C You ta C S f : o The d I X end (X - X C X - S f : o The ta C S f : o S f : o S f - S f - S f - S f - S f - S f - S f - S f - S f - S f - S f - S f - S f - S S f - S S S S	get 1 hark a needed to st both the ngent and urve cure found (2) =0 x-2 is a both (2) = 0 x-2 is a both (2) = 0 x-2 is a both (2) = 0 x-2 is a both (2) = 0 (2) = 0	

$$A = \frac{2}{(12)^{3}} \frac{2}{x^{3} - 12x + 16} \frac{2}{(12)^{4} - 12x + 16} \frac{1}{(12)^{4} - 12x + 16}$$

r

-page 3-

MATHEMATICS: Question.				
Suggested Solutions	Marks Awarded	Marker's Comments		
(b) (ϵ_3) - P(i) + P(2) + P(3) = 0 + $\left(1 \times \frac{1}{2}\right)$ + $\left(1 \times \frac{1 \times 1}{2}\right)$ = 0 + $\frac{1}{2}$ + $\frac{1}{4}$ = $\frac{3}{4}$	1 wavk	V I mark for calculating to 3 4.		
(ii) $P\left(\begin{array}{c} 0 \text{ odd} \\ n_{0} \\ e \\ 1 \end{array}\right) = P\left(3\right) + P(3) + P(3) + P(1) - \cdots + 1$ $= \left(1 \times 1 \times 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	2 navks	wins if game ends after an odd number of throws $P(3) + P(s) - \dots$ loses if game ends after an ender even number of throws $P(4) + P(b) - \dots$ recognising it is a Georethic sequence ie Sol = a i - r r i mark for obtaining 3		

- page 4 -

J:\Maths\marking templates\Suggested Mk solns template.doc

- Page 5-

J:\Maths\marking templates\Suggested Mk solns template,doc