Name:	
Class:	

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2017 MATHEMATICS

General Instructions:

- Reading Time: 5 minutes.
- Working Time: 3 hours.
- Write in black pen.
- Board approved calculators \& templates may be used
- A Standard Reference Sheet is provided.
- In Question 11-16, show all relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for careless or badly arranged working.

Section I: 10 marks

- Attempt Question 1 - 10 .
- Answer on the Multiple Choice answer sheet provided.
- Allow about 15 minutes for this section.

Section II: 90 Marks

- Attempt Question 11-16
- Answer on lined paper provided. Start a new page for each new question.
- Allow about 2 hours \& 45 minutes for this section.

Section I Multiple Choice (10 marks)

Attempt Question 1 - 10 (1 mark each)

Allow approximately 15 minutes for this section.

1. What is the size of the angle subtended at the centre of a circle with diameter 7 cm by an arc 3 cm long?
A. 25°
B. 49°
C. 67°
D. 133°
2. What is the limiting sum of the series $45-15+5-\frac{5}{3}+\cdots$
A. $\frac{135}{2}$
B. $\frac{45}{4}$
C. $\frac{135}{4}$
D. $\frac{-45}{2}$
3. Evaluate $\int_{-3}^{2} 3 x^{2}-4 x+1 d x$:
A. -10
B. 50
C. 14
D. 46
4. $\frac{3+\sqrt{2}}{3-\sqrt{2}}-5$ is equivalent to:
A. $\frac{-21(2+\sqrt{2})}{7}$
B. $\frac{2(23+3 \sqrt{2})}{7}$
C. $\frac{6(5 \sqrt{2}-8)}{7}$
D. $\frac{6(\sqrt{2}-4)}{7}$
5. The graph of the gradient function of $y=x^{3}+6 x^{2}+9 x$ is:
A.

B.

C.

D.

6. John has 10 marbles in a bag, 3 of which are green and the rest are yellow. He randomly draws 1 out of the bag, notes its colour and then puts it back. What is the least number of times John will have to draw so that he has over 95% chance of getting a green marble at least once?
A. 8
B. 9
C. 2
D. 3
7. Find the locus of a point that is equidistant from the point $(0,3)$ and the line $x=-1$
A. $(y-3)^{2}=2\left(x+\frac{1}{2}\right)$
B. $x^{2}=8(y+1)$
C. $x^{2}=-8(y+1)$
D. $(y-3)^{2}=-2\left(x+\frac{1}{2}\right)$
8. A hundred students in a particular cohort are required to choose at least 1 of 2 languages as a subject. There are 55 students who chose Japanese as a subject and 83 students chose Italian as a subject. A student is randomly selected out of the 100 , what is the probability of the student doing both languages?
A. $\frac{28}{100}$
B. $\frac{28}{138}$
C. $\frac{38}{100}$
D. $\frac{38}{138}$
9. The solution to $|3 x-1|=2 x-1$
A. $\quad x=0$ and $x=\frac{2}{5}$
B. $x=0$ only
C. $x=\frac{2}{5}$ only
D. No Solutions
10. The displacement x metres of a particle moving in a straight line at time t seconds is given by:

$$
x=2 t-4 \log _{e}(2 t+1)
$$

Which one of the following statements is false?
A. The acceleration is always positive
B. The initial velocity is $-6 m s^{-1}$
C. The particle is initially at the origin
D. As $t \rightarrow \infty, x \rightarrow \infty$ and $v \rightarrow \infty$

End of Section I

Section II

Attempt Questions 11-16.

Allow approximately $\mathbf{2}$ hours \& 45 minutes for this section.
Answer all questions, starting each new question on a new sheet of paper with your student ID number in the top right hand corner and the question number on the left hand side of your paper.

All necessary working must be shown in each and every question.

Question 11 (15 marks)
a) Find the derivative of:
i. $(x+3) e^{2 x} \quad$ (Factorise your answer)
ii. $\frac{1+e^{x}}{\ln (x)}$
b) Let α and β be the roots of the quadratic equation $3 x^{2}-7 x+9=0$.
i. Find the value of $\alpha^{2}+\beta^{2}$.
ii. Factorise $\alpha^{3}+\beta^{3}$
iii. Hence or otherwise, find the value of $\alpha^{3}+\beta^{3}$
c) A locus is given by the equation $x^{2}+2 y=8 x-y^{2}-8$.
i. By first completing the square, describe the above locus geometrically.
ii. Find the x and y intercepts (if any) of the locus as exact values.
iii. Neatly sketch the locus on a number plane, showing all necessary information. Clearly mark all of the intercepts.

Question 12 (15 marks) Start a new sheet of paper

a) A, B and C are points on the number plane with coordinates $(0,6),(3,0)$ and $(9,3)$ respectively.
i. Plot the information above on a number plane. (You may add further information on the diagram as the question progresses)
ii. Find the coordinates of M, the midpoint of $A C$.
iii. Show that the equation of AC is given by $x+3 y-18=0$ and the equation of l_{1}, the perpendicular bisector of AC, is given by $3 x-y-9=0$.
iv. Find the coordinates of D above AC , such that it lies on l_{1} and is $\sqrt{10}$ units from AC .
v. Show that B, M and D are collinear.
vi. Without finding the actual distance between A, B, C and D, explain why $A B C D$ is a kite.
vii. Find the area of ABCD.
viii. Find the acute angle l_{1} makes with the x-axis to the nearest degree.

Question 13 (15 marks) Start a new sheet of paper
a) In the diagram, $\triangle A D C$ and $\triangle A B D$ are both right angle triangles, with $B C=9 \mathrm{~cm}$ and $A B=12 \mathrm{~cm}$.

$\begin{array}{ll}\text { i. Prove that } \triangle A B D \| \triangle C A D & 2 \\ \text { ii. Hence find the length of } \mathrm{DC} \text { and } \mathrm{AD} \text {. } & 3\end{array}$
b) Solve $\log _{2} x=3-\log _{2}(x-2)$
c) Solve $3 \sin ^{2} \theta=\sin \theta$ for $0 \leq \theta \leq 2 \pi$ (Give your answer in radians)
d)
i. Sketch a graph of the region bounded by the curves $y=x^{2}$ and $y=x^{3}$, clearly show their points of intersection at $(0,0)$ and $(1,1)$.
ii. Find the volume of the solid that is formed when the region in part i) rotated about the x-axis.

Question 14 (15 marks) Start a new sheet of paper
a) The population P of a small town is decreasing according to the equation $\frac{d P}{d t}=-k P$, where time t is the number of years since the beginning of May 2015 and k is a positive constant.

At the start of May 2015 the town had a population of 2040. However, the population had halved by the beginning of May 2017.

It is given that $P=P_{0} e^{-k t}$ is a solution of $\frac{d P}{d t}=-k P$.
i. Find the value of P_{0}.
ii. Show that the value of k is $\frac{1}{2} \ln 2$.
iii. The town mayor decrees that when there are only 100 people left then they must all leave. During which month of which year will this happen?
b) A particle initially at $x=-2$, moves so that at time t seconds its velocity $v \mathrm{~m} / \mathrm{s}$ is given by:

$$
v=2 \pi+2 \pi(\sin \pi t)
$$

i. Find the initial velocity.
ii. Find the time when the particle is first stationary, and its displacement at that time.
iii. Sketch a velocity-time graph for the first 2 seconds.
c) Two employees are paid daily in two different schemes. The $1^{\text {st }}$ employee receives a payment that is 3 times more than what he was paid the day before. The $2^{\text {nd }}$ employee receives a payment that is $\$ 50$ dollars more than what he was paid the day before. Both employees were paid the same amount of money on day 1 and the same amount in total after 8 days of work. How much did they get paid on day 1 ? Write your answer to the nearest cent.

Question 15 (15 marks) Start a new sheet of paper
a) An isosceles trapezium $A B C D$ is drawn with its vertices on a semi-circle centre O and diameter 20 cm (see diagram). OE is the altitude of ABCD .

i. Prove that $\triangle B O E \equiv \triangle C O E$
ii. Hence or otherwise, show that the area of the trapezium ABCD is given by:

$$
A=\frac{1}{4}(x+20) \sqrt{400-x^{2}}
$$

where x is the length of BC .
iii. Hence find the length of $B C$ so that the area of the trapezium $A B C D$ is a maximum.
b) An unbiased coin is tossed 3 times, and the upper most face is recorded after each toss.
i. Draw a tree diagram to illustrate all the possible outcomes
ii. What is the difference in probability between getting exactly two heads and getting the same outcome for all three tosses?
c) Use the trapezoidal rule with 2 sub-intervals to estimate the value of $\int_{-2}^{2} x e^{x} d x$ correct to 1 decimal place.

PLEASE TURN OVER

a) Hercules walks at a speed of $3 \mathrm{~km} / \mathrm{h}$ at a bearing of 030 T . Two hours later from the same spot, Xena walks at a speed of $5 \mathrm{~km} / \mathrm{h}$ at a bearing of 160 T .
i. Write an expression for the distance Hercules is from the origin t hours after Xena started her walk.
ii. Find the distance between Hercules and Xena 8 hours after Xena started her walk.
b) A home loan of $\$ 600000$ is borrowed from a bank at a rate of $6 \% p$. a. on the $1^{\text {st }}$ of January 2017 over 10 years, compounded monthly. Interest is charged at the beginning of each month (including immediately when the loan was taken), while repayments are made at the end of every month. Let M be the amount of each monthly instalment.

Let I_{n} represent the amount owing after the $n^{\text {th }}$ repayment.
i. Show that $I_{n}=600000\left(\frac{201}{200}\right)^{n}-200 M\left[\left(\frac{201}{200}\right)^{n}-1\right]$
ii. The loan is to be paid back over 10 years. Show that $M=6661.23$
iii. The bank reduced its interest rates from 6% p.a. to 5% p.a. on the $1^{\text {st }}$ of January 2022. Find, to the nearest cent, the amount owing just before the rate changes.
iv. Denote your answer in part iii. as ' A ' for this question.

If the repayment stays the same and taking into account the rate change, in which year and month can the loan be expected to be paid off?

Hint: Do all your working out in terms of A and M, only substitute your answers from ii. and iii. at the end.
v. Due to the rate change in part iii, the bank requires the last payment to only pay off the remaining balance as opposed to the usual instalment amount. How much interest in total will the borrower have paid over the life of the loan?

End of Paper

Student Number $M C$

1. $l=\theta$
$\theta=\frac{l}{r}=\frac{3}{3.5}=\frac{6}{7}$
θ in degrees 49°
2. $a=45 \quad r=\frac{-1}{3}$

$$
\begin{equation*}
S_{\infty}=\frac{45}{1-\left(\frac{1}{3}\right)}=\frac{45}{4 / 3}=\frac{135}{4} \tag{c}
\end{equation*}
$$

3.

$$
\begin{align*}
{\left[x^{3}-2 x^{2}+x\right]^{2} } & =(8-8+2)-(-27-18-3) \\
& =2-(-48) \tag{B}\\
& =50
\end{align*}
$$

4.

$$
\begin{align*}
-\frac{3+\sqrt{2}}{3-\sqrt{2}}-5 & =\frac{3+\sqrt{2}-15+5 \sqrt{2}}{3-\sqrt{2}} \\
& =\frac{-12+6 \sqrt{2}}{3-\sqrt{2}} \\
& =\frac{(-12+6 \sqrt{2})(3+\sqrt{2})}{9-2} \\
& =\frac{-36-12 \sqrt{2}+18 \sqrt{2}+12}{7} \\
& =\frac{-24+6 \sqrt{2}}{7} \tag{D}\\
& =\frac{6(\sqrt{2}-4)}{7}
\end{align*}
$$

9. Solve $(3 x-1)^{2}=(2 x-1)^{2}$

Check $x=0$, LHS $=1$, RHS $=-1$, Inemect.
$x=\frac{2}{5}, \angle H S=\left|\frac{6}{5}-1\right|=\frac{1}{5}, R H S=\frac{4}{5}-1$

$\therefore N_{0}$ Solnations
(D)

MATHEMATICS: Question..! 1 ...

T:\TeacherlMaths\marking templateslSuggested Mk solns template.doc

$$
\alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right)
$$

(iii) Value $\alpha^{3}+\beta^{3}$

$$
\begin{aligned}
\alpha^{3}+\beta^{3} & =\left(\frac{7}{3}\right) \times\left(-\frac{5}{9}-3\right) \\
& =\frac{7}{3} \times \frac{-32}{9} \\
& =-\frac{224}{27}
\end{aligned}
$$

c) $x^{2}+2 y=8 x-y^{2}-8$

$$
\begin{aligned}
& \text { (1) } \begin{array}{l}
x^{2}-8 x+y^{2}+2 y+8=0 \\
x^{2}-8 x+16+y^{2}+2 y+1=-8+16+1 \\
(x-4)^{2}+(y+1)^{2}=9
\end{array}, \$ \$ 1
\end{aligned}
$$

locus is a circle with centre $(4,-1)$ and radius 3
(ii) Yintercept pot $x=0$

$$
\begin{aligned}
(x-4)^{2}+(y+1)^{2} & =9 \\
4^{2}+(y+1)^{2} & =9 \\
(y+1)^{2} & =-7
\end{aligned}
$$

No y-intercepts
$x=$ intercept pot $y=0$

$$
\begin{aligned}
& (x-4)^{2}+(0+1)^{2}=9 \\
& (x-4)^{2}+i=9 \\
& (x-4)^{2}=8 \\
& x \cdots 4= \pm \sqrt{8} \\
& x=4 \pm \sqrt{8} \text { or } 4 \pm 2 \sqrt{2}
\end{aligned}
$$

T:ITeacherlMathslmarking templates\Suggested Mk solus template. doc

T:lTeacherlMathslmarking templateslSuggested Mk solns template.doc
(a)
(i)

(ii)

$$
\begin{aligned}
& M=\left(\frac{9+0}{2}, \frac{6+3}{2}\right) \\
& M=\left(4 \frac{1}{2}, 4 \frac{1}{2}\right) . \quad \text { (Midpoint of } A C \text {). }
\end{aligned}
$$

(iii) To find equation of $A C$

$$
m_{A C}=\frac{3-6}{9-0}=\frac{-3}{9}=-\frac{1}{3}
$$

Eqn of $A C$: using $y=m x+b$

$$
\begin{aligned}
& y=-\frac{1}{3} x+6 \\
& x+3 y-18=0
\end{aligned}
$$

Since L_{1} is perpendicular then

$$
\begin{aligned}
& \text { Since } l_{1} \text { is perpendicular } \\
& m_{1} m_{2}=-1 \text {. } l_{1} \text { passes through } M\left(\frac{q}{2}, \frac{9}{2}\right)
\end{aligned}
$$

$$
\therefore m l_{1}=3
$$

$$
\therefore \text { Eqn of } \begin{aligned}
& L_{1}: \quad y-\frac{9}{2}=3\left(x-\frac{9}{2}\right) \\
& 2 y-9=6\left(x-\frac{9}{2}\right) \\
& 2 y-9=6 x-27 \\
& 6 x-2 y-18=0
\end{aligned}
$$

T:ITeacherlMathslmarking templates \backslash Suggested Mk sols template_V2.doc

$$
3 x-y-9=0
$$

(IV) Let the coordinates of D be (x, y) The perpendicular distance of D from AC $(x+3 y-18=0)$ is $\sqrt{10}$.

$$
\begin{gathered}
a=1 \\
b=3 \\
c=-18 \\
x+3 y-18=-10 \\
x+3 y-8=0 \\
y=-\frac{x}{3}+\frac{8}{3}
\end{gathered}
$$

$$
\begin{aligned}
& \therefore \quad \sqrt{10}=\frac{|x+3 y-18|}{\sqrt{1+9}} \\
& 10=|x+3 y-18| \\
& x+3 y-18=10 \quad \text { OR } \\
& x+3 y-28=0 \\
& y=-\frac{x}{3}+\frac{28}{3}
\end{aligned}
$$ from a line formula a substituting correctly.

Since D is above the line then $x+3 y-28=0$ is the line $\sqrt{10}$ units from $A C$. To find the point D, solve

$$
\text { D, solve } x+3 y-28=0 \text { and } l_{1} \text { simultaneoudy. }
$$

$$
\begin{equation*}
3 x-y-9=0 \tag{2}
\end{equation*}
$$

$$
\begin{gathered}
\text { (1) } \times 3 \quad \begin{array}{c}
3 x+9 y-84=0 \\
-1
\end{array} \frac{(3 x-y-9=0)}{10 y-75=0} \\
y=\frac{75}{10} \\
y=\frac{15}{2} \quad \text { or } 7 \frac{1}{2}
\end{gathered}
$$

When $y=\frac{15}{2}$ substitute into (1)

$$
\begin{gathered}
x+3\left(\frac{15}{2}\right)-28=0 \\
x+\frac{45}{2}-28=0 \\
x=\frac{11}{2} \text { or } 5 \frac{1}{2} \\
\therefore D=\left(5 \frac{1}{2}, 7 \frac{1}{2}\right)
\end{gathered}
$$

(v) To show $B, M \propto D$ are collinear substitute B into eqn $l_{1} . \quad B=(3,0)$

$$
3(3)-(0)-9=0
$$

$\therefore B(3,0)$ bes on the line l_{1}. $\therefore B, M$ and D are collinear.

Alternatively

$$
\begin{array}{rlrl}
m_{B M} & =\frac{4 \frac{1}{2}-0}{4 \frac{1}{2}-3} & m_{m D} & =\frac{7 \frac{1}{2}-4 \frac{1}{2}}{5 \frac{1}{2}-4 \frac{1}{2}} \\
& =\frac{4 \frac{1}{2}}{1 \frac{1}{2}} & & =\frac{3}{1} \\
& =3 & =3 .
\end{array}
$$

Since $m_{B m}=m_{m D}$ then B, M and D are collinear.
(vi) Since l_{1} is the Perpendicular bisector of $A C$, then $A B C D$ is a kite. (one diagonal is the perpendicular bisector of the other).
Marks \quad Marker's Comments
,
\square
(vii)

$$
\begin{aligned}
d_{A C} & =\sqrt{(9-0)^{2}+(3-6)^{2}} \\
& =\sqrt{81+9} \\
& =\sqrt{90} \\
d_{B D} & =\sqrt{\left(3-\frac{11}{2}\right)^{2}+\left(0-\frac{15}{2}\right)^{2}} \\
& =\sqrt{\frac{25}{4}+\frac{225}{4}} \\
& =\sqrt{\frac{250}{4}} \\
& =\frac{5 \sqrt{10}}{2}
\end{aligned}
$$

Alternatively you could find the areas using triangles. $\operatorname{eg} A C=3 \sqrt{10}$

$$
\begin{gathered}
B M=\frac{15}{\sqrt{10}} \\
\text { Area }=\text { Area } \triangle A D C+ \\
\text { Area } \triangle A B C \\
=\frac{1}{2} \times 3 \sqrt{10} \times \sqrt{10} \\
\\
+\frac{1}{2} \times 3 \sqrt{10} \times \frac{15}{\sqrt{10}} \\
= \\
=15+\frac{45}{2} \\
=37 \frac{1}{2}
\end{gathered}
$$

(viii) $\tan \theta=3$

$$
\begin{aligned}
\theta & =\tan ^{-1} 3 \\
& =72^{\circ} \quad \text { (nearest degree) }
\end{aligned}
$$

Note: Answer in radians, no marks. (Make sure your culculater is in correct made). 71° accepted if $\tan \theta=3$ is shown.

$$
\begin{aligned}
144 C D^{2} & =567 C D+63 C D^{2} \\
8 / C D^{2} & =567 C D \\
C D & =0 \text { or } 7(x D>0) \\
\therefore C D & =7
\end{aligned}
$$

sub into eqni

$$
\begin{aligned}
& A D=\frac{12(7)}{\sqrt{63}} \\
&=\frac{84}{\sqrt{63}} \text { or } \frac{28}{\sqrt{7}} \text { or } 4 \sqrt{7} \\
& \text { or } 10.58 \text { or } \sqrt{112}
\end{aligned}
$$

1) trig

OTHER METHODS.

$$
\begin{aligned}
\cos B & =\frac{9}{12} \\
\therefore B & =41.41^{\circ} \\
\angle D & =90-41.41 \\
& =48.59^{\circ} \\
\sin 48.59 & =\frac{A C}{A D} \\
A D & =\frac{\sqrt{63}}{\sin 48.59} \\
& =10.58
\end{aligned}
$$

$$
\begin{aligned}
A D^{2}+A B^{2} & =B D^{2} \quad \text { (pythagoras theorem } \\
10.58^{2}+12^{2} & =B D^{2} \\
B D & =15.998 \\
C D & =B D-B C \\
& =15.998-9=7 \text { or } 6.998
\end{aligned}
$$

b)

$$
\begin{gathered}
\text { b) } \log _{2} x=3-\log _{2}(x-2) \\
\log _{2} x=\log _{2} 2^{3}-\log _{2}(x-2) \\
\log _{2} x=\log _{2}\left(\frac{8}{x-2}\right) \\
x=\frac{8}{x-2} \\
x^{2}-2 x-8=0 \\
x-4 \quad(x-4)(x+2)=0 \\
x+2 \quad x \text { or } 4
\end{gathered}
$$

$$
\text { but } x>0 \quad \therefore x=4 \text { only }
$$

c)

$$
3 \sin ^{2} \theta=\sin \theta \text { for } 0 \leqslant \theta \leqslant 2 \pi
$$

$$
\begin{aligned}
& 3 \sin ^{2} \theta-\sin \theta=0 \\
& \sin \theta(3 \sin \theta-1)=0 \\
& 3 \sin \theta=
\end{aligned}
$$

$$
\begin{aligned}
& \sin \theta=0 \\
& \therefore \theta=0, \pi, 2 \pi \underbrace{\sin \theta=\frac{1}{3} \xrightarrow{v} \xrightarrow{\longrightarrow} 1}_{\theta=0.34,2.8} \xrightarrow{\longrightarrow 1}
\end{aligned}
$$

* DO NOT divide the eq by $\sin \theta$.

$$
\sin \theta=0
$$

$$
\therefore \theta=0,0.34,2.8, \pi, 24
$$

J:Mathsไmarking templates\Suggested $M \mathrm{k}$ solis template.doc

JilMathsimarking templates/Suggested Mk solns template.doc

MATHEMATICS: Question........ 14

C. Employes /
T_{1}

$$
\begin{aligned}
a=x T_{2} & =3 x \quad T_{3}=9 x \\
T_{n} & =a r^{n-1} \\
T_{8} & =x 3^{7} \\
& =2187 x
\end{aligned}
$$

$$
\operatorname{Eimployee}_{a=x}^{T_{2}=x+50}
$$

$$
\begin{gathered}
7_{1}, a=x \quad T_{2}=x+50 \\
\therefore \quad d=50 n=0
\end{gathered}
$$

$$
S_{n}^{n}=\frac{a\left(r^{n}-1\right)}{r-1}
$$

$$
\begin{aligned}
T_{n} & =a+(n-1) d \\
T 8 & =x+(7) 50 \\
& =x+350 \\
S_{n} & =\frac{h}{5}(a+l) \\
S_{8} & =\frac{8}{2}(x+(x+350))
\end{aligned}
$$

$$
=4(2 x+350)
$$

$$
=8 x+1400
$$

$$
=3280 x
$$

Equate
$60+6$

$$
\begin{aligned}
3280 x & =8 x+1400 \\
3272 x & =1400 \\
x & =0.43 \quad(2 d \cdot p)
\end{aligned}
$$

MATHEMATICS: Question .15....

Suggested Solutions
Ali) Prove $\triangle B O E \equiv \triangle C O E$
In $\triangle B O E$ and $\triangle C O E$
$\angle C E O=\angle B E O=90^{\circ}$ (given)
$E O$ is common
$B O=C O$ (radii of a circle)
$\therefore \triangle B O E \equiv \triangle C O E$ (RHS)

(ii)

Let $B C$ be x

$$
\text { Area of trapezium }=\frac{1}{2}(a+b) h
$$

$$
=\frac{1}{2}(x+20) \times E 0
$$

length of to

$$
\begin{aligned}
& E O^{2}+\left(\frac{x^{2}}{2}\right)^{2}=10^{2} \\
& E 0^{2}=100-\frac{x^{2}}{4} \\
& E O^{2}=\frac{400-x^{2}}{4} \\
& \left.E 0=\frac{\sqrt{400-x^{2}}}{2}(E 0\rangle O\right)
\end{aligned}
$$

$$
\begin{aligned}
\therefore A & =\frac{1}{2}(x+20) \times \frac{\sqrt{400-x^{2}}}{2} \\
& =\frac{1}{4}(x+20) \sqrt{400-x^{2}}
\end{aligned}
$$

Marker's Comments
Accepted Sss

- circle property perpendicular line from centre of circle bisects the chord.
* For SAS only accepted if mentioned the above circle property

T:\TeacherlMathslmarking templatesiSuggested Mk solns template. doc

T:ITeacherlMathstmarking templates\Suggested Mk solns template.doc

T:lTeacherlMathslmarking templates\Suggested Mk solns template.doc

T:lTeacherlMathslmarking templateslSuggested Mk solns template_V2.doc

After lst manth

$$
\begin{aligned}
I_{1} & =600000 \times\left(1+\frac{1}{200}\right)^{1}-M \\
& =600000 \times\left(\frac{201}{200}\right)^{\prime}-M \\
I_{2} & =\left[600000\left(\frac{201}{200}\right)^{1}-M\right]\left(\frac{201}{200}-M\right) \\
& =600000\left(\frac{201}{200}\right)^{2}-M\left(\frac{201}{200}\right)-M \\
I_{3} & =600000\left(\frac{201}{200}\right)^{3}-M\left(\frac{201}{200}\right)^{2}-M\left(\frac{201}{200}\right)-M \\
& \vdots \\
I_{n} & \left.\left.=600000\left(\frac{201}{200}\right)^{n}-M\left[\left(\frac{201}{200}\right)^{n-1}+\left(\frac{201}{200}\right)^{n}\right)^{n}+\cdots++\frac{201}{200}+1\right)\right] \\
& =600000\left(\frac{201}{200}\right)^{n}-M\left[1+\frac{201}{200}+\left(\frac{201}{200}\right)^{2}+\cdots+\left(\frac{201}{200}\right)^{n-1}\right]
\end{aligned}
$$

This is given so
T:ITeacherlMathslmarking templateslSuggested Mk solns template_V2.doc

$$
=600000\left(\frac{201}{200}\right)^{n}-200 M\left(\left(\frac{201}{200}\right)^{n}-1\right)
$$ towards thit.

(ii)

$$
\begin{aligned}
10 \text { years } & =120 \text { months. } \\
\therefore t & =120
\end{aligned}
$$

Lean is pard off when $I_{n}=0$
ie

$$
\begin{aligned}
& 0=600000\left(\frac{201}{200}\right)^{120}-200 \\
& 200 M=\frac{600000\left(\frac{201}{200}\right)^{120}}{\left(\frac{201}{200}\right)^{120}-1} \\
& 200 m=\frac{1091638.04}{0.819396734}
\end{aligned}
$$

$$
200 M=1332246.023
$$

$$
M=\$ 6661.23
$$

\therefore Monthly repayments are $\$ 6661.23$. given, so explanation clear to get the marts)
(iii) Inst January 2022 is exactly 5 years (or 60 months).

$$
\begin{aligned}
I 60 & =600000\left(\frac{201}{200}\right)^{60}-\$ 6661.23 \times 200\left[\left(\frac{201}{200}\right)^{60}-1\right] \\
& =809310.0915-464754.2203 \\
& =\$ 344555.87
\end{aligned}
$$

This is the amount owing before the rate change.
T:ITeacherlMathslmarking templateslSuggested Mk solis template_V2.doc

T:ITeacherlMaths\marking templates|Suggested Mk solns template_V2.doc

T:ITeacherlMathslmarking templates\Suggested Mk solns template_V2.doc $\ln \left(\frac{241}{240}\right)$

MATHEMATICS
Suggested Solutions
Suestion..1. 6 $n=58.37$
\therefore by the 59 th payment the loan han

This is 4 yrs a 11 months after January 2022 ie November 2026.
(v) There are 118 payments (9 yrs a 10 uth) of $\$ 6661.23$ + the last payment in dumber 2026.

$$
\begin{aligned}
\therefore \text { Repayments } & =118 \times \$ 6661.23 \\
& =\$ 786025.14 .
\end{aligned}
$$

After $P_{58}=A\left(\frac{241}{240}\right)^{58}-240 m\left(\left(\frac{241}{240}\right)^{58}-1\right)$
where $A=\$ 344555$ v $M=\$ 6661.23$

$$
P_{58}=\$ 2513.83
$$

This means after the and last payment there is only $\$ 2513.83$ left to pay. \therefore The last payment reeds to be

$$
\begin{aligned}
& \$ 2513.83 \times\left(\frac{241}{240}\right) \\
& =\$ 2524.30
\end{aligned}
$$

\therefore Total amounts paid

$$
\begin{aligned}
& \text { tail amount paid } \\
& =118 \times 6661.23+2524.30 \\
& =\$ 788549.44
\end{aligned}
$$

T:ITeacherlMathslmarking templatesiSuggested Mk solis template_V2.doc

$$
\begin{aligned}
& \therefore \text { Total interest }=\$ 788549.44-600000 \text { (1) } \\
& =\$ 188549.44
\end{aligned}
$$

