Name:

Class:

Total Marks 100

this section.

AMES RUSE

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2017 MATHEMATICS

General Instructions:

•	Reading Time: 5 minutes.	See	ction I:	10 marks
•	Working Time: 3 hours.	•	Attempt Que	stion 1 – 10.
•	Write in black pen.	·	Answer on the sheet provide	ne Multiple Choice answer ed.
•	Board approved calculators & templates may be used	•	Allow about	15 minutes for this section.
•	A Standard Reference Sheet is provided.			
		See	ction II:	90 Marks
•	In Question 11 - 16, show all relevant mathematical reasoning and/or calculations.		Attempt Que	stion 11 - 16
•	Marks may not be awarded for careless or badly arranged working.	ŀ	Answer on linew page for	ned paper provided. Start a each new question.
		•	Allow about	2 hours & 45 minutes for

The answers to all questions are to be returned in separate *stapled* bundles clearly labelled Question 11, Question 12, etc. Each question must show your Candidate Number.

Section I Multiple Choice (10 marks)

Attempt Question 1 – 10 (1 mark each) Allow approximately 15 minutes for this section.

- 1. What is the size of the angle subtended at the centre of a circle with diameter 7cm by an arc 3cm long?
- A. 25° B. 49° C. 67° D. 133° **2.** What is the limiting sum of the series $45 - 15 + 5 - \frac{5}{3} + \cdots$ A. $\frac{135}{2}$ B. $\frac{45}{4}$ C. $\frac{135}{4}$ D. $\frac{-45}{2}$ **3.** Evaluate $\int_{-3}^{2} 3x^{2} - 4x + 1 dx$: A. -10 B. 50 C. 14 D. 46 **4.** $\frac{3+\sqrt{2}}{3-\sqrt{2}} - 5$ is equivalent to:
- A. $\frac{-21(2+\sqrt{2})}{7}$ B. $\frac{2(23+3\sqrt{2})}{7}$ C. $\frac{6(5\sqrt{2}-8)}{7}$ D. $\frac{6(\sqrt{2}-4)}{7}$
- **5.** The graph of the gradient function of $y = x^3 + 6x^2 + 9x$ is:

- **6.** John has 10 marbles in a bag, 3 of which are green and the rest are yellow. He randomly draws 1 out of the bag, notes its colour and then puts it back. What is the least number of times John will have to draw so that he has over 95% chance of getting a green marble at least once?
- A. 8 B. 9 C. 2 D. 3
- **7.** Find the locus of a point that is equidistant from the point (0,3) and the line x = -1
- A. $(y-3)^2 = 2(x+\frac{1}{2})$ B. $x^2 = 8(y+1)$

C.
$$x^2 = -8(y+1)$$

D. $(y-3)^2 = -2(x+\frac{1}{2})$

- **8.** A hundred students in a particular cohort are required to choose at least 1 of 2 languages as a subject. There are 55 students who chose Japanese as a subject and 83 students chose Italian as a subject. A student is randomly selected out of the 100, what is the probability of the student doing both languages?
- A. $\frac{28}{100}$ B. $\frac{28}{138}$
- C. $\frac{38}{100}$ D. $\frac{38}{138}$
- **9.** The solution to |3x 1| = 2x 1
- A. x = 0 and $x = \frac{2}{5}$ B. x = 0 only C. $x = \frac{2}{5}$ only D. No Solutions

10. The displacement *x* metres of a particle moving in a straight line at time *t* seconds is given by:

$$x = 2t - 4\log_e(2t + 1).$$

Which one of the following statements is false?

- A. The acceleration is always positive B. The initial velocity is $-6ms^{-1}$
- C. The particle is initially at the origin D. As $t \to \infty, x \to \infty$ and $v \to \infty$

End of Section I

Section II Total Marks is 90

Attempt Questions 11 – 16. Allow approximately 2 hours & 45 minutes for this section.

Answer all questions, starting each new question on a new sheet of paper with your **student ID number** in the top right hand corner and the question number on the left hand side of your paper.

All necessary working must be shown in each and every question.

Question 11 (15 marks)

a) Find the derivative of:

i.
$$(x+3)e^{2x}$$
 (Factorise your answer) 2

ii.
$$\frac{1+e^x}{\ln(x)}$$
 2

- b) Let α and β be the roots of the quadratic equation $3x^2 7x + 9 = 0$.
 - i. Find the value of $\alpha^2 + \beta^2$. 2
 - ii. Factorise $\alpha^3 + \beta^3$ 1

1

iii. Hence or otherwise, find the value of $\alpha^3 + \beta^3$

c) A locus is given by the equation $x^2 + 2y = 8x - y^2 - 8$.

i.	By first completing the square, describe the above locus geometrically.	3
ii.	Find the x and y intercepts (if any) of the locus as exact values.	2
iii.	Neatly sketch the locus on a number plane, showing all necessary information. Clearly mark all of the intercepts.	2

Question 12 (15 marks) Start a new sheet of paper

a)	A, B a	nd C are points on the number plane with coordinates $(0, 6)$, $(3, 0)$ and $(9, 3)$ respectively.	
	i.	Plot the information above on a number plane. (You may add further information on the diagram as the question progresses)	1
	ii.	Find the coordinates of M, the midpoint of AC.	1
	iii.	Show that the equation of AC is given by $x + 3y - 18 = 0$ and the equation of l_1 , the perpendicular bisector of AC, is given by $3x - y - 9 = 0$.	4
	iv.	Find the coordinates of D above AC, such that it lies on l_1 and is $\sqrt{10}$ units from AC.	3
	v.	Show that B, M and D are collinear.	1
	vi.	Without finding the actual distance between A,B, C and D, explain why ABCD is a kite.	1
	vii.	Find the area of ABCD.	3
	viii.	Find the acute angle l_1 makes with the x-axis to the nearest degree.	1

Question 13 (15 marks) Start a new sheet of paper

a) In the diagram, $\triangle ADC$ and $\triangle ABD$ are both right angle triangles, with BC = 9cm and AB = 12cm.

i. Prove that $\triangle ABD \parallel \mid \triangle CAD$ 2

3

3

3

- ii. Hence find the length of DC and AD.
- b) Solve $\log_2 x = 3 \log_2(x 2)$
- c) Solve $3sin^2\theta = sin\theta$ for $0 \le \theta \le 2\pi$ (Give your answer in radians)

d)

- i. Sketch a graph of the region bounded by the curves $y = x^2$ and $y = x^3$, clearly 2 show their points of intersection at (0, 0) and (1, 1).
- ii. Find the volume of the solid that is formed when the region in part i) rotated about 2 the *x*-axis.

Question 14 (15 marks) Start a new sheet of paper

a) The population P of a small town is decreasing according to the equation $\frac{dP}{dt} = -kP$, where time t is the number of years since the beginning of May 2015 and k is a positive constant.

At the start of May 2015 the town had a population of 2040. However, the population had halved by the beginning of May 2017.

It is given that $P = P_0 e^{-kt}$ is a solution of $\frac{dP}{dt} = -kP$.

- i. Find the value of P_0 .
- ii. Show that the value of k is $\frac{1}{2}ln2$.
- iii. The town mayor decrees that when there are only 100 people left then they must all 3 leave. During which month of which year will this happen?
- b) A particle initially at x = -2, moves so that at time t seconds its velocity v m/s is given by:

$$v = 2\pi + 2\pi(\sin\pi t).$$

- i. Find the initial velocity.
- ii. Find the time when the particle is first stationary, and its displacement at that time. 3
- iii. Sketch a velocity-time graph for the first 2 seconds.
- c) Two employees are paid daily in two different schemes. The 1st employee receives a payment that is 3 times more than what he was paid the day before. The 2nd employee receives a payment that is \$50 dollars more than what he was paid the day before. Both employees were paid the same amount of money on day 1 and the same amount in total after 8 days of work. How much did they get paid on day 1? Write your answer to the nearest cent.

2

1

1

2

Question 15 (15 marks) Start a new sheet of paper

a) An isosceles trapezium ABCD is drawn with its vertices on a semi-circle centre O and diameter 20 cm (see diagram). OE is the altitude of ABCD.

- i. Prove that $\Delta BOE \equiv \Delta COE$
- ii. Hence or otherwise, show that the area of the trapezium ABCD is given by:

$$A = \frac{1}{4}(x+20)\sqrt{400-x^2}$$

where *x* is the length of BC.

- iii. Hence find the length of BC so that the area of the trapezium ABCD is a maximum. 3
- b) An unbiased coin is tossed 3 times, and the upper most face is recorded after each toss.
 - i. Draw a tree diagram to illustrate all the possible outcomes 1
 - ii. What is the difference in probability between getting exactly two heads and getting 3 the same outcome for all three tosses?
- c) Use the trapezoidal rule with 2 sub-intervals to estimate the value of $\int_{-2}^{2} xe^{x} dx$ correct 3 to 1 decimal place.

PLEASE TURN OVER

Page 9

2

3

Question 16 (15 marks) Start a new sheet of paper

- a) Hercules walks at a speed of 3km/h at a bearing of 030T. Two hours later from the same spot, Xena walks at a speed of 5km/h at a bearing of 160T.
 - i. Write an expression for the distance Hercules is from the origin t hours after Xena 1 started her walk.
 - ii. Find the distance between Hercules and Xena 8 hours after Xena started her walk. 3
- b) A home loan of \$600 000 is borrowed from a bank at a rate of 6% p. a. on the 1st of January 2017 over 10 years, compounded monthly. Interest is charged at the beginning of each month (including immediately when the loan was taken), while repayments are made at the end of every month. Let M be the amount of each monthly instalment.

Let I_n represent the amount owing after the n^{th} repayment.

i. Show that
$$I_n = 600000(\frac{201}{200})^n - 200M[(\frac{201}{200})^n - 1]$$
 3

2

- ii. The loan is to be paid back over 10 years. Show that M = 6661.23
- iii. The bank reduced its interest rates from 6% p. a. to 5% p. a. on the 1st of January 1 2022. Find, to the nearest cent, the amount owing just before the rate changes.
- iv. Denote your answer in part iii. as 'A' for this question.

If the repayment stays the same and taking into account the rate change, in which 3 year and month can the loan be expected to be paid off?

Hint: Do all your working out in terms of A and M, only substitute your answers from ii. and iii. at the end.

v. Due to the rate change in part iii, the bank requires the last payment to only pay off 2 the remaining balance as opposed to the usual instalment amount. How much interest in total will the borrower have paid over the life of the loan?

End of Paper

MC Student Number 1997. 1997 - 1997 1. L=10 = 1 3,5 B O in degrees = 49° 2. $a = 45 r = \frac{-1}{3}$ $\frac{S_{m} = \frac{4S}{1 - \binom{1}{3}}$ \bigcirc 45 135 . 4 - 21 x - 202 + x (-27 - 18 - 3 3. -= (8-8+2 -= 2 - (-48) В = 50 3+52 - 5 = 3+52-15+552 3- 52 3-52 $r = \frac{r}{c}$ = -12 +65 5 3-= (-12+652)(3+52) 9-2 1200 = -36-12 52 +18 52 +12 7 : = -24 +6-52 D -1 - C. = 6(52-4) 7

Student Number
5. du - 3x + 12x + 9
$dx = 3(x^2 + 4x + 3)$
$= 3(x+z)(y+z) \qquad (A)$
6. P(green) = 3/10 P(yellow) = 7/0
$\frac{P(\text{at least } \text{green}) = 1 - P(A 1 \text{ yellow})}{= 1 - (7/p)^n}$
$(S_{1}) = (1 - (Y_{1})^{n} > \frac{19}{2}$
(X) m/ 1
$\frac{(10)}{10} = \frac{10}{10}$
Ln(2n) - Ln(2n)
$\frac{n \ln(10) < \ln(20)}{1 + 1}$
<u>n / Ln (20)</u>
Ln (10)
n > 8.39
i. n= 9,
(B)
$\frac{1}{1} \cdot \int (x - 0)^{2} + (y - 3)^{2} = (x + 1)$
$x^{2} + (y-3)^{2} = x^{2} + 2x + 1$
$(y-3)^{2} = 2x+1$
$(y-3)^{1} = 2(x+\frac{1}{2})$

Student Number

3

Suggested Solutions	Marks Awarded	Marker's Comments
) Derivative of	2 Havks	iet u = (x+3)
(1) $(x+3)e^{2x}$	1 process	u' = 1 $v = e^{2x}$
$\frac{dy}{dx} = (x+3) 2e^{-x} + e^{x}$	vansiver.	$v'=2e^{2x}$
$e^{2x}(2x+b+1)$		
$= \mathcal{C}\left(2x+7\right) \checkmark$		11 = 1 + 0X
$\frac{1+e^2}{\ln 2c}$	2 marks	$u' = e^{\chi}$
dy = vu' - uv'		$v' = \frac{1}{x}$
$dx = \sqrt{2}$ = $\ln x e^{2} - (1 + e^{2}) \frac{1}{2}$	in correct	-accepted
$(\ln x)^2$	formela	$\frac{e^{2}(x(nx-i)-1)}{e^{2}(x(nx-i)-1)}$
= xetinx -1-ex	V Simplifying Had to	$\Sigma(m \Sigma)$
$\mathcal{I}(mz)^2$	eliminate fractions from	
	numerator to supply	
(1) $3x^{2} - 7x + 9 = 0$ $x + p = -b = \mp$	2 marks	
$a = 3$ $A\beta = \frac{2}{3} = 3$	V Simplifying	well done
(i) $a^2 + \beta^2 = (x + \beta)^2 - 2\alpha\beta$ = $(71)^2 - 2(3)$	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2 \delta$	×β
$\left(\overline{3}\right)$	√ getting -5/ 05	
$=$ $\frac{49}{9}$ - 6	answer	
5/		

T:\Teacher\Maths\marking templates\Suggested Mk solns template.doc

MATHEMATICS: Ques	tion	Page 2
Suggested Solutions	Marks Awarded	Marker's Comments
b(11) Factorise 23+p3	1 mariz.	
$\chi^{3}+\beta^{3}=(\alpha+\beta)(\chi^{2}-\alpha\beta+\beta^{2})$		
(iii) Value 237B3	Imark	
$\alpha^{3} + \beta^{3} = \left(\frac{1}{3}\right) \times \left(\frac{-5}{3} - 3\right)$		
$= \frac{7}{3} \times \frac{-32}{3}$		
$=-\frac{324}{27}$		
c) $x^2 + 2y = 8x - y^2 - 8$	3 novks)	
$\binom{1}{2} - \frac{3}{2} - \frac{3}{2} + \frac{1}{2} + \frac{1}{2} + \frac{3}{2} = 0$	V covvect	
$3c^{2}-8x+16+y^{2}+2y+1 = -8+16+1$	of	
$(x-4)^{2} + (y+1)^{2} = 9$	V getting	
locus is a circle with	(x-4) ² +(y+1) ² =9	
centre (4,-1) and radius s	V writing	
	circle with radius.	
(ii) yintercept put x=0	2 nauks	
$(x-4)^{2} + (y+1)^{2} = 9$	Vthereis	
$4^{-} + (y+1)^{-} = -7$	no y-intercepts	
& No y-intercepts /	V x intercepts	
x = intercept pot y= 0		
$(x - y)^{2} + (0 + i) = i$		
$(2^{-4})^2 = \frac{8}{1-4}$		
x = 4±58 = 4±252 V		

"

÷

T:\Teacher\Maths\marking templates\Suggested Mk solns template.doc

T:\Teacher\Maths\marking templates\Suggested Mk solns template.doc

•

MATHEMATICS: Question...12.
Pogel
Suggested Solutions
(a)
$$y$$
 (b) $(5!,7!)$
(b) $A(ab)$
 $(a) y (b) $(5!,7!)$
 $(b) A(ab)$
 $(c) A(ab)$
 $(c)$$

r

T:\Teacher\Maths\marking templates\Suggested Mk solns template_V2.doc 3nc - y - 9 = 0

_ _

-

.

MATHEMATICS	: Question. 1.2.	Page 2	
Suggested Solutions	Marks	Marker's Comments	
(IV) Let the coordinates of D be The perpendicular distance of D fr Ac $(3c+3y-18=0)$ is $\sqrt{10}$. a=1 $\frac{1}{1}$, $\sqrt{10} = \frac{ x+3y-18 }{ x+3y-18 }$ $b=3$ c=1	(n,y) -om 3 -18	For using perpendi distance of point	cula
10 = 2c + 3y - 18		from a line formul 4 substituting corre	a ctly
$3c + 3y - 18 = 10 \text{or } 3c + 3y$ $3c + 3y - 28 = 0 3c + 3y$ $y = -\frac{x}{3} + \frac{28}{3} 2c + 3y$ $y = \frac{7}{3} + \frac{28}{3} 2c + 3y$ $y = \frac{7}{3} + \frac{28}{3} 2c + 3y$ $x + 3y - 28 = 0 \text{is } 4a = 0$ $y + 3y - 28 = 0 \text{or } 4a = 0$ $3x - y - 9 = 0 - 0$ $(0 \times 3 33c + 9y - 84 = 0 - 0x3$ $-1_{1} - \frac{(3x - y - 9 = 0)}{10y - 75 = 0}$ $y = \frac{75}{10}$ $y = \frac{15}{2} \text{or } 7\frac{1}{2}$ $When y = \frac{15}{2} \text{substitute int}$ $3c + 3\left(\frac{15}{2}\right) - 28 = 0$ $c = \frac{11}{2} \text{or}$ $D = \left(\frac{5\frac{1}{2}}{2}, \frac{7\frac{1}{2}}{2}\right)$	$-18 = -10$ $y - 8 = 0$ $-\frac{1}{3} + \frac{8}{3}$ $= n$ ine $4he$ $51multoneou$ 1 1 1 5 $5\frac{1}{2}$ 1	oly .	

T:\Teacher\Maths\marking templates\Suggested Mk solns template_V2.doc

•

MATHEMATICS: Question 1구	··	Page 3.
Suggested Solutions	Marks	Mariter's Comments
(V) To show $B,M \approx D$ are collinear substitute B ento eqn L_1 . $B = (3,0)$ 3(3) - (0) - 9 = 0 $i' B(3,0)$ lies on the line L_1 . i' B,M and D are collinear.	0	
Alternatively $M_{BM} = \frac{4\frac{1}{2} - 6}{4\frac{1}{2} - 3} \qquad m_{D} = \frac{7\frac{1}{2} - 4\frac{1}{2}}{5\frac{1}{2} - 4\frac{1}{2}}$ $= \frac{4\frac{1}{2}}{1\frac{1}{2}} \qquad = \frac{3}{1}$ $= 3 \qquad = 3.$		
Since $M_{BM} = M_{MD}$ then B, M and D are collinear.	Alter	nate O
(VI) Since l, is the ferpendicular bisector of AC, then ABCD is a kite. (One diagonal is the perpendic bisector of the other).	Dular	Note! It is not sufficient to say the diagonals and perpendicular. Must also mente bisector.

~

.

MATHEMATICS	Question1.2	Page 4
Suggested Solutions	Marks	Marker's Comments
(vii) $d_{AC} = \sqrt{(q-0)^{2} + (3-6)^{2}}$ $= \sqrt{81+9}$ $= \sqrt{90}$ $d_{BD} = \sqrt{(3-\frac{11}{2})^{2} + (0-\frac{15}{2})^{2}}$	1	
$= \sqrt{\frac{25}{4} + \frac{225}{4}}$ $= \sqrt{\frac{250}{4}}$ $= \frac{5\sqrt{10}}{2}$ $Area \ ABCD = \frac{1}{2} \times AC \times BD$ $= \frac{1}{2} \times \sqrt{90} \times \frac{5\sqrt{10}}{2}$ $= \frac{1}{2} \times 3\sqrt{10} \times \frac{5\sqrt{10}}{2}$ $= \frac{150}{4} u^{2} oR 37\frac{1}{2} u^{2}$		Alternatively you could find the area using triangles. eg Ac = $3\sqrt{10}$ $Bm = \frac{15}{\sqrt{10}}$ Area = Area $\triangle ADC+$ Area $\triangle ABC$
$\tan \Theta = \frac{7\frac{1}{2}}{2\frac{1}{2}} \left(\text{or } \frac{4\frac{1}{2}}{1\frac{1}{2}} \right)$ $(\text{viii}) \tan \Theta = 3$ $\Theta = \tan^{1} 3$ $= 72^{\circ} (\text{nearest degree})$		= ± x 3 JIO × JIO + ± x 3 JIO × JIO = 15+ ±5 = 37± Note! Answer in radians, no marks (make sure your culculator is in ionrect made)
T VI OTONOT AMERINE COMPLETENCE PARAOSICA MIL SOURS COMPLETE A 27000	7	1° accepted if and = 3 is shown.

J:\Maths\marking templates\Suggested Mk solns template.doc

MATHEMATICS: Qu	estion	2/4
Suggested Solutions	Marks Awarded	Marker's Comments
$144 \text{ CD}^2 = 567 \text{ CD} + 63 \text{ CD}^2$		
$8/c0^2 = 567CD$		
CD = 0 or 7 (20>0)		
$\therefore CD = 7$		
sub into eqn i		
$AD = \frac{12(7)}{\sqrt{63}}$		
$=\frac{84}{\sqrt{63}}$ or $\frac{28}{\sqrt{7}}$ or $4\sqrt{5}$	7	
or 10-58 or J112		
OTHER METHODS.		
$\cos B = \frac{9}{12}$	-	* some use eine rule
: B= 41.41		* some us
$LD = 90 - 41 \cdot 41$		pythago
= 48.59		all the v
$\sin 48.59 = \frac{AC}{AD}$		through.
$AD = \sqrt{63}$ sin 48.59		
= 10.58.		
$AD^2 + AB^2 = BD^2$ (pythagoras)	theorem)	
$10.58^2 + 12^2 = BD^2$		
BD = 15.998		
co = BD - BC = $15,998 - G = 7$	6.998	

J:\Maths\marking templates\Suggested Mk solns template.doc

.

- .

MATHEMATICS: Quest	tion <u>/3</u>	3/4
Suggested Solutions	Marks Awarded	Marker's Comments
$\frac{\text{MATHEMATICS: Questical Solutions}}{\text{Suggested Solutions}}$ $\frac{6}{\log_{2} \chi = 3 - \log_{2} (\chi - 2)}{\log_{2} \chi = \log_{2} 2^{3} - \log_{2} (\chi - 2)}{\log_{2} \chi = \log_{2} 2^{3} - \log_{2} (\chi - 2)}{\log_{2} \chi = \log_{2} 2^{3} - \log_{2} (\chi - 2)}{\log_{2} \chi = \log_{2} 2^{3} - \log_{2} (\chi - 2)}{\log_{2} \chi = \log_{2} 2^{3} - \log_{2} (\chi - 2)}{\log_{2} \chi = 2 \sqrt{2} - 2 \chi - 2 \sqrt{2}}{\log_{2} 2^{3} - 2 \sqrt{2} - 2 \sqrt{2}}{\log_{2} 2^{3} - 2 \sqrt{2} \sqrt{2} - 2 \sqrt{2}}{\log_{2} 2^{3} - 2 \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2}}{\log_{2} 2^{3} - 2 \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2}}{\log_{2} 2^{3} - \log_{2} 2^{3} - \log_{2} 2^{3} \sqrt{2}}{\log_{2} 2^{3} \sqrt{2} \sqrt{2}}{\log_{2} 2^{3} \sqrt{2}}{\log_{2} $	tion <u>/3</u> Marks Awarded	3/4 Marker's Comments
$\sin \phi = 0$ $\sin \phi = 0, \pi, 2\pi$ $\sin \phi = \frac{1}{3}$ $\phi = 0, \pi, 2\pi$ $\phi = 0.34, 2.8$	¥ / /	<i>.</i>
$\int \frac{1}{2} \cdot \theta = 0, 0 \cdot 34, 2 \cdot 8, 7, 27$		

.

.

J:\Maths\marking templates\Suggested Mk solns template.doc

4/4 Suggested Solutions Marks Awarded **Marker's Comments** d);) 1 - shape y=x³ 1 - positioning Z correctly * - some students had the graph of x³ higher than x² in the bounded region $y = \pi^2$ 4 - need not sketch 61,1) 2 the left side k must show intersection pts. (0,0) Ĵ н³ $V = \pi \int_{0}^{1} (\chi^{2})^{2} - (\chi^{3})^{2}$ ii) mistakes $(x^2 - x^3)^2$ $= \pi \int \int_{0}^{1} x^{4} - \int_{0}^{1} x^{6} J$ $(\chi^3)^{\perp} = \chi^9$ $= \left(\left[\frac{x^{5}}{5} \right]_{0}^{\prime} - \left[\frac{x^{7}}{7} \right]_{0}^{\prime} \right)$ = $\frac{2\pi}{3\pi}u^3$

J:\Maths\marking templates\Suggested Mk solns template.doc

4

MATHEMATICS: Ouestion		1/3
Suggested Solutions	Marks Awarded	Marker's Comments
a)i) $P = Po e^{-kt} \frac{dP}{dt} = -kPoe^{-kt}$ = $-kP$ when $t = 0$, $P = 2040$. $\therefore 2040 = Po e^{-0}$; $Z = 2040$	/	show some working Please!
(i) $f = 2$ $p = 1020$. $1010 = 2040 e^{-2k}$. $e^{-2k} = \frac{1}{5}$ $e^{2k} = 2$. $2k = \ln 2$ $k = \frac{1}{5} \ln 2$		
$iii) P = 100$ $100 = 2040 e^{-\frac{1}{2}ln2(t)}$ $\frac{5}{102} = e^{-\frac{1}{2}ln2}$ $\frac{1}{2}ln2 = ln\frac{5}{102}$ $\frac{1}{2}ln2 = 8.7 years.$	/	

.

,

٠

J:\Maths\marking templates\Suggested Mk solns template.doc

_

.

MATHEMATICS: Quest	tion	J/ 3
Suggested Solutions	Marks Awarded	Marker's Comments
- & years and 0.7×12 pi4month	r	
2015 + 5 = 2023	2 h-C	
May + O. + m ths = Jan 0.4×31:		
: During January 2024 -	/	
b)i) when t= o for initial cond	12100	
$V = 2\pi f 2\pi (Sin \pi (0))$		
- 207 on / 3'		
ii) first stationary v=v.		
$2\pi + 2\pi Nh \pi t = 0$ $\sin \pi t = -1$		
nt = 3n		
$f = \frac{3}{2}$ $f = \frac{3}{2}$	/	
$\chi = \int \mathcal{J} \pi + \mathcal{J} \pi s ih \pi t$)	
$= 2mE - 2\cos mE + C$		
when $t = 0$, $\pi = -2$		
-2 - 0 - 2(1) + C		
$x = 2\pi t - 2\cos \pi t$	_ /	
when $t = \frac{3}{2}$ $r = 2\pi (3/2) - 2\cos(\frac{3}{2})$		
$= 3\eta - 0$		
= 3H netres	- /	

,

J:\Maths\marking templates\Suggested Mk soins template.doc

•

÷

MATHEMATICS: Que	14 stion	3/3
Suggested Solutions	Marks Awarded	Marker's Comments
Suggested Solutions bili) ψ_{ℓ} know $\ell = 0$, $V = 27$ $t = \sqrt{2}$, $v = 0$ t = 1, $v = 27t = \sqrt{2}, v = 47t = 2$, $v = 27t = 1$, $v = 1$, $v = 27t = 2$, $v = 27t = 1$, $v = 1$, $v = 27t = 1$, $v = 1$,	Marks Awarded	Marker's Comments
c. Employee / $T_1 = x T_2 = 3x T_3 = 9x$ $T_1 = ar$ $T_1 = ar$ $T_1 = ar$ $T_2 = x T_2 = x T_3 = 1$ $T_1 = ar$ $T_2 = x T_2 = x + 5c$ $T_1 = ar$ $T_2 = x + 5c$ $T_3 = 0$ $T_4 = 50$ $T_5 = 0$	ð	
$ \begin{array}{rcl} \overline{I_8} = \chi & 3 & & & & & & & & & & & & & & & & &$		1
$S_{8} = \frac{\chi(3^{8} - 1)}{3 - 1} = 8 \chi + 1400$ = 3280 \chi hatta		/
Equate $607n$ $3280 \times = 8 \times + 1400$ $3272 \times = 1400$ $\times = 0.43 (Jd.p)$	/	

.

.

.

J:\Maths\marking templates\Suggested Mk solns template.doc

MATHEMATICS: Ques	tion.15	
Suggested Solutions	Marks Awarded	Marker's Comments
$a(i) \operatorname{Prove} \Delta BOE \equiv \Delta cOE$ In ΔBOE and ΔcOE $LCEO = LBEO = 90^{\circ} (given)$ $EO is conmon$ $BO = cO (vadii of a civele)$ $: \Delta BOE \equiv \Delta cOE (RHS)$	2 marks	Accepted 555 - Circle popedy perpendicular line Grown centre of Circle bisects the chord. * For SNS only accepted
(ii) x Let BC be $xh Averal trapezium = \frac{1}{2}(a+b)h$		if mentioned the above circle property
$= \frac{1}{2}(x+20)\times E$		
$5 - 0 = \sqrt{400 - x^2} (E0)^2$ $A = \frac{1}{2} (x + 20)^2 \sqrt{400 - x^2}$ $= \frac{1}{2} (x + 20)^2 \sqrt{100 - x^2}$	0) ~	
- + (x+20)/400 - x2		

T:\Teacher\Maths\marking templates\Suggested Mk solns template.doc

.

MATHEMATICS: Quest	ion15	Page 2
(iii) Suggested Solutions	Marks Awarded	Marker's Comments
length of BC so that area is maxi	more	U=)(+20 so u=1
$\frac{dA}{dx} = \frac{1}{4} \left(x + 2d \right) \cdot \frac{1}{2} \left(400 - x^{2} \right)^{\frac{1}{2}} \cdot \left(-2x \right)^{\frac{1}{2}} \cdot \frac{1}{400} - \frac{1}{2} \left(-2x \right)^{\frac{1}{2}} \cdot \frac{1}{400} - \frac{1}{40} \cdot \frac{1}{40} \cdot$	ac ²	$V = \sqrt{400 - \chi^2}$
$= \frac{1}{4} \left[\frac{-x(x+20)}{1} + \sqrt{400 - x^2} \right]$		$V = \frac{1}{2} \left(4 \cos - \chi^2 \right)_{\chi} - 2 \pi$
$= \frac{1}{4} \left[\frac{-x^2 - 20x + 400 - x^2}{\sqrt{400 - x^2}} \right]$		J 400-x ²
$= \frac{1}{4} \left[\frac{-2x^2 - 20x + 400}{\sqrt{400 - x^2}} \right]$		
$\frac{1}{2} \left[\frac{-x^2 - 10x + 200}{\sqrt{400 - x^2}} \right] $		
$\frac{dA}{dx} = 0 - x^2 - 10x + 200 = 0$		
$x^{2} + 10x = 200 = 0$ (x + 20)(x - 10) = 0		
x = -20 ~ 10		
Test	V	
$\frac{x 9 10 11}{da 0.81 0 -0.93}$		
: havinum at x=10		

1

,

.

-

MATHEMATICS: Quest	ion15.	- Page 3 -
Suggested Solutions	Marks Awarded	Marker's Comments
$\frac{1}{12}$	ion).5. Marks Awarded	- Page 3 - Marker's Comments NB 2 sub-intervals only
$A = \frac{2-0}{2} \left[\frac{1}{2} e^{-2} + \frac{1}{2} (0) + 2e^{2} \right]$ = 1 (2e^{-2} + 2e^{2}) V = -4e^{-2} + 4e^{4} ~ 14.5 (to 1 dp) V		Υ

 $T:\label{eq:constraint} T:\label{eq:constraint} T:\l$

e

T:\Teacher\Maths\marking templates\Suggested Mk solns template_V2.doc

T:\Teacher\Maths\marking templates\Suggested Mk solns template_V2.doc

MATHEMATICS	Question page 4	(D) 1/-
	2 and the second	410
Suggested Solutions	Marks	Marker's Comments
(IN) A = \$344555.87		
M = \$666/.23 (monthly repair	fment).	
Let Pn be the amount awing after repayments.	n	
New interest rate $r = \frac{5\%}{12}$ per	- maith	
= 0.05		
=		*
$P_1 = A \times \left(1 + \frac{1}{240} \right)^{1} - M$		
$P_{2} = \left(A \times \left(\frac{241}{240}\right)^{1} - M\right) \left(\frac{241}{240}\right) - M$		
$= A \left(\frac{241}{240}\right)^{2} - M \left(\frac{241}{240}\right) - M$		
$P_3 = A \left(\frac{241}{240}\right)^3 - M \left(\frac{241}{240}\right)^2 - M \left(\frac{241}{240}\right)^2$	Lo)-M	
		χ
$P_n = A\left(\frac{241}{240}\right)^n - M\left(1 + \frac{241}{240} + \frac{241}{240}\right)^n$	$\binom{2}{5}^{2} + + \binom{241}{240}$))))
this is a	GP where	
a = r =	241	
	240	

MATHEMATICS : Question	n.16	page 5
Suggested Solutions	Marks	Marker's Comments
$P_n = A\left(\frac{241}{240}\right)^n - M\left(\frac{1\left(\frac{241}{240}\right)^n - 1}{\frac{1}{240}}\right)$		
$= A\left(\frac{241}{240}\right)^n - M\left(\frac{240}{240}\left(\left(\frac{241}{240}\right)^n - 1\right)\right)$		
$= A \left(\frac{241}{240}\right)^{n} - 240 M \left(\left(\frac{241}{240}\right)^{n} - 1\right)$		
The loan is faid off when $P_n = 0$	~*	
i $A\left(\frac{241}{240}\right)^{n} - 240M\left(\left(\frac{241}{240}\right)^{n} - 1\right) = 0$		
$A\left(\frac{241}{240}\right)^{n} = 240 M\left(\left(\frac{241}{240}\right)^{n}-1\right)$		
$A\left(\frac{241}{240}\right)^{n} = 240 M\left(\frac{241}{240}\right)^{n} - 240$	M	
$A \left(\frac{241}{240}\right)^{n} - 240M \left(\frac{241}{240}\right)^{n} = -24$	OM	
$\left(\frac{241}{240}\right)^{n}\left(A - 240M\right) = -240$	M	
$\left(\frac{241}{240}\right)^n = -\frac{240M}{A-240M}$	- 1	
$n \ln\left(\frac{241}{240}\right) = \ln\left(\frac{-240}{A-3}\right)$	uom)	
T:\Teacher\Maths\marking templates\Suggested Mk solns template_V2.doc $ln\left(\frac{241}{240}\right)$)	

MATHEMATICSQuestion...lb.page bSubstitute A = 344555'57 + M = \$6661'23Marker's Commentsn = 58:37n = 58:37i. by the 59th payment the loan has
lear paid off.Marker's CommentsThis is 4yrs 4 II months after January 2022IIit November
$$2026$$
.III(V) There are 118 payments (9 yrs 10mtlo)
of \$6661.23 + the last payment in Dember 2026.(V) There are 118 payments (9 yrs 10mtlo)
of \$6661.23 + the last payment in Dember 2026.(i' Repayments = 118 × \$6661.23
= \$786025.14.After P58 = A $(\frac{241}{240})^{58}$ - 240 M $((\frac{241}{240})^{8-1})$
where A_{2} + 344555 × M = \$6661.33This means after the 2nd last payment
of where A_{2} + 2513.93This means after the 2nd last payment
(1 to tal interest = \$78554.9.44Transmitter to and the top payment
= \$7854.9.444