
Student		
Number:		
Class:	•	

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2018

MATHEMATICS

General Instructions:

- · Reading Time: 5 minutes.
- · Working Time: 3 hours.
- · Write in black pen.
- Board-approved calculators & templates may be used.
- · A reference sheet is provided.
- In Questions 11 16, show all relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for careless or badly arranged work.

Total Marks: 100

Section I: 10 marks

- Attempt Questions 1-10.
- Answer on the multiple choice sheet provided.
- · Allow about 15 minutes for this section.

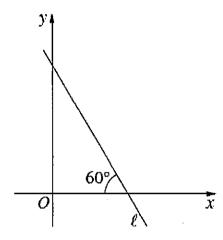
Section II: 90 Marks

- · Attempt Question 11 16
- · Answer on lined paper provided. Start a new page for each new question.
- · Allow about 2 hours & 45 minutes for this section.

The answers to all questions are to be returned in separate, *stapled* bundles, clearly labelled as Question 11, Question 12, etc. Each answer sheet must show your *candidate* number.

Section I

10 marks

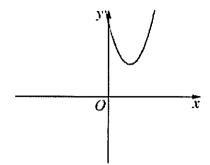

Attempt Questions 1-10

Allow about 15 minutes for this section

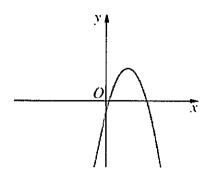
Use the multiple-choice answer sheet for Questions 1-10.

- 1 An arc of a circle of radius 0.1 units subtends an angle of 15°. Which of the following gives the length of that arc, correct to three decimal places?
 - A. 1.500
 - B. 0.262
 - C. 0.026
 - D. 0.008
- 2 Which expression is a factorisation of $8x^3 + 27$?
 - A. $(2x-3)(4x^2+12x-9)$
 - B. $(2x+3)(4x^2-12x+9)$
 - C. $(2x-3)(4x^2+6x-9)$
 - D. $(2x+3)(4x^2-6x+9)$
- 3 The complete solution to |2x-1|=3x is which of the following?
 - A. x = -1
 - B. $x = -1, x = \frac{1}{5}$
 - C. $x = \frac{1}{5}$
 - D. x = 1

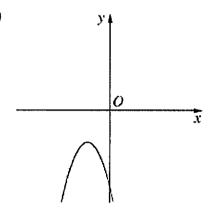
- 4 Which inequality gives the domain of the function $f(x) = \frac{1}{\sqrt{x+5}}$?
 - A. x > -5
 - B. $x \ge -5$
 - C. x < -5
 - D. $x \le -5$
- 5 The diagram below shows the line ℓ .

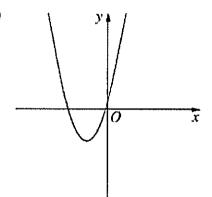


What is the slope of the line ℓ ?


- A. $-\frac{1}{\sqrt{3}}$
- B. $\frac{1}{\sqrt{3}}$
- C. $-\sqrt{3}$
- D. $\sqrt{3}$
- 6 Which equation represents the line perpendicular to 2x 3y = 8, passing through the point (2,0)?
 - A. 3x + 2y = 4
 - B. 3x + 2y = 6
 - C. 3x 2y = -4
 - D. 3x 2y = 6

7 Which diagram best shows the graph of the parabola $y = 3 - (x - 2)^2$?

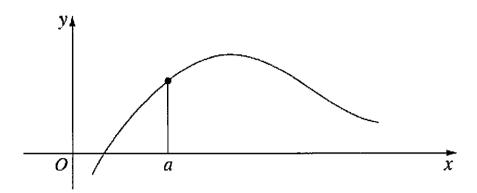

(A)


(B)

(C)

(D)

8 A parabola has focus (5,0) and directrix x=1. Which of the following is the equation of the parabola?


A.
$$y^2 = -16(x-5)$$

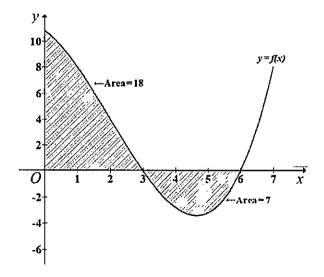
B.
$$y^2 = -8(x-3)$$

C.
$$y^2 = 8(x-3)$$

D.
$$y^2 = 16(x-5)$$

9 The graph of y = f(x) is shown in the diagram below.

Which of the following statements is true?


A.
$$f'(a) > 0$$
 and $f''(a) < 0$

B.
$$f'(a) > 0$$
 and $f''(a) > 0$

C.
$$f'(a) < 0$$
 and $f''(a) < 0$

D.
$$f'(a) < 0$$
 and $f''(a) > 0$

10 The diagram below shows the areas of two regions bounded by the graph of y = f(x)and the x-axis. Which of the following gives the value of the integral $\int_0^6 \frac{f(x)}{3} dx$?

A.
$$\int_0^6 \frac{f(x)}{3} dx = \frac{11}{3}$$
 B. $\int_0^6 \frac{f(x)}{3} dx = \frac{25}{3}$ C. $\int_0^6 \frac{f(x)}{3} dx = 33$ D. $\int_0^6 \frac{f(x)}{3} dx = 75$

B.
$$\int_0^6 \frac{f(x)}{3} dx = \frac{25}{3}$$

C.
$$\int_{0}^{6} \frac{f(x)}{3} dx = 33$$

D.
$$\int_0^6 \frac{f(x)}{3} dx = 75$$

Section II

90 marks

Attempt Questions 11-16

Allow about 2 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks) Start a new sheet of paper.

- (a) Find the value of $2^{-1.2}$ correct to two significant figures.
- (b) Express $\frac{4}{\sqrt{5}+2}$ with a rational denominator.
- (c) Simplify $\frac{x}{3} + \frac{3x-1}{2}$.
- (d) Solve the simultaneous equations 2

$$x + y = 1$$

$$2x - y = 5$$

(e) Solve
$$\sin x = -\frac{1}{\sqrt{2}}$$
 for $0 \le x \le 2\pi$.

- (f) Find the exact value of $\sin \frac{\pi}{4} + \sin \frac{2\pi}{3}$.
- (g) Find the equation of the tangent to the curve $y = 2e^x$ at the point where x = 1.
- (h) Find a primitive function of $x^2 + 7$.

Question 12 (15 Marks) Start a new sheet of paper.

- (a) In an arithmetic series, the eighth term is $T_8 = 150$ and the sum of the first seven terms is $S_7 = 546$. Find the value of the sixteenth term.
- (b) Differentiate the following functions with respect to x:

(i)
$$(3x^2+4)^7$$

(ii)
$$xe^{-x}$$
 2

(iii)
$$\frac{\tan x}{x}$$

(c) Evaluate the following integrals:

(i)
$$\int_0^{\pi/4} 4\sin 2x \, dx$$
 2

(ii)
$$\int_{-1}^{1} e^{2x} dx$$
 .

(d) Find
$$\int \frac{x}{x^2+3} dx$$
.

End of Question 12

Question 13 (15 Marks) Start a new sheet of paper.

(a) A box contains seven cards, with each card labelled with one of the following numbers:

A person draws one card at random from the box, and then draws a second card at random without replacing the first card.

(i) What is the probability that the person draws a 9, then a 5?

2

1

2

- (ii) What is the probability that the sum of the two numbers drawn is at most 10?
- (iii) What is the probability that the second card drawn is labelled 5?
- (b) Consider the curve $y = 7 + 4x^3 3x^4$.
 - (i) Find the co-ordinates of the stationary points

 $\mathbf{2}$

(ii) Determine the nature of the stationary points.

 $\mathbf{2}$

(iii) Find all points of inflexion.

2

2

2

- (iv) Sketch the curve over the domain $-1 \le x \le 2$.
 - Note: you need not find any x-intercepts that have not already been found.

(c)

The diagram above shows the graph of the gradient function f'(x) of the curve y = f(x). For what values of x does f(x) have a local maximum? Justify your answer.

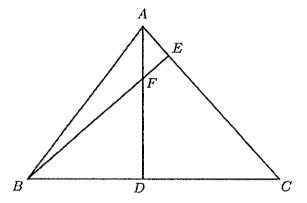
Question 14 (15 Marks) Start a new sheet of paper.

(a) The mass m grams of a dissolving tablet present after t seconds is given by

$$m = 300e^{-kt}$$

where k is a positive constant. At seven seconds, the tablet has dissolved to one third of its original mass.

(i) Find the value of k, correct to three significant figures.


least 2

(ii) How long, to the nearest second, will it take for the tablet to dissolve to at least 1% of its initial mass?

(b)

3

 $\mathbf{2}$

In the diagram above, $AD \perp BC$ and $BE \perp AC$. If BE = 11, AD = 9 and CD = 8, find the length of CE, ensuring you give all necessary reasoning.

(c) A particle moves along a line and has position x metres at time t seconds given by

$$x = 2\cos t - t, \qquad t \ge 0.$$

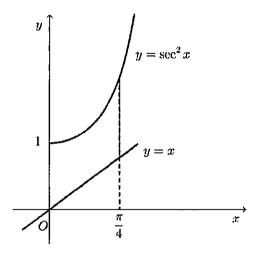
Assume that left of origin is negative, right of origin is positive.

(i) Where is the particle initially?

1

(ii) Find an expression for the velocity of the particle.

1


- (iii) In what direction is the particle moving when t = 0 (toward, or away from, the origin)?
- 1

(iv) Determine the time at which the particle first comes to rest.

2

Question 14 continues on page 9

(d)

Find the area bounded by the curves $y = \sec^2 x$, y = x and the lines x = 0 and $x = \frac{\pi}{4}$. Leave your answer in exact form.

End of Question 14

3

Question 15 (15 Marks) Start a new sheet of paper.

- (a) Let α and β be the roots of the quadratic equation $x^2 + 4x + 1 = 0$.
 - (i) State $\alpha + \beta$ and $\alpha\beta$.

1

(ii) Hence find $(\alpha - \beta)^2$

2

2

- (b) Che takes a loan of \$500000 at an interest rate of 9% per annum, compounded monthly, to be charged on the outstanding balance. The loan is to be repaid in equal monthly installments of \$M over a 25 year period.
 - (i) If interest is charged on the balance of the loan at the end of the month, just before the monthly repayment is made, show that the amount owing on the loan after three months A_3 is given by

$$A_3 = \$500\,000(1.0075)^3 - M[1 + 1.0075 + 1.0075^2]$$

(ii) Assuming that the pattern indicated in (i) holds, the amount owing after n 2 months may be given by

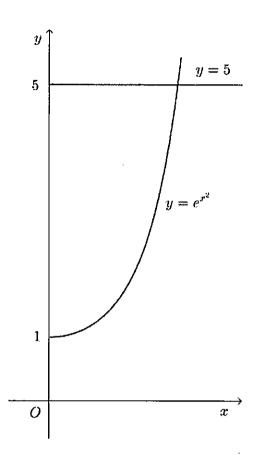
$$A_n = \$500\,000(1.0075)^n - M[1 + 1.0075 + 1.0075^2 + \dots + 1.0075^{n-1}]$$
 How much should Che pay per month in order to have the loan paid off by the end of the 25th year?

(iii) What is the total interest paid on this loan?

1

(c) A tank that initially contains 16 000 litres of petroleum is to be drained. At t minutes, the rate at which the volume V of petroleum decreases is given by

$$\frac{dV}{dt} = -40(30 - t)$$


(i) Find V(t), the volume of petroleum remaining in the tank at time t.

2

(ii) How long will it take to empty the tank?

1

(d)

The area bounded by the y-axis, the line y=5 and the curve $y=e^{x^2}$ is rotated about the y-axis to form a solid of revolution.

(i) Show that
$$V = \pi \int_1^5 \log_e y \, dy$$
.

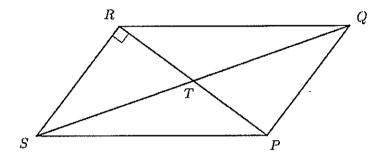
2

2

(ii) Copy and complete the table below, giving your entries to three decimal places:

y	1	3	5
$\log_e y$			

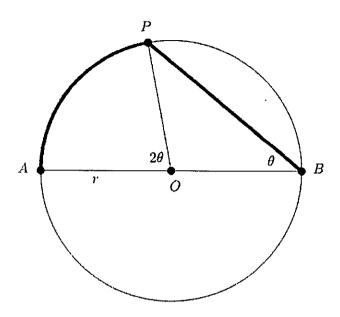
Using Simpson's Rule, approximate the volume of the solid of revolution. Give your answer correct to three decimal places.


Question 16 (15 Marks) Start a new sheet of paper.

(a) Solve $\log_4(x+1) = \log_2 x$ where x > 0.

2

3


(b) The quadrilateral PQRS is a parallelogram with PR perpendicular to RS. The two diagonals intersect at T.

Show that $PS^2 = ST^2 + 3PT^2$.

Question 16 continues on page 13

(c)

The diagram above shows a circular lake of radius r km and diameter AB. O is the centre of the circle, and you may assume that $\angle POA = 2\angle PBO$ always and $0 \le \theta \le \frac{\pi}{2}$.

A person wishes to move from A to B and can do so via a combination of walking along the shore (along a circular arc) and rowing across the lake (in a straight line). The person can walk at a constant speed of 4 km/h and row at a constant speed of 2 km/h.

- (i) Show that the time t_1 taken to walk along the shore AP is $t_1 = \frac{r\theta}{2}$
- (ii) Given $\cos 2\theta = 2\cos^2 \theta 1$ or $\sin 2\theta = 2\sin \theta \cos \theta$, show that the time t_2 taken to row across the lake PB is

$$t_2 = r \cos \theta$$

ensuring that you justify your result by considering the given domain.

- (iii) Hence find, in terms of r:
 - (α) the maximum time taken for the journey;

 (β) the minimum time taken for the journey.

2

3

End of Paper

QII
$$2018 \text{ din } 7R/AL$$
 $7 + 4 + 4$
 $1 - 4 \text{ ef } 9h$
 $1 - 4 \text{ ef } 9h$
b) $\frac{4}{\sqrt{5} + 2} \times \frac{\sqrt{5} - 2}{\sqrt{5} - 2} = \frac{4(\sqrt{5} - 2)}{1} = 4\sqrt{5} - 8$
c) $\frac{2x + 9x - 3}{b} = \frac{11x - 3}{6}$, $\frac{11x - 1}{6}$
 $\frac{2x - y = 5}{3x = 6}$
 $\frac{3x = 6}{1}$
 $\frac{x + y = 1}{4}$
 $\frac{x + y = 1}{4}$

$$f) \int \sin \frac{\pi}{4} + \sin^2 \frac{\pi}{3}$$

$$= \frac{\pi}{52} + \frac{\pi}{2}$$

$$= \frac{\pi}{3} + \frac{\pi}{3}$$

h)
$$\int f(x)=x^{2}+7$$
, $f(x)=\frac{x^{3}}{3}+7\times+k$ or $\frac{x}{3}+7\times$

Q12

a) Given A.S
$$7n = a + (n-1)d$$
 $5n = \frac{a+1}{2}.n$
 $78 = a + 7d = 150$
 $5n = \frac{a+a+(n-1)d}{2}$
 $5n = \frac{a+a+(n-1)d}{2}$
 $5n = \frac{a+a+(n-1)d}{2}$
 $5n = \frac{a+a+(n-1)d}{2}.n$
 $5n = \frac{a+a+(n-1)d}{2}.n$
 $5n = \frac{a+a+(n-1)d}{2}.n$

$$a+7d=150$$

 $a+3d=78$
 $4d=72$
 $d=18/1$ $a=150-7*18=24$

$$T_{16} = a + 15 d = 24 + 15 \times 18$$

$$T_{16} = 294$$

$$y = (3x^{2} + 4)^{7}$$

$$y' = (7(3x^{2} + 4)(6x))$$

$$= 42x(3x^{2} + 4)$$

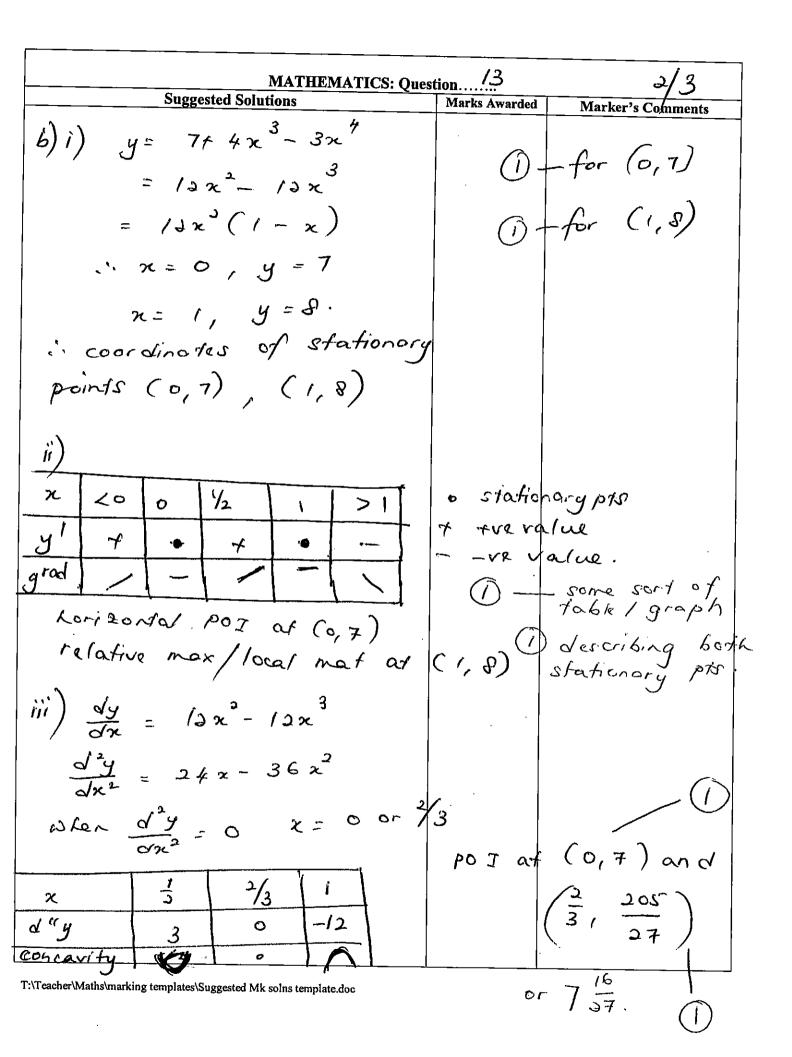
(i2)
$$y = x e^{-x}$$
 $y = x e^{-x} + \frac{1}{e^{x}} = e^{x}(1-x)$

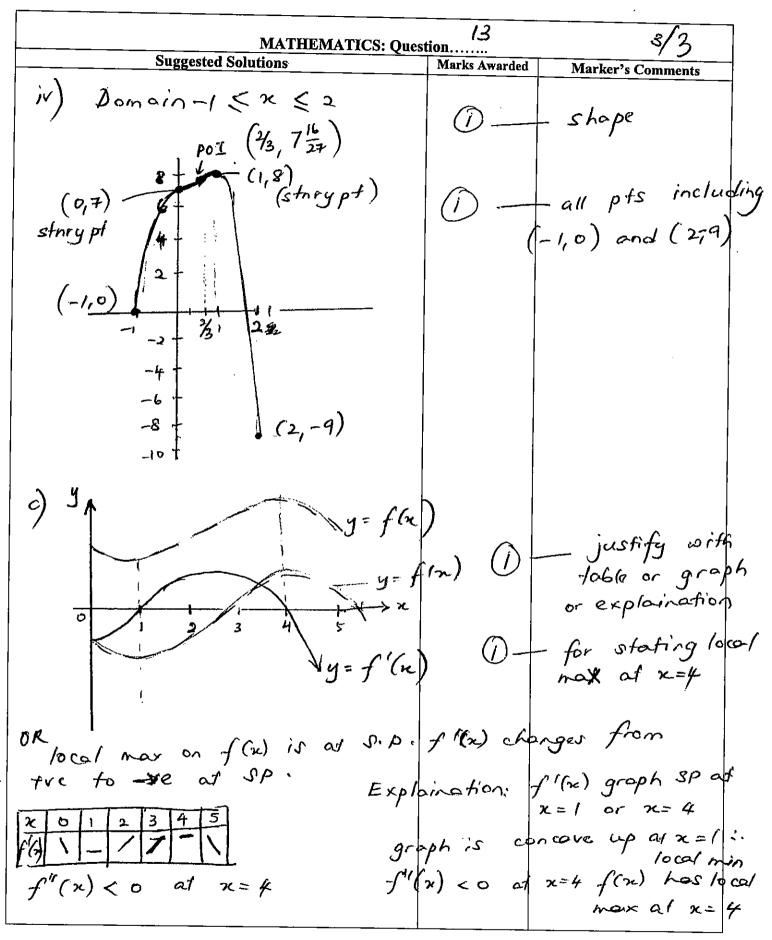
$$= -\frac{4 \cos 2x}{4 \sin 2x} dx$$

$$= -2 (\cos x - 4 \cos x)$$

$$= -2 (\cos x - 4 \cos x)$$

$$= \frac{2}{12} = \frac{1}{12} (e^{-\frac{1}{2}})$$


$$= \frac{1}{12} (e^{-\frac{1}{2}})$$


$$d) = \int \frac{2x \, dx}{x^2 + 3}$$

$$= \int \int \int \int (x^2 + 3) + c$$

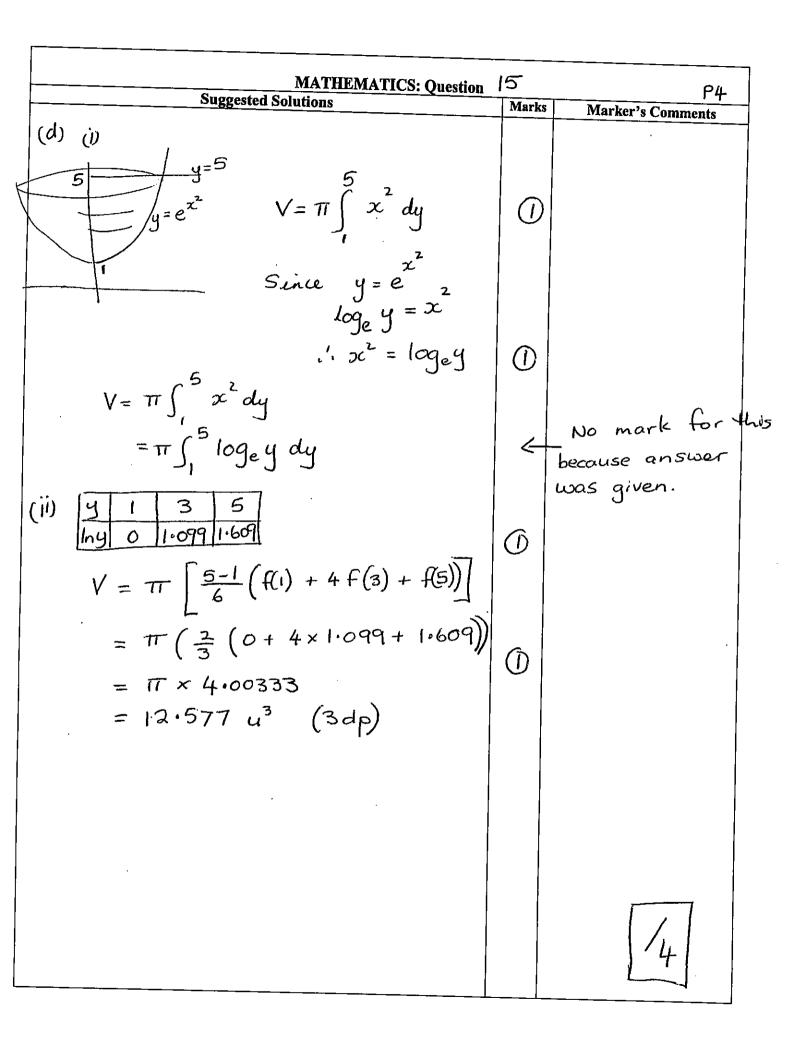
im only

171413		
MATHEMATICS: Quest Suggested Solutions	tion/3 Marks Awarded	1/3
,	Marks Awarded	Marker's Comments
(a)i) 0 5 5 9 9 9		m'state
$P(9 \text{ then } 5) = \frac{3}{6} \times \frac{2}{5}$	•	$\frac{5}{30} = \frac{1}{6}$
$=\frac{6}{30}=\frac{1}{5}$	<u> </u>	
ii) P (atmost 10)		
0 5 5 9 9 9		
0 × 5, 5, 9, 9, 9		
5 5 X 10 14 14 14		correct answer
5 5 5 X 14 14 14		correct answer
9 9 14 14 × 18 18		
9 9 14 14 18 X 18		
9 9 14 14 18 18 X		
$\frac{12}{30} = \frac{2}{5}$	U	
ii) p (2nd 5)		•
$P(55)$ or $P(\overline{5}5)$		
$=\frac{2}{6}\times\frac{1}{5}+\frac{4}{6}\times\frac{2}{5}$		
$= \frac{2}{30} + \frac{8}{30} = \frac{1}{3}$	(i)	

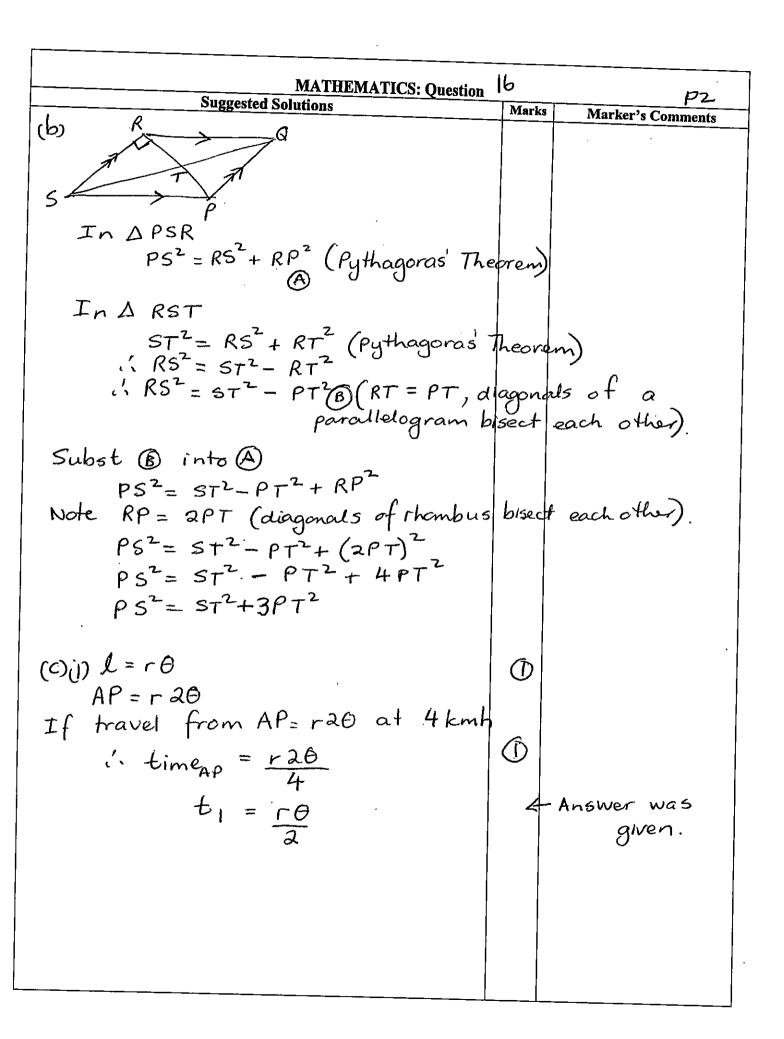
MATHEMATICS: Quest	ion. 14	1/4
Suggested Solutions	Marks Awarded	Marker's Comments
(a)1) $m = 300 e^{-kt}$, $k > 0$		
t=7 : n=100		
$\frac{1}{3} = e^{-7k} k = \frac{\ln 3}{7}$	— (i)	
\$ 0.157 -	- (i)	
ii) 1% of initial mass = 3g. 3= 300e		<i>(i)</i>
$\frac{\ln \frac{1}{100}}{-0.157} - t \Rightarrow t = 29.33$		—()) **
time taken for tablet to to of reast 1% 30 secon	dissolve	29 sec incorrect
b) In A ADC, ABEC	0	
L DCA = LECB (common)	((i)
: DADC III BBEC (equiangu	(ar)	
are in some ratio	pides in	similar bis
$\frac{CE}{CO} = \frac{BE}{AD}$		
$CE = \frac{88}{9}$ or $9\frac{7}{9}$ or 9.7		- (i)

MATHEMATICS: Que	estion	2/4
Suggested Solutions	Marks Awarded	Marker's Comments
Since $BE \perp AC$ and $AD \perp$ $AC = \sqrt{9^2 + 8^2} = \sqrt{145}$ Sinerale.	\$ C	
$ \frac{\sqrt{145}}{\sin 90} = \frac{9}{\sin 2 ACD} $ $ \sin 2 ACD = \frac{9}{\sqrt{145}} = 48.36 $ $ fan 48.36 = \frac{11}{EC} $ $ EC = 9.7 $		•
M3 let $\angle ACO = \angle ECO = 0$ In $\triangle ACD$, $\angle ACD = \frac{AD}{CO} = \frac{9}{8}$ Similarly in $\triangle BCE$, $\angle ACD$, $\frac{9}{8} = \frac{11}{CE}$ $CE = 11 \times 8 = \frac{88}{9}$	(LADCIS BE = 11 CE CE	PO°, AD IBC) (LBEC= 90° ess BELAC)
c)i) $x = 2\cos t - t$; $t \ge 0$ $x(0) = 2\cos(0) - 0$ $\therefore 2 \text{ metres to right}$	of orig	must ment right core stated in q

MATHEMATICS: Quest	ion	3/4
Suggested Solutions	Marks Awarded	Marker's Comments
$ii)$ $V = \frac{dx}{dt} = -2sin(-1)$	— <i>(</i>)	
iii) v(0) = -2(0) -1		
= - / m/s		initially
Particle moving in -ve direction t	owards co	igin
	7	must mention towards origin as stated in que
(v) $V = 0$	ì	
$\begin{cases} -2\sin t - 1 = 0 \\ \sin t = -\frac{1}{2} \\ t = \frac{7\pi}{6} \text{ secs. or } \frac{11\pi}{6} \text{ s} \end{cases}$		
$t = \frac{7\pi}{6}$ secs. or $\frac{11\pi}{6}$ s	-/0° 336°	
but 1st comes to rest is 7th	second:	3.
$y = \sec^2 n$ $y = x$		
		·
Area = Sec x - x	_ 0	
$= \left[\int dan x - \frac{x^2}{2} \int dan x - \frac{x^2}{2}$		
L Jo		


MATHEMATICS: Quest	1 <i>4</i>	4/4
Suggested Solutions	Marks Awarded	Marker's Comments
$\tan \frac{\pi}{4} - \left(\frac{\pi}{4}\right)^2 - 0$		
$= 1 - \frac{\pi^2}{32} u^2$	— (<i>i</i>)`	
		·

MATHEMATICS: Questio Suggested Solutions	Marks	PI
$(a)(1) \propto + \beta = -\frac{b}{a} \qquad \qquad \alpha \beta = \frac{c}{q}$	ATABLE TO	Marker's Comments
$= \frac{-4}{1}$ $= -4$ $= 1$	(I)	
$(ji) \left(\alpha - \beta \right)^{2} = \alpha^{2} - 2 \alpha \beta + \beta^{2}$ $= \alpha^{2} + 2 \alpha \beta + \beta^{2} - 4 \alpha \beta$ $= (\alpha + \beta)^{2} - 4 \alpha\beta $ $= (-4)^{2} - 4 (i)$	0	
= 16 - 4 $= 12$	0	Question well do
P = \$500000	nanths.	
(i) Let amount owing after 1st month =	A,	
1,= 500000 (1+0075) -M = 500000 (1.0075) -M		You must der A 3 by starting
= (500000 (1.0075) + M) 1.0075 - $ = 500000 (1.0075) - M (1.0075)$	M - M	No marks for just statung
$3 = \left[500000 \left(1.0075\right)^{2} - M\left(1.0075\right) - I\right]$	y 10075	5 -M A3-H
$= 500000 (1.0075)^3 - M(1.0075)$ $= 500000 (1.0075)^3 - M(1+1.0075)$		


MATHEMATICS		
MATHEMATICS: Question Suggested Solutions	Marks	P2 Marker's Comments
(ii) $n = 300 \text{ months}$	77,242,113	Marker's Comments
An = 500000 (1.0075) - M (1+1.0075+1.0	075 ² +	+1.0075 ⁿ⁻¹)
This is a GP		
where n=300 r=100075		
$ie S_{300} = 1.0075^{300} - 1$		You need to
$A_{300} = 500000 (1.0075)^{300} - M \left(\frac{1.0075^{300} - 1}{1.0075} \right)$		show some
The loan is paid off when A 300=0	1	calculation for this.
le 500000 $(1.0075)^{300}$ - M $(1.0075)^{300}$ =	1 1	
$M\left(\frac{1.0075^{300}-1}{500000}\right) = 500000\left(1.0075\right)$		
$M = \frac{600000(1.0075)^{300}}{11.0075^{300}}$		
(1.0075 300 - 1) 00075		
= \$4195.98 (nearest cent)		
or \$4196 (nearest dollar)		
iii) Total money paid on the loan over 300 months at \$4196 per month. is 300x \$4196 = \$1258794.55		
i Interest = Total paid - loan amoun	nt	1761
= \$1258794.55-500000 = \$758794.55	(1)	[5]

.

MATHEMATICS: Question	15	P:
Suggested Solutions	Marks	Marker's Comments
t = 0		
V = 16000		
dV = -40(30-t)		
$\frac{d}{dt}$		
$\frac{dV}{dt} = -40(30 - t)$ $V = \int \frac{dV}{dt} dt$		
$= \int -40(30-t) olt$		
$= -40 \int 30 - t dt$		
$= -40 \left(30 t - \frac{t^2}{2} \right) + c$		
$V = -1200t + 20t^2 + C$	0	
When $t=0 V=16000$		
1 16000 = 0 + 0 + 0		
1 c= 16000		
$V(t) = -1200t + 20t^2 + 16000$	0	
ii) Tank is empty when V=0		
$11 - 1200t + 20t^2 + 16000 = 0$		
$20t^2 - 1200t + 16000 = 0$		
$t^2 - 60t + 800 = 0 x_2^4$	b	
(t-40)(t-20)=0		
1. t = 20 or 40		
" he tank is empty after 20 mi	(آ) ، ک	
(Note; already empty before t=40 min (Note; already empty before only use t=20	•)	
0 10		3
	:	

MATHEMATICS: Question	<u>16</u>	PΙ
Suggested Solutions	Marks	Marker's Comments
(a) $\log_{4}(x+1) = \log_{2}x x>0$		
$\frac{\log_2(x+1)}{\log_2(x+1)} = \log_2 x$		
$\frac{32}{10924} = 1092$		
•		
$\frac{\log_2(x+1)}{\log_2 x} = \log_2 x$		
$\frac{-32}{\log_2 2^2}$		
$\frac{\log_2(x+1)}{2\log_2 2} = \log_2 x$		
210922		
log2 (x+1) = 2 log2 x		
$\log_2(x+i) = \log_2 xc^2$		
$\frac{1}{2} = x + 1$		
$\chi^2 - \chi - 1 = 0$		
$x = 1 \pm \sqrt{1 - 4x - 1}$		
~		
$x = 1 \pm \sqrt{5}$ but $x > 0$		
$1 \propto = 1 + \sqrt{5}$ is only solution.	$ \mathcal{O} $	
= 1.618 (3dp) $x>0$.		
- 1 /		
·		
•		

MATHEMATICS: Question	16.	P3.
Suggested Solutions	Marks	
(c) (ii) to get from PB rowing. time = distance PB speed.		A 20 150-20 0 B
$d_{PB} = r^2 + r^2 - 2r \cdot r \cdot \cos(180 - 2\theta) 0 \le 20$ $= 2r^2 + 2r^2 \cos 2\theta$ $\cos 2\theta \text{in the second que}$ Since $\cos 2\theta = 2\cos^2\theta - 1$	1 (1)	
$d_{PB}^{2} = 2r^{2} + 2r^{2}(2\cos^{2}\theta - 1)$ $= 2r^{2} + 4r^{2}\cos^{2}\theta - 2r^{2}$	(1)	
$d_{PB}^2 = 4r^2\cos^2\theta$ $d_{PB} = \pm\sqrt{4r^2\cos^2\theta} \qquad d_{PB} > 0$		
i' dpB = 2rcos0 i' time taken to row from PtoB	(1)	
$= \frac{2r\cos\theta}{2}$ $t_2 = r\cos\theta, \ 0 \leqslant \theta \leqslant \overline{\eta}$		Once again bed the result 19 given you need
NOTE: Alternatively use the Sine Rule dpB = [to
sin (180-20) SINO		·
SIn 20 SIND		
$dpB = r \frac{\sin \theta}{\sin \theta}$ $= r \frac{2\sin \theta \cos \theta}{\sin \theta}$ $= 2r \cos \theta$		
1' time to row = 2rcoso	 ,	

MATHEMATICS: Question	16	P4-
Suggested Solutions	Marks	Marker's Comments
(11) Maximum time taken for journey		
Time = $t_1 + t_2$		
$t = \frac{r\theta}{2} + r\cos\theta \qquad r \text{ is cons}$ $\theta is vari$	stant	
$\frac{dt}{d\theta} = \frac{r}{2} - r \sin \theta$	able.	
ii) $ \max / \min \text{ values occur when } \frac{dt}{d\theta} = 0 $		
ie f-rsin0=0		
$r \sin \theta = \frac{\Gamma}{2}$		
$\sin\theta = \frac{1}{2}$		
Ø= 15, T- 15, -		
= II, 5TT 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
$\frac{d^2t}{d\theta^2} = -r\cos\theta$		
When $\theta = \frac{\pi}{6} \frac{d^2 t}{d\theta^2} = -r \frac{\sqrt{3}}{2}$		
l' concave donon	(D)	
is mass three when $\Theta = \frac{\pi}{6}$.		
of journey = $r \frac{\pi}{6} + r \cos \frac{\pi}{6}$ of journey = $-\frac{\pi}{6}$		
$= \frac{\Gamma\Gamma}{12} + \frac{\Gamma\sqrt{3}}{2}$	\cup	

.

MATHEMATICS: Question 16			
Suggested Solutions	Mark	Marker's Comments	
max time = $\frac{r\pi}{12} + \frac{r\sqrt{3}}{2}$ hours.			
β) Since there are no other stationary points $0 \le \theta \le \frac{\pi}{2}$, then			
test the endpoints for a minim	uem		
journay.			
When $\theta = 0$ the person has rowed across the lake.			
ie $t = f \times 0 + r \cos \theta$			
or of course if they have rowed the whole way the distance		·	
is $2r$ if time = $\frac{2r}{2}$			
		Think! - Technically the	
When $\theta = \frac{\pi}{2}$ $t = \frac{\pi}{2} \left(\frac{\pi}{2} \right) + r \cos \left(\frac{\pi}{2} \right)$		questron stated a	
$t = \frac{r\pi}{4} \qquad r\pi < r$		So the minimum time would be	
	Į.	walk the whole we except for the last few steps 9	
tote! thes is the minimum time when $t = r t t$. Nok! $f = t t t t$ When $t = r t t t t t t t t t t t t t t t t t $		row a tiny bit!!	
It is the time it the person walks	d	Some discussion	
re full distance.	\cup	and the second s	